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1 Introduction

Suppose that p > 1, }7 + é =1, am b, >0,0<Y > ah <o0,and0< Y o2 bl < 0o. We have

the following Hardy—Hilbert’s inequality with the best possible constant factor sin(ﬂTp) (ct.
[1], Theorem 315):
1 1
o0 00 1 - 0 p [ q
Amby < = ab, bl . (1)
; ; m+n sin(r /p) ; ;

1
m+n-1

Replacing ﬁ with in (1), we have a more accurate form of (1) (cf. [1], Theorem 323).
We still have the following Mulholland’s inequality with the same best possible constant

factor of (1) (cf. [1], Theorem 343):

q
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In 2006, by means of Euler—Maclaurin’s summation formula, Krnic et al. [2] provided an

extension of (1) as follows:

>3 e ntn i Yot Hz b} o

where A; € (0,2] (i = 1, 2) A1 + Ay = A € (0,4], and the constant factor B(A1,A5) is best

possible, B(u,v) = fo (1+t)“*v
inequality (3) reduces to the published result in [3].

dt (u,v > 0) is the beta function. Forp=g=2, A1 = Ay = %

In 2019, by using (2) and Abel’s summation by parts formula Adiyasuren et al. [4] pub-

lished a Hardy—Hilbert-type inequality with the kernel as —— involving partial sums.

)
Inequalities (1)—(3) with their reverses play an important role in analysis and its applica-
tions (cf. [5-15]).

In 1934, Hardy et al. [1] also published a half-discrete Hilbert-type inequality in Theo-
rem 351: If K(¢) (¢ > 0) is decreasing, p > 1, 1% + % =1,0<¢(s) = [, K@)t dt < 00,a, > 0,
such that 0 < Y7, @l < 0o, then

00 00 p 00
/ xP2 (Z K(nx)u,,) dx < ¢f (é) Z ab. (4)
0 n=1 n=1

Some new extensions of (4) were given in [16—20].

In 2016, by the use of the techniques of real analysis, Hong et al. [21] gave an equivalent
statement of the best possible constant factor related to several parameters in the general
form of (1). The other similar results were provided by [22-29]. Recently, Yang et al. [30]
gave a new result in a reverse half-discrete Hilbert-type inequality.

In this paper, following the way of [4, 21], by means of the weight functions, Hermite—
Hadamard’s inequality, and the techniques of real analysis, a new more accurate reverse

half-discrete Mulholland-type inequality with the kernel as involving one

1
[x+In% (n—£)]A+m
higher-order derivative function is given. The equivalent statements of the best possible
constant factor related to a few parameters, the equivalent forms, and several particular

inequalities are provided. Another kind of the reverses is also considered.

2 Some lemmas
In what follows, we suppose that p <1 (p #0), 1% + é =1, N:={1,2,...}, m e NU {0},
a€(0,1],€ €[0,3], 1 €(0,00), 11 € (0,1), 22 € (0,4) N (0, 1],

ky(Ai) =B A —2) (i=1,2),

A= A;z + “ LAy = 2o ’\1 + Az . We also assume that f(x) = f©)(x) is a continuous deriva-
tive functlon of m- order unless finite points in R, := (0,00), f&V(y) > 0, f&D(0+) =
S V() = o(e®) (¢ > 0; x > 00) (k = 1,...,m), and for f")(x), a, > 0,0 < [;* x‘”(l‘“)‘1 X

(f) (x))? dx < 0o, and

0< > [in(r— )] (n - g1 < oc.
n=2
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Lemma 1 Define the following weight function:

[In(n - £)]**27
@, (A2, %) 1= ax’ 2 (x €R,). 5
> Z [+ In*(n =) (n—£) ' ®
We have the following inequalities:
1
0<kx()»2)[1—o<ﬁ):| <@y (Ao, %) <ky(Xa) (v eR,), (6)
1 DD 2 (2-¢)
where we define O(7) := lq(kz) Jo 1+v dv satisfying 0 < O( 12) O

aiy—1
Proof For fixed x € R,, the function g(¢) := %

convex in (E,oo). In fact, for @ € (0, 1], A, € (0, E] gel0,i],te (%,oo),

is strictly decreasing and strictly

d 1 —ar)[In( - )12 Aafln(t - £)]2re?
—-g(t) =

dt> T (-6 -8)  [x+ (e - &)1 (- &)>
[In(t - £)]*>~
e )82
d? o) = (1 = arg)(2 = ary)[In(z - s,f)]MrB+m(3—2omz—oz)[ln(t—g)]mwf*3
ae® [x + In%(¢ — )1 (£ - £)° [x + In%(t — £)]+1(¢ - )2
3(1 — ahg)[In(t — £)]%*272  ra?(A + 1)[In(t — £)]*r2*2e-3
(- E)P(E—£P° & [x+In(t—E)P2(t— &)
3ra[In(t — &)]*r2re-2 2[In(t — £)]¢*21
T B —E) | [+ I (- E)P(t—£)

> 0.

By the decreasingness property of series and Hermite—Hadamard’s inequality (cf. [31]),

we have
/°° [In(z - £)]**2~ i [In(n - &)]*">7!
2 - &)t - [x+1In"(n - &) (n-§)

[+ In*(¢
©  [In(t—&)]-!
</3 Frne o) —8) " @)

Setting v = (- é)( dt = éxﬁvé’l dv), for 2 5 —& > 1, we obtain

/°° [Int - &))"
3 [+In®(E-8)(-§)

1 00 XV (aAn-1) 1 0o V)\z—l dv
— ﬁ 7( ) xé V‘%—l dv < / = k)\()‘-Z)
0

Caxt ““(x%*s) 1+v) ~ axr 2 1+v ax* A2

By (5) and (7), we have

1
@5 (Ao, ) < ax™ 2 W—_MkA()\-Z) =k (Aa).
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On the other hand, in the same way, we find

[In(¢ - &)1
x+1In%(£—§)]M(e-§)

In%(2-¢)

o0
(Ao, X) > axk_“/ [
2

© yralgy T Vvlgy 1
= —_ = ——=k(X)|[1-0
/o (L+v) /o ey 2)[ (k)]
1 1 @6yt -
where O(55) = z655 o * T,y dv satisfying
(2 £)
In**2(2 — £)

0<0 veldy = —— >° 0).

() <50 | Y G 70

Hence, inequalities (6) follow.

The lemma is proved.

O

Lemma 2 For p <0 (0 < g < 1), we have the following reverse Mulholland-type inequality:

Oy 1 g !
10 _/(; ; [x+1na(n_$)]Af (x)dx> (akx()\z)> (/Q()\l))

1

S q

[t o] | St ol
0

n=2
Proof For o > 0, setting v = x/In%(n — &), we can obtain another weight function:

a1l dx

a),\()\l,n) = [hl(}’l S)] ol )‘1)/0 m

o0 )q ld
:/0 (v+1)V_kA(“) (n e N\(1}).

By reverse Holder’s inequality (cf. [31]), we have

~ oo X 1 x(l—kl /q(l’l S)_I/p - [ln(n g)] (1-ar)/p
n= | g[xnn‘*(m— | !0ty 75

1
r

1-11)(10—1)(,1 _ 5)_1 R
{/ Z [x+In*(m—-&)]* [In(n - &)]i-or2 (f (x)) dx
o [ 1 [In(n — £)]A-er2)la-1) 44 7
" {22/0 Ern (-6 A (1) dx}

1

= {é‘/OOOaf,\()xz,x)xp(l‘il)‘l(f(”‘)(x))p dx}p

X {Z ;. (A1, n)[ln(n - E)]q(l_am_l(n —£) gl } q.

8)

)

s

(10)
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We show that (10) does not keep the form of equality. Otherwise (cf. [31]), there exist
constants A and B such that both of them are not zero and

x1-2)e-D(y _ g)-1
[In(m — §)]t-e2

_ y(an)g-D)
(F™ (%)) =B []n(zlfl )(]n - 5)1: T1 e inR, x N\{1}.

Assuming that A #0, there exists # € N\ {1} satisfying

AU (0 ) = f[ln(n =6)]" Y (1 - §)1af ae.inR,,

T}
which contradicts the fact that 0 < [~ x?!=*0=1(£")(x))? dix < 00, since [~ m dx =
00. Then, by (6) and (9), we have (8).

The lemma is proved. d

Lemma 3 Fort > 0, we have the following expression:

* —tx _i > —tx (m)
/0 e f(x)dx—tm/0 e (x) dx. (11)

Proof For m =0, in view of f©(x) = f(x), (11) is valid. For m € N, since f*D(0+) = 0 (k =

1,...,m), integration by parts, we find

/00 e 0 (x) dx = /00 e df & (x)
0 0

_ e—txf(k—l)(x)lgo _/ f(k—l)(x) de—tx
0

(k-1)
~im @,

x—> 00 etx

o0
t/ e 6D () dix.
0
In view of

FED () = o(e”) (¢>0,x— oosk=1,...,m),

. . f(k—l)(x)
it follows that lim,_, —— =0, and then

/OO e_txf(k_l)(x) dx = % /OO e_txf(k) (x) dax.

0 0

By substitution of k = 1,...,m in the above expression, (11) follows.

The lemma is proved. d

3 Main results
Theorem 1 For p <0 (0 < g < 1), we have the following more accurate reverse half-discrete
Mulholland-type inequality involving one higher-order derivative function:

_ [y an re) (1 ; .
1= /0 HXZZ: [x + ll’la(}’[ _ %.)])\erf(x) dx > F()\ + l’l’l) (ak)n()‘Z)) (kk()‘-l))
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U A1) L )dx] {Z[ln(n )] a0~ Yn-&)al B (12)

n=2

In particular, for 11 + Ly = A, we have
o0 o0
0< / KPU-h)-1 (f(m)(x))P dx < 0o, 0< Z[ln(n _ %.)]q(l—ozkz)—l(n _ é__)qflaz < 00,
0 n=2

and the following inequality:

/ Z e W

r(.

———B(A, A
>a1/PF(A+m) (1,22)

x [ /0 T 1 () )P dx] ’ {Z[ln(n —e) Y ) ag Lo

n=2
Proof Since we have

1 B 1
[+ In%(m—&)*"  T(h+m)

00
/ tk+m—le— [x+In% (n—-&)]t dt,
0

by the Lebesgue term by term integration theorem (cf. [32]) and (11), we find

I o / i ianf (%) f T e e 9 g
LA +m) Jo —~ o

R T

C(x+m) Jo 0 "

n=2

1 * eme1 —/w—tu N
t+m tm X m d n-(n ndt
F()»+Wl)/o ( \ e (x) dx ge a
1 o
_ (m) A-1 —[x+ln n—
= a x t e det dx
o 2 of (){fo }

@) ) T
N F(A+m)/ Z[x+ln"‘(n E)]’\f (x)dx_r(k+m)10

Then, by (8), we have (12).
The theorem is proved. d

Theorem 2 Forp <0 (0<q<1),if A1 + Ay = A, then the constant factor

re) /(1 ’
m(;’ﬁ@»z)) (ka(r1))

in (12) is best possible. On the other hand, if we add the condition that ). — 1, < é, the same
constant factor in (12) is best possible, then A1 + Ly = A.

N
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Proof In the following, for m = 0, ¢ > 0, we define ]_[:Zgl()q +i-— 1%) =1.
IfA1 + Ay = A, then (12) reduces to (13). For any 0 < & < gk, we set

0, O<x<1,

fO@=fw=1" .
X r,

’

x>1

i o= [0 -6)] 0 - 6) (meN\(1)),.
and find

0, O<x<l,

£
[T G +i= ™0 x50

FO@) =
satisfyingf(k)(0+) = O,f(k)(x) =0(e®) (t>0,x—> 00; k=0,...,m—1).
If there exists a constant M(> ——-2) B(A1, A7) such that (13) is valid when we replace

oaVPT (+m)
ri . . .
WMB(M, A2) with M, then in particular we have

L afw
= d.
= 2 v

o]

N M|:/OO KP1-A)-1 (;c(m)(x))p dxi| p {Z[ln(”l _ E)]q(l_a“)_l(}’l _ %-)qfléz } ! ) (14)
0

n=2
By the decreasingness property of series, we find
m—-1

1
1> MH(M +i— f) |:/ aP(=h)-1yp(a-l)-e dx]p
p 1

i=0

X {Z[ln(n _ %-)]q(l—akz)—l(n _ E)‘FI [ln(n _ é)]qakz—as_q(n B %‘)tI} q

n=2

Q=

Replacing A with A + m, setting hoi=Ao— g € (0,1 +m)N (0, é], A=A +m+ 2 € (0, A +m)
in (5), by (6), we have

T BT ) A
]—‘/1 {x Z [x + In% (1 — )]+ (n — £) x dx

n=2

Page 7 of 16
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1 [ ~
=i/amﬂmmfﬂﬂ
o Jy

1 [ - 1 -
< —/ Knom(M2)a ™ dx = —Kym(ho).
a )y so

Based on the above results, we have

1

m-1

ka()Lz) > el >M1_[<A1 +i— I;) { é[ln(z _ f)]_m}

i=0

For ¢ — 0%, in view of the continuity of the beta function, it follows that

FG)C(2) Bl +m,1)

() _
B( 1 2) UP]"(A+WI) al/P l_[:zal()"l +l) -

aVPT' (A + m)

Hence, M = WB()”’ A2) is the best possible constant factor in (13).
Liall N M A = )‘qkl + ’\2 SA—A < —,weﬁnd

On the other hand, for A; =

A " A—A A A=A A
AM+Ay= 2+—1+ 1+—2=)w
p q q p
A 1/ 1/
5, < Mo Lo

~ ~ A A
0< Ay, A< —+—=A, <
yr q p q

’

1
o

and %B(Al,kz) € R,. Substituting Ai =4 (i=1,2) in (13), we still have

oo a,
) /0 nzzzj [x+In%(n — g)]umf(x) dx

L% B(hy,hs)
> T b
al’PT (A + m) b2

1 1
e} . P - q
X |:/ xp(l—)»l)—l (f(m)(x))P dx]p {Z[ln(n _ g)]q(l—akz)—l(n _ é__)q—laz (15)
0 n=2
By reverse Holder’s inequality (cf. [31]), we still have
PN A=A A
B(A1,22) = kx( 2 4 —1>
p q
2 RSN 00 1 A-hp-1 rp-1
du = d
/ 1+u)* v /0 (1+u)x(” 7o) T ) du
1o 1
/ Wl gy ! / L W1 dy
(1+u) o (L+u?
Irope 1
p q
2_1 d A1 d
[ 1+ V)A V] [/o Lruy u]
(16)

= (k.(2))? (K () 7.
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In view of ﬁ&m)(h(kz))% (k;\()q))% being the best possible constant factor in (12), by

(15), we have the following inequality:

r()
a’PT' (A + m)

1 () A
(kx()»l))q = mlg(ll,)q)(e R,),

T

(ks (12))

namely, B(h1,hy) < (/q()»z))l% (ky, ()\1))% , and then (16) keeps the form of equality.

We observe that (16) keeps the form of equality if and only if there exist constants A and
B (cf. [31]) such that they are not both zero and Au*~*? = Bu*! a.e. in R,. Assuming that
A #0,we find * 271 = £ g.e. in R, namely, A — A, — A1 = 0. Hence we have A1 + A3 = A,

The theorem is proved. g

4 Equivalent forms and some particular inequalities
Theorem 3 Forp <0 (0< g < 1), we have the following reverse half-discrete Mulholland-
type inequality equivalent to (12):

s paia-1 R f(x) ak
- iZ[ln(n—g)] 0=8) l[fo [ + In" (n — &)]+m dx] }

n=2

r'() 1 N AN »
g m(mz»"(kxw)q[ / a0 (71 )<x>)"dx} : (17)

In particular, for A1 + Ay = A, we have the following inequality equivalent to (13):

0 g1 . 00 f(x) p 117
iZ[ln(l’l—g)] (n-§) |:‘/0 [x+ln°‘(n—$)]“m dx] }

n=2

r'(A) B()\'l,)\'z)[/wxp(l—ll)—l (f(’”)(x))p dx]ﬁ. (18)
) 0

S A
alPT (A +m

ST

Proof Suppose that (17) is valid. By reverse Holder’s inequality, we have
o0 X 1
I= Z{ [InGz - €))7 (n - &)

/‘X’ fx)dx }
2 o (- gp

< {[InGr =) "2 (1= £)7 a, )

> ]{ Z[ln(n _ S)]q(l—aiz)—l(n _ é)qﬁlaz } q . (19)

n=2

Then, by (17), we have (12).
On the other hand, assuming that (12) is valid, we set

o0 -1
ay = [In(n - £)]" (- g)? [ i /@ de L neN\(1),
0

[x + In% (1 — &)+
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If ] = oo, then (17) is naturally valid; if / = 0, then it is impossible that makes (17) valid, i.
e.,J > 0. Suppose that 0 < J < co. By (12), we have

00 > Z[ln(n - g)]q(l_“;\z)‘l(n —E) gl = =]
n=2
r()
g al/?T (A + m)

"s\»—‘

(kx(22))” (Kk.(A1)) ‘1’|:/ aP1-h)- 1(f (x)) dx] Pt

1

] = i S [in6e- )] (n - )1 a } ’

n=2

r'() 1 1 R
>m(kx()»2 ” kx(M) q[/ AP1-h) l(f( )x))dx] ,

namely, (17) follows, which is equivalent to (12).
The theorem is proved. d

Theorem 4 Forp<0(0<q<1),if A1 + Ay =X, then the constant factor

r'(x)
aVPT' (A + m)

Q=

(k. (2)? (ks (1))

in (17) is best possible. On the other hand, if we add the condition that ). — 1, < i, the same
constant factor in (17) is best possible, then we have Ay + Ay = A.

Proof If 1y + Ay = X, then by Theorem 2, the constant factor

r'(x)
aVPT' (A + m)

N

(k,\()»z))'l’ (ks (x1))

in (12) is best possible. By (19), the constant factor in (17) is still best possible. Otherwise,
we would reach a contradiction that the constant factor in (12) is not best possible.

On the other hand, if the constant factor in (17) is best possible, then, by the equivalency
of (17) and (12), in view of J¥ = I (see the proof of Theorem 3), we still can show that
the constant factor in (12) is best possible. By the assumption and Theorem 2, we have
AM+Ay=A.

The theorem is proved. d

Remark 1 (i) For @ = 1 in (13) and (18), we have the following equivalent inequalities:

[ Z g O

()

> mB(M»)»z)

* U T () “”‘]E {Z[ln(n O g o)
0

n=2

Page 10 of 16
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=

. et o[ (5 S@ T
{Z[]n(n—é)] (n-§) |:/(; 1n“”’ex(n—§)dx:|}

n=2

L) A () ) ]i
>F(A+M)B(A1,A2)|:/O ” (F" @) dx | (21)

(ii) For &£ =0 in (13) and (18), we have the following equivalent inequalities:

oo X a,
/0 ; (x +In* n)“”’f(x) dx

(A
g al’PT(A + m)

1 1
00 > q
x [ / =407 (0 ()P dx]p |:Z(ln n)q(l‘““)‘lnq_laZj| , (22)
0

B(A1, 1)

n=2
o (1n n)pozkz—l o] f(JC) r 117
:; n [/(; (% + In® p)r+m dx] }

Hence,(13) (resp (18)) is a more accurate form of (22) (resp. (23)).

(i) For & = 3 in (13) and (18), we have the following equivalent inequalities:

/ 7 ln"‘(n Dy @4

F(A)
g al’PT (A + m)

[[omaral

oo 1 q(l-ary)-1 1 . %

x{Z[m(n—gﬂ (-2)ef
n=2

1

00 1 pary—1 1 -1 00 f(x) Y
i;[ln(n—iﬂ <n—§> |:/0 [x+1n"‘(n—%)]%+m dx} ]

1

(%) % oAr)1 ( pm v
g al/PF(A+m)B()L1’)L2)|:_/O A=) l(f( )(x))p dx] . (25)

B()1, 1)

The constant factors in the above inequalities are all best possible.

5 Another kind of reverses

Similar to Lemma 2, we have the following.
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Lemma 4 For0<p <1 (q<0), we have the following reverse Mulholland-type inequality:

N

= s (l—n (m) l 1%
Iy = fo ; [x+ln“(n—§‘)]kf (x)dx> (alq()»z)) (kk()‘fl))

[ele] 1 N %
y { / [1 _ O(xTz)]xp(l‘“)‘l(f(m)(x))pdx}

X {Z[ln(n )] R gyl } B (26)

n=2

Theorem 5 For 0<p <1 (q<0), we have the following equivalent reverse inequalities:

) /o Z [x + In® (6:1 - g)]“mf(x) dx > m ( ky (M)) (ks (A1)
n=2

[l o]

% {Z In(r — E q(l-a % 2)- 1( g;.)q_laz}q, 27

i P TN Y R () aK
]—!;[ln(rz—é)] (n—8) UO [xﬂna(n_g)]wdx”

(A
g alPT (A + m)

(1 of 2\ ot (pomn? 4]’
X|:/o <1 O(xM))xp (f (x)) dx]. (28)

In particular, for Ay + Ay = X, we have the following equivalent reverse inequalities:

Q=

(kx()nz))’% (ka(r1))

/ Z x+1n°‘(n 5)]“”’f(x)dx

(A
g a?T' (A + m)

[ o) emora]

{Z[lnm )" —sv-laz]q, (29)

n=2

00 - . o0 f(x) P 117
{Z[ll’l(}’l—é)] (n-§) |:/0 [x+1na(n_g;)]x+m dxi| }

n=2

>t [ (1-o(@) ey a] e

where the constant factor TB(M, A2) is best possible.

B(A1,12)
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Proof We only prove that the constant factor in (29) is best possible. The others are omit-
ted.

Forany 0 < ¢ < pA;, we set

O =Fw:= 1 pereh

£ _
x)»1+m—p 1’ le

=[-8 - (neN\(1)),
and find

f(k)(x)— 0, O<x<l, (k=0 m)
T Gy +i - ﬁ)xmm_k_%_l, x>1 o

satisfyingf(k)(0+) = O,f(k)(x) = o(e”‘) (t >0,x— 00;k=0,...,m—1).

If there exists a constant M (> B()1, 13)) such that (29) is valid when we replace

r()
aPT (A+m)

~ of ()
_/ [x+In*(n — é‘)]“’”dx

[ ol el

x {Z[lﬂ(l’l _ s)]@(l—akz)*l(n _ E)q—lﬁz} ! . (31)

n=2

1/171"()L+m
B(A1,2) with M, then in particular we have

By the decreasingness property of series, we find

m-1 00 1
I>M[] <A1 +i— ;) U (1 - o<%>)xpﬂ-m-lxﬂ“-”—8 dx] !
. 1

i=0

x {Z[ln(n =" =) [ - )] w} q
n=2

m-1 ‘ e o) Y [e'¢) 1 }7

=Mg<)»1 +l—1;>|:/1 X ldx—/l O(x—)\2+8+1>dxi|

1

{mz O -6 +Zlnn £)] “Sl(n—é)‘l}

:

1

Mg()\1+i—;—j>(%—0(l)>

x {[1n<2—s>]‘“‘1<2—s)-1 0 f2 [In(y—&)] " (y-£)" dy}q

S
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M

m-1 1
-2 11 <A1 ¥ i—g)(l —0(1))?

x {s[ln(2 IS R i[ln(Z —e)]™ } "

Replacing A with A + m, setting hoi= Ao+ 1% €OA+m), A=A +m— 157 € (0,A + m) in
(9), we have

i o9 A +m—<-1
= _ a(,\2+[§) X p _ e,
I = ;{[IH(VZ S)] /1 [x+1n°‘(n—§‘)]l+m dx}[ln(n g)] (n g)

< i{ [ln(n B S)]oziz /00 xr1-1 dx}[ln(n B %_)]—as—l(n _ S),l
B o [x+In"(n—&)+m

n=3

- kx+m()~»1){ [In@-6)]""@-6)"+) [In(-&)] " (- sV}

< kw(Xl){[ln(z—s)]““(2—5)-1 + /2 [y -] "(y-£)" dy}

= K {ea[n@ -6 @) + [in@ -5 ).

Based on the above results, we have

ék“”‘ (kl +m— ;) {ea[ln(Z - S)]ﬂ”fl(Z —&) [ln(2 - 5)]7%}

>8]

1
q

m—-1 1
M[] (M ie g) (1-s0(1))? {s[ln(Z "8+ 2 5)]‘”} -
i=0

For ¢ — 0%, in view of the continuity of the beta function, it follows that

r'(x) (A1) (A2) B(hy +m, A2)
1/73()»1, Ay) = 7 >
alPT (A + m) o PF(A+m) e You +19)
Hence, M = mB(M, Ap) is the best possible constant factor in (29).
The theorem is proved. O

In the same way of proving Theorem 4, we have the following.

Theorem 6 For 0 < p <1 (g <0), if we add the condition that A — 11 < é, the constant
factor

ra /1 5
To+m) <;kx()»2)> (ka(r1))

in (27) (or (28)) is the best possible, then we have .1 + Ay = A.

N
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6 Conclusions
In this paper, following the way of [4, 21], by means of the weight functions, Hermite—
Hadamard’s inequality, and the techniques of real analysis, a new more accurate reverse
half-discrete Mulholland-type inequality with the kernel as W

higher-order derivative function is given (for p < 0,0 < g < 1) in Theorem 1. The equivalent

involving one

statements of the best possible constant factor related to a few parameters, the equivalent
forms, and several particular inequalities are provided in Theorems 2—4 and Remark 1.
Another kind of the reverses is also considered (for 0 < p < 1, g < 0) in Theorems 5-6. The

lemmas and theorems provide an extensive account of this type of inequalities.
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