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Abstract
We show that positivity (≥ 0) on R

n
+ and on R

n of real symmetric polynomials of
degree at most p in n ≥ 2 variables is solvable by algorithms running in polynomial
time in the number n of variables. For real symmetric quartics, we find discriminants
which lead to the efficient algorithms QE4+ and QE4 running in O(n) time. We
describe the Maple implementation of both algorithms, which are then used not only
for testing concrete inequalities (with given numerical coefficients and number of
variables), but also for proving symbolic inequalities.
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1 Introduction
In this paper we deal with special cases of the quantifier elimination problems

f (x) ≥ 0 ∀x ∈R
n
+,

f (x) ≥ 0 ∀x ∈R
n,

for polynomials f ∈ R[X1, . . . , Xn], which will be referred to as QE+(f ) and QE(f ), respec-
tively. The latter is related to Hilbert’s 17th problem on the possibility of writing positive
semidefinite real polynomials as sums of squares, and to Artin’s solution to it, according
to which the polynomials satisfying QE(f ) are precisely those which are sums of finitely
many squares of rational functions. Furthermore, positive semidefinite symmetric fourth
order tensors play an important role in continuum mechanics (as elasticity tensors) and
in diffusion weighted magnetic resonance image processing (DW-MRI, for investigating
the complex microstructure of the cerebral white matter in-vivo and non-invasively); pos-
itive semidefiniteness of such tensors is equivalent to the condition QE(f ) for a homoge-
neous symmetric quartic f . Therefore, concrete efficient algorithms deciding on QE+(f )
and QE(f ) at least for some classes of polynomials are of interest.

Following the notations from [7–9], let us consider the vector space �[n]
p of all real sym-

metric polynomials of degree at most p ∈ N in n ∈ N
∗ indeterminates and the subspace
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H[n]
p of p-homogeneous polynomials (real symmetric n-ary p-forms). For symmetric cu-

bics f ∈H[n]
3 , it is known from [4, Th. 3.7] that QE+(f ) holds if and only if

f (1k , 0n–k) ≥ 0 for every k ∈ 1, n, (1)

where 1, n := {1, 2, . . . , n} and 1k := (1, . . . , 1) ∈ R
k and 0k := (0, . . . , 0) ∈ R

k for every k. This
equivalence is no longer true for higher degree, but still holds for f ∈ H[n]

4 (symmetric
quartic) under the additional condition (see [8, Th. 19(2)])

f (1, –1, 0n–2) ≤ 0.

For QE+(f ) and QE(f ), the mere existence of an equivalent boolean combination of poly-
nomial inequalities in the coefficients of f follows by the Tarski–Seidenberg principle (see
[2] for details). For every fixed degree upper bound p ∈N

∗, the problems QE+(f ) and QE(f )
for deg(f ) ≤ p are well known to be unsolvable in polynomial time in n (see for instance
[1, Ch. 14]). According to [3], quantifier elimination in real algebra is doubly exponential
in the number of variables, even when there is only one free variable and all polynomials
in the quantified input are linear. Therefore, existing algorithms cannot be efficient for the
problems QE+(f ) and QE(f ) restricted to symmetric polynomials, since they perform the
same operations as in the general case. Nonetheless, we will show that specific efficient
algorithms running in polynomial time in n can be designed in the symmetric case.

For every quartic f ∈H[n]
4 , we assume the representation

f = aP4 + bP3P1 + cP2
2 + dP2P2

1 + eP4
1 (a, b, c, d, e ∈R), (2)

where Pk denotes the kth symmetric power sum Pk(x1, . . . , xn) =
∑n

j=1 xk
j . For symbolic

quartics, by combining and strengthening several results from [7, 8], both problems
QE+(f ) and QE(f ) are reduced to equivalent finite systems of univariate polynomial in-
equalities of degree at most 4, for which we find explicit discriminants (polynomial ex-
pressions in the five coefficients). Since the resulting algorithms QE4+ and QE4 test the
signs of finitely many discriminants (Theorems 4 and 8), the usual requirements (finite-
ness, definiteness, effectiveness) are fulfilled. Both algorithms are deterministic, have an
input consisting of the number n ≥ 2 of variables and the coefficients a, b, c, d, e ∈ R, al-
ways terminate with one of the possible outputs “0 ≤ f , true” and “0 ≤ f , false”, and run in
O(n) time. Since testing concrete/numerical inequalities becomes trivial, in Sects. 3.3 and
4.2 we mainly give examples of algorithm-assisted proofs for 21 symbolic inequalities,1

with coefficients depending on the arbitrary dimension n.
Let us note that many numerical tests2 on various valid inequalities (to avoid a quick

negative output) confirmed that the running time is linear in n. For the Maple implemen-
tation of the algorithms outlined in Figs. 1, 2, the running time is around 60–110 seconds
(depending on f ) for n = 106 and the amount of memory required for their execution does
not depend on n and is about 60–100 MB.

1This possibility makes the algorithms QE4+ and QE4 much more interesting and useful.
2With Maple 15 on a Dell Inspiron 5570 with 16GB RAM and Windows 10 OS.
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2 Existence of efficient algorithms in the symmetric case
The following existence result is based on the Tarski–Seidenberg principle and on the
half-degree principle from [7, Cor. 2.1].

Theorem 1 (Efficient algorithms) There exists an algorithm solving for every fixed degree
upper bound p ∈N

∗ the problem QE+(f )/QE(f ) for arbitrary f ∈ �[n]
p in polynomial time in

the number n of variables. The statement also holds for the corresponding problems defined
with strict inequalities.

Proof For all p, q ∈N
∗, set P [q]

p := {g ∈R[X1, . . . , Xq] | deg(g) ≤ p} and

Rp,q :=

{

r = (r1, . . . , rp) ∈ (N∗)p
∣
∣
∣
∣

p∑

i=1

ri = q

}

, R+
p,q :=

q⋃

k=1

Rp,k .

The case of QE+(f ). There is an algorithm3 A+ which solves the problem QE+(g) for arbi-
trary g ∈ P [q]

p by performing a maximum number of operations denoted by N+(p, q) (de-
pending on the degree upper bound p and on the number q of variables). Let us fix p ∈N

∗

and set p̄ := max{� p
2 �, 1}. For all f ∈ �[n]

p and r ∈ R+
p̄,n, let us define fr ∈P [p̄]

p by

fr(u1, . . . , up̄) := f (u1 · 1r1 , . . . , up̄ · 1rp̄ , 0r′ ),

where r′ = n –
∑p

i=1 ri. According to [7, Cor. 2.1(1)], for every f ∈ �[n]
p ,

QE+(f ) holds ⇐⇒ QE+(fr) holds for every r ∈ R+
p̄,n. (3)

Let us consider the algorithm Ã+ which solves the problem QE+(f ) by running A+ for all
QE+(fr) (r ∈ R+

p̄,n). The number of operations performed by Ã+ on f is

N(Ã+, f ) = N+(p, p̄) · card
(
R+

p̄,n
)

= N+(p, p̄)
(

n
p̄

)

.

Hence, for fixed p, the problem QE+(f ) for f ∈ �[n]
p is solvable in O(np̄) time.

The case of QE(f ). Let us note that QE(f ) cannot hold if deg(f ) is odd. There is an al-
gorithm A which solves the problem QE(g) for arbitrary g ∈ P [q]

p by performing a maxi-
mum number of operations denoted by N(p, q). Let us fix an even integer p ≥ 2 and set
p̄ := max{ p

2 , 2}. For all f ∈ �[n]
p and r ∈ Rp̄,n, let us define fr ∈P [p̄]

p by

fr(u1, . . . , up̄) := f (u1 · 1r1 , . . . , up̄ · 1rp̄ ).

According to [7, Cor. 2.1(2)], for every f ∈ �[n]
p , we have the equivalence

QE(f ) holds ⇐⇒ QE(fr) holds for every r ∈ Rp̄,n. (4)

3Such algorithms are known (see [1, Ch. 14]), but their structure is not relevant here.
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Let us consider the algorithm Ã which solves the problem QE(f ) by running A for all
QE(fr) (r ∈ Rp̄,n). The number of operations performed by Ã on f is

N(Ã, f ) = N(p, p̄) · card(Rp̄,n) = N(p, p̄)
(

n – 1
p̄ – 1

)

.

Hence, for fixed p, the problem QE(f ) for f ∈ �[n]
p is solvable in O(np̄–1) time.

The case of strict inequalities. For both problems, the proof using Corollary 2.1 from [7]
is similar to the above. �

3 The problem QE+(f ) in H[n]
4

3.1 Finite test-sets for QE+(f )
For every f ∈H[n]

4 (n ≥ 2) as in (2), we have f (1, –1, 0n–2) = 2(a + 2c). As pointed out in the
introduction, if a + 2c ≤ 0, then

QE+(f ) ⇐⇒ (1). (5)

In the general case, according to (3) the problem QE+(f ) reduces to the quantifier elimi-
nation problems

f (u · 1r , v · 1s, 0n–r–s) ≥ 0 ∀u, v ≥ 0,

considered for all r, s ∈N
∗, with r +s ≤ n. Since p = 4 and p̄ = 2, the algorithm Ã+ described

in the proof of Theorem 1 solves QE+(f ) in O(n2) time. Theorem 2 will provide further
reductions, leading to the algorithm QE4+, which solves QE+(f ) in O(n) time.

For all f ∈H[n]
4 and (r, s) ∈N

∗ ×N
∗ with r + s ≤ n, let us define

fr,s : R →R, fr,s(t) = f (t · 1r , 1s, 0n–r–s),

f ∂
r,s : R \ {1} →R, f ∂

r,s(t) =
( ∂f
∂x1

– ∂f
∂xr+1

)(t · 1r , 1s, 0n–r–s)
t – 1

.

For every f as in (2), an easy computation shows that

f ∂
r,s(t) = 4a

(
t2 + t + 1

)
+ 3b(t + 1)(rt + s) + 4c

(
rt2 + s

)
+ 2d(rt + s)2.

Hence f ∂
r,s is the restriction of a polynomial function (for which we use the same notation)

with deg(f ∂
r,s) ≤ 2. We have the obvious identities

fs,r(t) = t4fr,s
(
t–1) and f ∂

s,r(t) = t2f ∂
r,s
(
t–1) for every t ∈R

∗. (6)

Let Zf ⊂N
∗ ×N

∗ denote the finite set consisting of all points (r, s) of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

none (Zf = ∅), if a + 2c ≤ 0,

(k, 1), (1, k), for k ∈ 1, n – 1, if

⎧
⎨

⎩

a + 2c > 0,

a ≤ 0 or b ≥ 0,

(k, 1), (1, k), (k, n – k), for k ∈ 1, n – 1, if

⎧
⎨

⎩

a + 2c > 0,

a > 0 > b.
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Thus for every (r, s) ∈ Zf we have r + s = n or r = 1 or s = 1. Let the finite sets

Mf :=
{

(r, s) ∈ Zf | f ∂
r,s is non-constant

}
,

Tf
r,s :=

{
(t · 1r , 1s, 0n–r–s) ∈R

n | t > 0, f ∂
r,s(t) = 0

}
for every (r, s) ∈ Mf ,

Tf :=
{

(1k , 0n–k) | k ∈ 1, n
}∪

⋃

(r,s)∈Mf

Tf
r,s.

The following theorem is a combination of two results from [8, Ths. 13, 14].

Theorem 2 (Finite test sets) For every f ∈H[n]
4 , we have the equivalence

QE+(f ) holds ⇐⇒ f (ξ ) ≥ 0 for every ξ ∈ Tf .

Proof We only need to prove the implication “⇐”. Suppose f |Tf ≥ 0, but QE+(f ) is false.
As Tf ⊃ {(1k , 0n–k) | k ∈ 1, n}, we see that (1) holds. Therefore, a + 2c > 0 (otherwise, (5)
leads to a contradiction). For every (r, s) ∈N

∗ ×N
∗ with r + s ≤ n, by (6) we deduce that

QE+(fr,s) ⇐⇒ QE+(fs,r).

As a + 2c > 0, the above equivalence and the definition of Zf lead by [8, Th. 14] to

QE+(f ) holds ⇐⇒ QE+(fr,s) holds for every (r, s) ∈ Zf .

Since QE+(f ) is false, so is QE+(fr,s) for some (r, s) ∈ Zf . Let us define

g : [0,∞[→ R, g(t) =
fr,s(t)

(rt + s)4 = f
(

t
rt + s

· 1r ,
1

rt + s
· 1s, 0n–r–s

)

.

Some trivial computations show that

g(0) =
f (1s, 0n–s)

s4 ≥ 0, lim
t→∞ g(t) =

f (1r , 0n–r)
r4 ≥ 0, (7)

g ′(t) =
rs(t – 1)
(rt + s)5 f ∂

r,s(t) for every t ≥ 0. (8)

As QE+(fr,s) is false, by (7) we see that g has a global minimum g(θ ) < 0 at some θ > 0,
and so g ′(θ ) = 0. As g(1) = f (1r+s ,0n–r–s)

(r+s)4 ≥ 0 > g(θ ), we have θ �= 1, and so f ∂
r,s(θ ) = 0, by (8). It

follows that f ∂
r,s is non-constant (otherwise, f ∂

r,s ≡ f ∂
r,s(θ ) = 0 yields g ′ ≡ 0 and g ≡ g(0) ≥ 0,

which contradicts g(θ ) < 0). Hence (r, s) ∈ Mf , and so ξ := (θ · 1r , 1s, 0n–r–s) ∈ Tf
r,s ⊂ Tf . We

thus get

(rθ + s)4g(θ ) = fr,s(θ ) = f (ξ ) ≥ 0,

a contradiction. We thus conclude that QE+(f ) holds. �
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3.2 Discriminants for QE+(f )
Our approach to QE+(f ) is based on Theorem 2. Therefore, we next characterize the in-
equalities f |Tf

r,s
≥ 0 for (r, s) ∈ Mf .

Some easy computations show that

⎧
⎨

⎩

fr,s(t) = Ar,st4 + Br,st3 + Cr,st2 + Dr,st + Er,s,

f ∂
r,s(t) = αr,st2 + βr,st + γr,s,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ar,s := r[a + (b + c)r + dr2 + er3] = f (1r , 0n–r),

Br,s := rs(b + 2dr + 4er2),

Cr,s := rs[2c + d(r + s) + 6ers] = Cs,r ,

Dr,s := rs(b + 2ds + 4es2) = Bs,r,

Er,s := s[a + (b + c)s + ds2 + es3] = f (1s, 0n–s),
⎧
⎪⎪⎨

⎪⎪⎩

αr,s := 4a + (3b + 4c)r + 2dr2,

βr,s := 4a + 3b(r + s) + 4drs = βs,r ,

γr,s := 4a + (3b + 4c)s + 2ds2 = αs,r .

According to Theorem 2 and the definition of Tf , for real symbolic polynomials

⎧
⎨

⎩

F(t) = At4 + Bt3 + Ct2 + Dt + E,

g(t) = αt2 + βt + γ , g is non-constant,

it suffices to compute explicit discriminants for the problem

F(θ ) ≥ 0 for every root θ > 0 of g (9)

(the result will apply to (F , g) = (fr,s, f ∂
r,s) for (r, s) ∈ Mf ). As deg(g) ∈ {1, 2}, analyzing the

equation g(t) = 0 in both possible cases (α �= 0 or α = 0 �= β) shows the equivalence

(9) ⇐⇒ (10) or (11) or (12),

where
⎧
⎨

⎩

α = 0, β �= 0,

– γ

β
≤ 0 or F(– γ

β
) ≥ 0,

(10)

	 := β2 – 4αγ < 0, (11)
⎧
⎪⎪⎨

⎪⎪⎩

α �= 0 ≤ 	,
–β+

√
	

2α
≤ 0 or F( –β+

√
	

2α
) ≥ 0,

–β–
√

	

2α
≤ 0 or F( –β–

√
	

2α
) ≥ 0.

(12)
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Hence, if α �= 0 ≤ 	, conditions (9) and (12) are equivalent. For the elimination of
√

	

from (12), we need the following lemma.

Lemma 3 Let u, v, δ ∈R, with δ ≥ 0. Then

u + v
√

δ ≥ 0 ⇐⇒ u, v ≥ 0 or ρ, u ≥ 0 or ρ ≤ 0 ≤ v,

where ρ := u2 – v2δ.

Proof The proof is routine. �

Now assume α �= 0 and 	 ≥ 0 as in (12). Clearly, F( –β±√
	

2α
) = P±Q

√
	

2α4 (with corre-
sponding signs) for some polynomial expressions P, Q, in the coefficients of F and g . We
next find the expressions P, Q, and P2 – Q2	, since by Lemma 3 these characterize the
inequalities F( –β±√

	

2α
) ≥ 0 from (12). By Taylor’s formula, we get P+Q

√
	

2α4 = F( –β+
√

	

2α
) =

∑4
k=0 F (k)( –β

2α
) (

√
	)k

k!(2α)k . An easy computation gives

P = A
(
β4 – 4β2αγ + 2α2γ 2) – Bβα

(
β2 – 3αγ

)
+ Cα2(β2 – 2αγ

)

– Dβα3 + 2Eα4,
(13)

Q = –Aβ
(
β2 – 2αγ

)
+ Bα

(
β2 – αγ

)
– Cβα2 + Dα3. (14)

Let us observe that R := P2–Q2	

4α4 = α4F( –β+
√

	

2α
)F( –β–

√
	

2α
) is the resultant of the polynomials

g and F , and so

R =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A B C D E 0
0 A B C D E
α β γ 0 0 0
0 α β γ 0 0
0 0 α β γ 0
0 0 0 α β γ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (15)

For ε ∈ {–1, 1}, by Lemma 3 we get the equivalences

P + εQ
√

	 ≥ 0 ⇐⇒ P, εQ ≥ 0 or P, R ≥ 0 or εQ ≥ 0 ≥ R, (16)

β + ε
√

	

α
≥ 0 ⇐⇒ εα, εβ ≥ 0 or εβ , εγ ≤ 0. (17)

Consequently, whenever α �= 0 ≤ 	, condition (9) is equivalent to

⎧
⎨

⎩

α,β ≤ 0 or β ,γ ≥ 0 or P, Q ≥ 0 or P, R ≥ 0 or Q ≥ 0 ≥ R,

α,β ≥ 0 or β ,γ ≤ 0 or P ≥ 0 ≥ Q or P, R ≥ 0 or Q, R ≤ 0.
(18)

Notation 1 For (F , g) = (fr,s, f ∂
r,s), we write conditions (9)–(12), (18) and the expressions P,

Q, R from (13)–(15), as (9)r,s–(12)r,s, (18)r,s, and Pr,s, Qr,s, Rr,s. Set 	r,s := β2
r,s – 4αr,sγr,s. The



Timofte and Timofte Journal of Inequalities and Applications        (2021) 2021:135 Page 8 of 22

discriminants of the problem QE+(f ) are

αr,s, βr,s, γr,s, 	r,s, Pr,s, Qr,s, Rr,s.

As the expressions of Pr,s, Qr,s, Rr,s are exceedingly long4 (they may be visualized by
running the first part of the algorithm QE4+ from Fig. 1), we will not reproduce them
here. Let us just mention that a(r2 – rs + s2) + crs(r + s) is a factor of Rr,s.

The following result is the theoretical basis of the algorithm QE4+.

Theorem 4 (Algorithm QE4+) Let f ∈H[n]
4 . Then

QE+(f ) ⇐⇒
⎧
⎨

⎩

(1) holds for f ,

(18)r,s holds for every (r, s) ∈ Mf such that αr,s �= 0 ≤ 	r,s.

Proof “⇒”. Obviously, QE+(f ) yields (1). Let us fix (r, s) ∈ Mf such that αr,s �= 0 ≤ 	r,s. By
QE+(f ), we deduce that (9)r,s holds, hence that (18)r,s holds.

“⇐”. Under the hypothesis of the implication, suppose QE+(f ) is false. According to The-
orem 2, we have f (ξ ) < 0 for some ξ ∈ Tf . Since (1) holds, ξ ∈ Tf

r,s for some (r, s) ∈ Mf .
Hence f ∂

r,s is non-constant and ξ = (θ · 1r , 1s, 0n–r–s) for some θ > 0 such that f ∂
r,s(θ ) = 0.

Thus fr,s(θ ) = f (ξ ) < 0, and so (9)r,s is false. We claim that αr,s = 0. On the contrary, suppose
αr,s �= 0. As the quadratic equation f ∂

r,s(t) = 0 has the real root θ , we have 	r,s ≥ 0. Since
(r, s) ∈ Mf and αr,s �= 0 ≤ 	r,s, according to the hypothesis (18)r,s holds, but is equivalent
to (9)r,s, which is false. This contradiction yields αr,s = 0. As f ∂

r,s is non-constant, we have
βr,s �= 0, and so f ∂

s,r is non-constant. Hence (s, r) ∈ Mf . By (6) it follows that f ∂
s,r(θ–1) = 0 and

fs,r(θ–1) < 0, and hence that (9)s,r is false. As above we deduce that γr,s = αs,r = 0. Conse-
quently, βr,sθ = f ∂

r,s(θ ) = 0, that is, 0 = θ > 0. We thus conclude that QE+(f ) holds. �

Remark 5 In Theorem 4, for r + s ≤ n, condition (18)r,s either holds or need not hold
whenever

αr,s = 0 or 	r,s < 0 or αr,s,βr,s,γr,s ≥ 0 or

αr,s,βr,s,γr,s ≤ 0 or Pr,s, Rr,s ≥ 0.

3.3 The algorithm QE4+ and examples
The algorithm QE4+ resulting from Theorem 4 first computes the needed discriminants
α, β , γ , 	, P, Q, R, and then solves the problem QE+(f ) by performing tests (1) and (18)r,s

(see Fig. 1 for a Maple implementation). For n ≥ 3, this algorithm performs n tests for
condition (1) and card(Mf ) ≤ 3n – 6 sets of tests (of the same complexity for all (r, s) ∈ Mf )
for conditions (18)r,s. Hence QE4+ solves QE+(f ) in O(n) time.

Example 1 Let f1 = 24P4 – 18P3P1 – 8P2
2 + 9P2P2

1 – P4
1 ∈H[n]

4 . Then f ≥ 0 on R
n
+ if and only

if n ≤ 4. (f is the extremal quartic H(n–2,n–1,n) from [9, Th. 16] for n = 4.)

4For instance, Pr,s is a sum of 292 monomials in a, b, c, d, e, r, s.
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Figure 1 Maple implementation of QE4+

Proof For the input line containing n := 4, the coefficients of f , and (r, s) := (r, s), the algo-
rithm displays the final output “0 ≤ f , true”. For the input change n := 5, QE4+ shows the
intermediate outputs

f (one5, zero0) = –30, Test 1, false,

and the final output “0 ≤ f , false”. Since for arbitrary integers n > m ≥ 1 the first orthant
R

m
+ may be identified with R

m
+ × {0n–m} ⊂R

n
+, the conclusion follows. �

Example 2 Let f = 24P4 – 19P3P1 – 7P2
2 + 9P2P2

1 – P4
1 ∈H[n]

4 . Then f ≥ 0 on R
n
+ if and only

if n ∈ {2, 3}.

Proof For the input line containing n := 3, the coefficients of f , and (r, s) := (r, s), the algo-
rithm displays the final output “0 ≤ f , true”. For the input change n := 4, QE4+ shows the
intermediate outputs

(r, s) = (1, 3), (α,β ,γ ,	, P, Q, R) = (29, –24, 3, 228, –108,828, 14,214, –12,096),

Test 2, false

(that is, condition (18)1,3 is not fulfilled) and the final output “0 ≤ f , false”. The conclusion
follows as for Example 1. �
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For concrete quartics (with numerical coefficients) such as the above, testing positivity
with QE4+ poses no problem. On the other hand, for symbolic/literal quartics, it is quite
difficult to decide on the sign of the discriminants, which are polynomial expressions in
n, r, s (the coefficients of f may depend on n). For every (a, b) ∈ Zf , we have n = r + s (if
r, s ≥ 2) or s = 1 ≤ r < n or r = 1 ≤ s < n, and so in each case all discriminants only depend
on two positive integers.

The partition method for symbolic inequalities. For symbolic quartics we can still use
the first part of QE4+ to compute symbolic expressions of the discriminants. The idea is to
find suitable subsets Zi ⊂ Zf (i ∈ I) depending on the given quartic such that Zf =

⋃
i∈I Zi

and on each Zi condition (18)r,s either holds or need not hold because of some specific
combination of signs of discriminants (for instance, if αr,s,βr,s ≤ 0 and Pr,s ≥ 0 ≥ Qr,s for
every (r, s) ∈ Zi). Such subsets will be defined by inequalities in r, s, n, allowing us to write
the input of QE4+ in terms of some new variables p, q ≥ 0, which are not necessarily in-
tegers. In this way, for (r, s) ∈ Zi, we will be able to decide on signs of those discriminants
having a ±�+ form, where �+ is a sum (no “–”) of products of positive numbers and aux-
iliary variables p, q, or a quotient of such sums. Such an expression E(p, q) is said to have
a �∗

+ form if E(0, 0) > 0. Table 1 shows a possible way of coding the input for several kinds
of inequalities in r, s (where we may choose the integers r0, r1, s0, s1 ∈N

∗ and the functions
ϕ,ψ : N∗ → [1,∞[ such that ϕ ≤ ψ ).

For instance, for the input from the third line the algorithm computes with r = p + 1,
s = ϕ(p + 1) + q, and n = p + 1 + ϕ(p + 1) + q, and returns expressions in p, q.

For non-strict sign (≥ 0 or ≤ 0) of the discriminants, the input from the fourth line also
covers the case s = ϕ(r), even though ω(q) := qϕ(r)+ψ(r)

q+1 > ϕ(r) for every q ≥ 0. Indeed, if
� is a bivariate polynomial such that �(r,ω(q)) has a �+ form, then for s = ϕ(r) we have
�(r, s) = limq→∞ �(r,ω(q)) ≥ 0. A similar comment applies to the inputs from the second
and fifth lines of Table 1.

The partition sets Zi depend on the asymptotes to the algebraic curves defined by the
zero sets of the discriminants. For instance, assume that for (r, s) ∈ Zf with r, s ≥ 2 we need
to establish the sign behavior of the discriminant (taken from Example 5 below) Qr,s =
16rs(r – 2)(r + s – 5)4�(r, s), where

�(x, y) = x7 – 6x5y2 – 8x4y3 – 3x3y4 – 8x6 + 14x5y + 60x4y2 + 46x3y3 + 8x2y4

+ 9x5 – 66x4y – 189x3y2 – 102x2y3 + 12xy4 + 2x4 + 144x3y + 222x2y2

+ 84xy3 – 36y4 – 4x3 – 92x2y – 132xy2 + 36y3.

Table 1 Input coding for inequalities

Restrictions defining Zi Input n := Input (r, s) :=

r + s = n, r ≥ r0, s≥ s0 r + s (p + r0,q + r0)
r + s = n, r0 ≤ r ≤ r1, s0 ≤ s ≤ s1 r + s ( p·r0+r1p+1 , q·s0+s1q+1 )
r + s = n, r ≥ 1, s≥ ϕ(r) r + s (p + 1,ϕ(r) + q)
r + s = n, ϕ(r) ≤ s≤ ψ (r) r + s (p + 1, q·ϕ(r)+ψ (r)

q+1 )

r + s = n, (r, s) ∈ quadrilateral region with vertices Vi = (ri , si) r + s p·q·V1+p·V2+q·V3+V4
(p+1)·(q+1)

r = 1, 1≤ s ≤ n – 1 r + s + p (1,q + 1)
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We have � =
∑7

k=0 �k , where every �k is the k-homogeneous part of �. Thus

�7(x, y) = x7 – 6x5y2 – 8x4y3 – 3x3y4 = x3(x + y)3(x – 3y),

�6(x, y) = –8x6 + 14x5y + 60x4y2 + 46x3y3 + 8x2y4.

Hence �7 has the linear factor ux – vy, where (u, v) = (1, 3). Since ∂�7
∂x (v, u) = 1728 and

∂�7
∂y (v, u) = –5184 are not both 0, the algebraic curve defined by �(x, y) = 0 has the asymp-

tote ∂�7
∂x (v, u)x + ∂�7

∂y (v, u)y + �6(v, u) = 0, that is, x = 3y – 13
6 . Since this asymptote lies

between the lines of equations x = 3y – 2 and x = 3y – 3, we next test the sign of Qr,s on
the regions r ≥ 3s – 2 and r ≤ 3s – 3. For the first region, running the first part of QE4+

(for the coefficients of f from Example 5) with input n := r + s and (r, s) := (3s – 2 + p, q + 2)
gives for Q a �∗

+ expression in p, q ≥ 0. Hence Qr,s > 0 for r ≥ 3s – 2 and s ≥ 2. For the
second region (rewritten as s ≥ r+3

3 ), running again the first part of QE4+ with the input
change (r, s) := (p + 3, r+3+q

3 ) gives for Q a –�+ expression which vanishes only for p = q = 0.
As Q2,s ≡ 0, we have Qr,s ≤ 0 for 2 ≤ r ≤ 3s – 3. We thus have completely determined the
“sign regions” (and the zeros) of the discriminant Qr,s.

Discriminants such as Qr,1 also are expressions in two positive integers, namely r and
s′ = n – r. Therefore, they may be analyzed in the same way. The partition sets Zi may be
intersections of sign regions of several discriminants.

The partition method illustrated by Examples 4–6 also applies to the algorithm QE4 and
to Examples 7–12 from Sect. 4.2. In each case we will indicate the restrictions defining the
partition sets Zi (without details as above on calculations of asymptotes), the input to be
used with the algorithm, and the specific combination of signs of discriminants making
condition (18)r,s hold for every (r, s) ∈ Zi.

Example 3 Let f = 2nP4 – 2(n + 1)P3P1 – nP2
2 + (n + 3)P2P2

1 – P4
1 ∈H[n]

4 . Then f ≥ 0 on R
n
+

(f is the extremal quartic H(1,2,n) from [9, Prop. 14]).

Proof For the input line containing n := n, the coefficients of f , and (r, s) := (r, s), running
the first part of QE4+ gives A = r(r – 1)(r – 2)(n – r) (≥ 0), which yields f (1r , 0n–r) = Ar,s ≥ 0
for every r ∈ 1, n. Hence (1) holds for f . Since a + 2c = 0, by (5) we conclude that QE+(f )
holds. �

Example 4 Let5 f = –n(n – 1)P4 + 4(n – 1)P3P1 + (n2 – 3n + 3)P2
2 – 2nP2P2

1 + P4
1 ∈H[n]

4 . Then
f ≥ 0 on R

n
+ (f is the extremal quartic H(1,n–1,n) from [9, Prop. 17]).

Proof For the input line containing n := n, the coefficients of f , and (r, s) := (r, s), running
the first part of QE4+ gives A = r(r – 1)(n – r)(n – r – 1) (≥ 0), and so (1) holds for f . As
a ≤ 0, we have Mf ⊂ {(r, 1) | r ∈ 1, n – 1} ∪ {(1, s) | s ∈ 1, n – 1}. Table 2 describes a way of
checking conditions (18)r,s by running the first part of QE4+ for r = 1 or s = 1. For each
line of the table, the discriminants indicated in the last column have a ±�+ form.6

For instance, for the input from the second line, QE4+ displays the expressions P =
256p(p + 1)(q + 1)5(p + q)3(p + q + 2)(2pq + q + 2p2 + 4p) and R = 0, and so Pr,1, Rr,1 ≥ 0. By
Theorem 4 and Remark 5 we conclude that QE+(f ) holds. �

5In Maple the 1-D Math input for n2 – 3n + 2 is nˆ2 – 3 ∗ n + 2.
6The same statement applies whenever we present such tables.
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Table 2 Checking conditions (18)r,s for Example 4

Restrictions Input n := Input (r, s) := (18)r,s holds since

r = 1, s≤ n – 1 r + s + p (1,q + 1) α = 0
s = 1, r ≤ n – 2 r + s + q + 1 (p + 1, 1) P,R ≥ 0
s = 1, r = n – 1 r + s (p + 1, 1) α = 0

Table 3 Checking conditions (18)r,s for Example 5

Restrictions Input n := Input (r, s) := (18)r,s holds since

r, s ≥ 6 r + s (p + 6,q + 6) α,β ,γ ≥ 0
s≥ 3, r ≥ 3s – 2 r + s (3s – 2 + p,q + 3) P,Q,α,β ≥ 0
3≤ s≤ 5, s + 1≤ r ≤ 3s – 3 r + s ( p(s+1)+3s–3p+1 , 3q+5q+1 ) P,R≥ 0
r ≥ 3, s ≥ r + 1 r + s (p + 3, r + 1 + q) β ,γ ,P ≥ 0≥ Q
r = s ≥ 3 r + s (p + 3, r) P,R≥ 0
r = 2, s ≥ 3 r + s (2,q + 3) α = 0
s = 2, r ≥ 3 r + s (p + 3, 2) P ≥ 0 = R
s = 1, r ≥ 5 r + s + q (p + 5, 1) P,R≥ 0
s = 1, r = 4 r + s + q (4, 1) P,R≥ 0
r = 1, s ≥ 6 r + s + p (1,q + 6) P,R≥ 0
r = 1, s = 4 r + s + p (1, 4) P,R≥ 0
r = 1, s = 5, n≥ 7 p + 7 (1, 5) P,R≥ 0
r = 1, s = 5, n = 6 6 (1, 5) 	 < 0

Arguments such as the above are true proofs, since only symbolic computations are in-
volved. Human contribution consists of choosing suitable partitions, entering the input, and
noticing that some specific discriminants have a ±�+ form.

For n ≥ 4 the quartics f from Examples 3 and 4 are extremal, that is, have the following
property:

g ∈H[n]
4 , 0 ≤ g ≤ f on R

n
+ �⇒ g ∈ [0, 1] · f .

This means that the inequality QE+(f ) holds, but cannot be strengthened in H[n]
4 . In other

words, these are “best quality” inequalities. For instance, for f as in these examples, run-
ning QE4+ for the modified quartic f – ε(P3P1 – P2

2) ∈ H[n]
4 will display the final output

“0 ≤ f , false” for every choice of n ≥ 2 and ε > 0.

Example 5 Let f = 6nP4 – 4(n + 1)P3P1 – (n + 2)P2
2 + (n + 5)P2P2

1 – P4
1 ∈ H[n]

4 . Then f ≥ 0
on R

n
+ if and only if n �= 4 (f is the extremal quartic H(2,3,n) from [9, Th. 16] for n ≥ 5).

Proof For the input line containing n := 2, the coefficients of f , and (r, s) := (r, s), and for
the input change n := 3, the algorithm shows the final output “0 ≤ f , true”. For the input
change n := 4, the algorithm displays the final output “0 ≤ f , false”. Now assume n ≥ 5. For
the input change n := n, running the first part of QE4+ gives A = r(r – 2)(r – 3)(n – r) (≥ 0),
and so (1) holds for f . Table 3 describes a way of checking conditions (18)r,s.

By Theorem 4 and Remark 5 we conclude that QE+(f ) holds. �

Example 6 Let

f = n(n – 1)(n – 2)P4 – 2(n – 1)2P3P1 – n(n – 2)P2
2 + 3(n – 1)P2P2

1 – P4
1 ∈H[n]

4 .

Then f ≥ 0 on R
n
+ (f is the extremal quartic H(n–2,n–1,n) from [9, Th. 16] for n ≥ 3).
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Table 4 Checking conditions (18)r,s for Example 6

Restrictions Input n := Input (r, s) := (18)r,s holds since
r+3
2 ≤ s≤ 2r – 3 r + s (p + 3, q(r+3)+4r–62(q+1) ) α,β ,γ ≥ 0
r ≥ 4, s≥ 2r – 2 r + s (p + 4, 2r – 2 + q) Q,α ≥ 0≥ γ ,R
1 ≤ r ≤ 3, s ≥ 5 r + s ( p+3p+1 ,q + 5) Q,α ≥ 0≥ γ ,R
s ≥ 4, r ≥ 2s – 2 r + s (2s – 2 + p,q + 4) γ ≥ 0≥ α,Q,R
1 ≤ s≤ 3, r ≥ 5 r + s (p + 5, q+3q+1 ) γ ≥ 0≥ α,Q,R

s = 1, r ≤ 2n–3
3

3r+3+q
2 (p + 2, 1) 	 < 0

s = 1, 2n–2
3 ≤ r ≤ n – 3 2q(r+3)+3r+2

2(q+1) (p + 4, 1) P,R ≥ 0
s = 1, r = n – 2 r + 2 (p + 3, 1) α,β ,Q,R ≤ 0
s = 1, r = n – 1 r + 1 (r, 1) α = 0
r = 1, s≤ 2n–3

3
3s+3+p

2 (1,q + 2) 	 < 0
r = 1, 2n–2

3 ≤ s≤ n – 3 2p(s+3)+3s+2
2(p+1) (1,q + 4) P,R ≥ 0

r = 1, s = n – 2 s + 2 (1,q + 3) P,Q ≥ 0 ≥ β ,γ
r = 1, s = n – 1 s + 1 (1, s) P,R ≥ 0

Proof For the input line containing n := n, the coefficients of f , and (r, s) := (r, s), running
the first part of QE4+ gives A = r(n – r)(n – r – 1)(n – r – 2) (≥ 0), and so (1) holds for f .
Table 4 describes a way of checking conditions (18)r,s.

By Theorem 4 and Remark 5 we conclude that QE+(f ) holds. �

4 The problem QE(f ) in H[n]
4

4.1 Discriminants for QE(f )
According to (4), for every symmetric quartic f ∈ H[n]

4 , the problem QE(f ) reduces to the
quantifier elimination problems

f (u · 1r , v · 1s) ≥ 0 ∀u, v ∈R,

considered for all r, s ∈ N
∗, with r + s = n. Since f is symmetric, we may restrict the algo-

rithm Ã described in the proof of Theorem 1 to run only for s ≥ r ≥ 1. For the restricted
algorithm QE4 obtained in this way, the running time is reduced to the half, while the
complexity is the same as that of Ã. The number of operations performed by QE4 on f is

N(QE4, f ) = N(4, 2)
⌊

n
2

⌋

.

Hence QE4 solves QE(f ) in O(n) time. By the first equivalence from [7, Cor. 5.6], we see
that

QE(f ) holds ⇐⇒ QE(fr) holds for every r ∈ 1, n – 1,

where fr(t) := fr,n–r(t) = f (t · 1r , 1n–r) for every t ∈R. To simplify notation, we will write the
coefficients Ar,n–r , . . . , Er,n–r of fr as Ar , . . . , Er . For arbitrary real symbolic polynomial

F(t) = At4 + Bt3 + Ct2 + Dt + E (A > 0), (19)

we need to compute explicit discriminants for the univariate problem QE(F), or for its
equivalent form

F(t) ≥ 0 for every real root t of the derivative F ′. (20)
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Solving (20) depends on the nature of the roots z1, z2, z3 ∈C of the polynomial F ′ ∈R[t] ⊂
C[t] (and hence on its discriminant), as well as on the expressions

⎧
⎪⎪⎨

⎪⎪⎩

G := 256A3[F(z1) + F(z2) + F(z3)],

H := 128A3[F(z1)F(z2) + F(z1)F(z3) + F(z2)F(z3)],

K := 256A3F(z1)F(z2)F(z3).

(21)

Up to a positive factor, the discriminant of the cubic F ′ is

	 := –108A2D2 + 4AC
(
27BD – 8C2) – 9B2(3BD – C2). (22)

In order to compute G, H , K , let us observe that, for every y ∈R, the resultant of Fy := F + y
and F ′

y = F ′ is

R
(
Fy, F ′) = (4A)4

3∏

j=1

Fy(zj) = 256A4y3 + A
(
Gy2 + 2Hy + K

)
.

Identifying here the coefficients of the polynomials in y leads to

G = 768A3E – 64A2(3BD + 2C2) + 144AB2C – 27B4, (23)

H = 384A3E2 – 8A2(24BDE + 16C2E – 9CD2)

+ A
(
144B2CE – 3B2D2 – 40BC2D + 8C4)

– B2(27B2E – 9BCD + 2C3),

(24)

K =
R(F , F ′)

A
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 B C D E 0 0
0 A B C D E 0
0 0 A B C D E
4 3B 2C D 0 0 0
0 4A 3B 2C D 0 0
0 0 4A 3B 2C D 0
0 0 0 4A 3B 2C D

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (25)

Notation 2
(i) The polynomial expressions 	, G, H , K from the right-hand members of (22)–(25)

will be considered even if A = 0.
(ii) For F = fr , we write the above expressions as 	r , Gr , Hr , Kr (which are the

discriminants of the problem QE(f )) and condition (26) from Theorem 7 will be
referred to as (26)r .

Our next lemma may be viewed as a special case of Descartes’ rule of signs.

Lemma 6 Let u ∈R
m. Then

u ∈R
m
+ ⇐⇒ ek(u) ≥ 0 for every k ∈ 1, m,

where e1, e2, . . . , em denote the elementary symmetric functions in m variables.
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Proof We only need to prove “⇐”. Suppose t := min1≤j≤m uj < 0. Then the hypothesis yields
0 < (–t)m +

∑m
k=1 ek(u)(–t)m–k =

∏m
k=1(uk – t) = 0, which is absurd. Hence u ∈R

m
+ . �

The following needed result is a version of [6, Th. 1]; however, it is much easier to give
a direct proof than to derive it from the cited result.

Theorem 7 Let a polynomial F be as in (19). Then QE(F) is equivalent to

K ≥ 0 > 	 or G, H , K ≥ 0. (26)

Proof As A �= 0, we have deg(F) = 4 and deg(F ′) = 3. Let z1 ∈ R and z2, z3 ∈ C denote the
roots of F ′.

“⇒”. If 	 < 0, then z3 = z̄2 ∈ C \ R, and so F(z1) ≥ 0, F(z3) = F(z2). We thus get K =
256A3F(z1)|F(z2)|2 ≥ 0 > 	. If 	 ≥ 0, then z1, z2, z3 ∈R, and so F(z1), F(z2), F(z3) ≥ 0. Since
A > 0, this leads by (21) to G, H , K ≥ 0.

“⇐”. Suppose (26) is true, but (20) is false. There is no loss of generality in assuming that
F(z1) < 0. As K ≥ 0, we have F(z2)F(z3) ≤ 0. We next analyze two cases.

Case 1. If 	 < 0, then F(z3) = F(z2) leads to |F(z2)|2 = F(z2)F(z3) ≤ 0, which yields F(z2) =
F(z3) = 0. Hence both z2, z3 ∈ C \ R are repeating roots of F , and so F has no real roots.
We thus get F > 0 on R, a contradiction.

Case 2. If 	 ≥ 0, then (26) yields G, H , K ≥ 0. Since (F(z1), F(z2), F(z3)) ∈R
3, by Lemma 6

it follows that F(z1) ≥ 0, a contradiction.
By the above cases we conclude that F satisfies (20), that is, QE(F) holds. �

The following result is the theoretical basis of the algorithm QE4.

Theorem 8 (Algorithm QE4) Let f ∈H[n]
4 . Then

QE(f ) ⇐⇒
⎧
⎨

⎩

(1) holds for f ,

(26)r holds for every r ∈ 1, n – 1.

Proof “⇒”. Clearly, QE(f ) yields (1). Let us fix r ∈ 1, n – 1. As QE(fr) holds, we have Ar ≥ 0
and fr has even degree (or fr ≡ 0). We next analyze two cases.

Case 1. If deg(fr) ≤ 2, then Ar = Br = 0 leads by (23)–(25) to Gr = Hr = Kr = 0. Hence (26)r

holds.
Case 2. If deg(fr) = 4, then Ar > 0. By Theorem 7, QE(fr) yields (26)r .
From the above cases we conclude that (26)r holds for every r ∈ 1, n – 1.
“⇐”. Fix r ∈ 1, n – 1. Let us observe that

⎧
⎨

⎩

(An–r , Bn–r , Cn–r , Dn–r , En–r) = (Er , Dr , Cr , Br , Ar),

fn–r(t) = t4fr(t–1) for every t ∈ R \ {0}.
(27)

By (1) we see that Ar = f (1r , 0n–r) ≥ 0 and, similarly, An–r ≥ 0. We need to analyze three
cases.

Case 1. If Ar > 0, then QE(fr) holds by (26)r and Theorem 7.
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Case 2. If An–r = Er > 0, as in the previous case, it follows that QE(fn–r) holds, and con-
sequently so does QE(fr) by (27).

Case 3. If Ar = Er = 0, some easy computations lead by (22), (23), (25) to

⎧
⎨

⎩

	r = 9B2
r (C2

r – 3BrDr),

Gr = –27B4
r , Kr = B2

r D2
r (C2

r – 4BrDr).
(28)

We claim that Br = 0. On the contrary, suppose that Br �= 0. As (26)r holds and Gr < 0, we
have Kr ≥ 0 > 	r . It follows successively that 3BrDr > C2

r ≥ 0 and C2
r ≥ 4BrDr , and hence

that 4C2
r < 12BrDr ≤ 3C2

r , which is absurd. Our claim is proved. The same argument using
(26)n–r yields Dr = Bn–r = 0. By (1) we get Cr = fr(1) = f (1r , 0n–r) ≥ 0, and so fr(t) = Crt2 ≥ 0
for every t ∈R.

According to the above three cases, QE(fr) holds for every r ∈ 1, n – 1. We thus conclude
that QE(f ) holds. �

4.2 The algorithm QE4 and examples
The algorithm QE4 resulting from Theorem 8 first computes the needed discriminants 	,
G, H , K , and then solves the problem QE(f ) by performing tests (1) and (26)r (see Fig. 2
for a Maple implementation). The algorithm performs n tests for condition (1) and n – 1
sets of tests (of the same complexity for all r ∈ 1, n – 1) for conditions (26)r . Hence QE4
solves QE(f ) in O(n) time.

Example 7 Let f = –2(n – 1)P3P1 + (n – 2)P2
2 + (n + 1)P2P2

1 – P4
1 ∈ H[n]

4 . Then f ≥ 0 on R
n

(equivalent to Newton’s inequality S2
2 ≥ S1S3, where Sk := ek/

(n
k
)
).

Figure 2 Maple implementation of QE4
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Table 5 Checking conditions (26)r for Example 7

Restrictions Input n := Input (r, s) := (26)r holds since

r ≥ 2 r + s (p + 2,q + 1) G,H ≥ 0 = K
r = 1 r + s (1, s) G = H = K = 0

Proof For the input line containing n := n, the coefficients of f , and (r, s) := (r, s), running
the first part of QE4 gives A = r2(r – 1)(n – r) (≥ 0), and so (1) holds for f . Table 5 describes
a way of checking conditions (26)r .

For instance, for the input from the first line of the table QE4 displays the expressions
K = 0 and H := 8q(q + 1)5(p + 1)(p + 2)5(p + q + 1)3(p + q + 2)4, and so Hr ≥ 0 = Kr . The
expression of G is longer, but still has a �+ form. By Theorem 8 we conclude that QE(f )
holds. �

Example 8 Let f ∈H[n]
4 as in Example 4. Then f ≥ 0 on R

n.

Proof That (1) holds for f was already proved in Example 4. For the input line containing
n := n, the coefficients of f , and (r, s) := (r, s), running the first part QE4 gives G = H = K =
0. By Theorem 8 we conclude that QE(f ) holds. �

In the last four examples we use the notation Mk := Pk
k for every k ∈ 1, 4. It is well known

that M4 ≥ M3M1 and M4 ≥ M2
2 ≥ M2M2

1 ≥ M4
1 on R

n. The 14 inequalities from the next
three examples are probably new; some are known for 3 variables (see for instance [5]), not
for arbitrary n. They may also be obtained by the interpolation λ-method (of Mitrinović
and Vasić) described in [5, Ch. XXIX].

Example 9 On R
n we have the inequalities

M4 + 3M2
2 ≥ 4M3M1, M4 + M2M2

1 ≥ 2M3M1,

M4 + (2
√

3 – 3)M4
1 ≥ (2

√
3 – 2)M3M1, M4 + M4

1 ≥ 2M2M2
1,

M4 + 8M2M2
1 ≥ 4M3M1 + M2

2 + 4M4
1, M4 + 3M2M2

1 ≥ 2M3M1 + M2
2 + M4

1.

Proof For such inequalities, the discriminants obtained with input n := r + s are homoge-
neous in (r, s). By writing them in the form7 skQ( r

s ), we may find intervals for r
s on which

condition (26)r holds because of some specific combination of discriminants (which may
not be the same for all intervals). This is how we found the suitable restrictions for the
proofs of the inequalities from Examples 9–11.

First inequality (the best of the form M4 – M3M1 ≥ λ(M3M1 – M2
2), with λ > 0). Let f1 =

nP4 – 4P3P1 + 3P2
2 ∈ H[n]

4 . For the input line containing n := n, the coefficients of f1, and
(r, s) := (r, s), running the first part of QE4 gives A = r(n – r) (≥ 0) and 	 = G = H = K = 0.
By Theorem 8 we conclude that QE(f1) holds.

Second inequality (the best of the form M4 – M3M1 ≥ λ(M3M1 – M2M2
1), with λ > 0). Let

f2 = n2P4 – 2nP3P1 + P2P2
1 ∈H[n]

4 . For the input line containing n := n, the coefficients of f2,
and (r, s) := (r, s), running the first part of QE4 gives A = r(n – r)2 (≥ 0), and so (1) holds
for f2. Table 6 describes a way of checking conditions (26)r .

7To visualize Q(x), we may run the first part of QE4 with input n := r + s and (r, s) := (x, 1).



Timofte and Timofte Journal of Inequalities and Applications        (2021) 2021:135 Page 18 of 22

Table 6 Checking conditions (26)r for the second inequality from Example 9

Restrictions Input n := Input (r, s) := (26)r holds since

s ≤ 8r – 1 r + s ( s+1+p8 ,q + 1) K = 0 >	

s ≥ 8r r + s (r, 8r + q) G,H ≥ 0 = K

By Theorem 8 we conclude that QE(f2) holds.
Third inequality (the best of the form M4 – M3M1 ≥ λ(M3M1 – M4

1), with λ > 0). Let
f3 = n3P4 – (2

√
3 – 2)n2P3P1 + (2

√
3 – 3)P4

1 ∈H[n]
4 . For the input line containing n := n, the

coefficients of f3, and (r, s) := (r, s), running the first part of QE4 gives A, G, H ≥ 0 = K (we
get A, G, H as expressions having a �+ form multiplied by the positive constants 7 – 4

√
3,

1351 – 780
√

3, and 97 – 56
√

3, respectively). By Theorem 8 we conclude that QE(f3) holds.
Fourth inequality (the best of the form M4 – M2M2

1 ≥ λ(M2M2
1 – M4

1), with λ > 0). Let
f4 = n3P4 – 2nP2P2

1 + P4
1 ∈ H[n]

4 . For the input line containing n := n, the coefficients of f4,
and (r, s) := (r, s), running the first part of QE4 gives A = r(n – r)(n2 + nr – r2) (≥ 0), and so
(1) holds for f4. For the input change n := r + s, running again the first part of QE4 gives
G, H ≥ 0 = K . By Theorem 8 we conclude that QE(f4) holds.

Fifth inequality (the best of the form M4 – 4M3M1 + 3M2
2 ≥ λ(M2 – M2

1)2, with λ > 0). Let
f5 = n3P4 – 4n2P3P1 – n2P2

2 + 8nP2P2
1 – 4P4

1 ∈H[n]
4 . For the input line containing n := n, the

coefficients of f5, and (r, s) := (r, s), running the first part of QE4 gives A = r(n – r)(n – 2r)2

(≥ 0) and G = H = K = 0. By Theorem 8 we conclude that QE(f5) holds.
Sixth inequality (the best of the form M4 – 2M3M1 + M2M2

1 ≥ λ(M2 – M2
1)2, with λ > 0).

Let f6 = n3P4 – 2n2P3P1 – n2P2
2 + 3nP2P2

1 – P4
1 ∈ H[n]

4 . For the input line containing n := n,
the coefficients of f6, and (r, s) := (r, s), running the first part of QE4 gives A = r(n–r)3 (≥ 0)
and G = 16n4r4(n – r)8, and H = K = 0. By Theorem 8 we conclude that QE(f6) holds. �

Example 10 On R
n we have the inequalities

M4 – M3M1 ≥ 3
4
(
M2

2 – M2M2
1
)
, M4 – M3M1 ≥ 3

8
(
M2

2 – M4
1
)
,

M4 – M3M1 ≥ 3
4
(
M2M2

1 – M4
1
)
, M4 – M2M2

1 ≥ 1
2
(
M2

2 – M4
1
)
.

Proof All inequalities have the form g ≥ λh. In each case we define the quartic f = n4(g –
λh), whose coefficients are entered in the input line of QE4, together with the input change
n := r + s. Running the first part of QE4 gives A, G, H ≥ 0 = K (all have a �+ form). By
Theorem 8 we conclude that QE(f ) holds. �

For quartics with irrational coefficients it may not be clear that a discriminant has a ±�+

form, because its expression contains numbers such as 99 – 70
√

2 ≈ 0.005. In such cases
we may add at the end of the first part of QE4 the command line

[> A := evalf (A); 	 := evalf (	); K := evalf (K); H := evalf (H); G := evalf (G).

This will result in displaying all numerical coefficients as decimal numbers. The rounding
to decimals will not lead to proof errors, since it is only done at the very end in order to
establish which discriminants have a ±�+ form.
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Example 11 On R
n we have the inequalities

M4 – M2M2
1 ≥ 2(

√
2 + 1)

(
M3M1 – M2

2
)
, M4 – M4

1 ≥ 2(
√

3 + 1)
(
M3M1 – M2

2
)
,

M4 – M2M2
1 ≥ 2(

√
2 – 1)

(
M3M1 – M4

1
)
, M4 – M4

1 ≥ 2
√

2
(
M3M1 – M2M2

1
)
.

Proof First inequality (the best of the form M4 – M2M2
1 ≥ λ(M3M1 – M2

2), with λ > 0). Let
f1 = n2P4 – 2(

√
2 + 1)nP3P1 + 2(

√
2 + 1)nP2

2 – P2P2
1 ∈ H[n]

4 . For the input line containing
n := n, the coefficients of f1, and (r, s) := (r, s), running the first part of QE4 gives A = r(n +
r)(n – r) (≥ 0), and so (1) holds for f1. Table 7 describes a way of checking conditions (26)r .

By Theorem 8 we conclude that QE(f1) holds.
Second inequality (the best of the form M4 – M4

1 ≥ λ(M3M1 – M2
2), with λ > 0). Let f2 =

n3P4 – 2(
√

3 + 1)n2P3P1 + 2(
√

3 + 1)n2P2
2 – P4

1 ∈ H[n]
4 . For the input line containing n := n,

the coefficients of f2, and (r, s) := (r, s), running the first part of QE4 gives A = r(n – r)(n2 +
nr + r2) (≥ 0), and so (1) holds for f2. Table 8 describes a way of checking conditions (26)r .

By Theorem 8 we conclude that QE(f2) holds.
Third inequality (the best of the form M4 – M2M2

1 ≥ λ(M3M1 – M4
1), with λ > 0). Let

f3 = n3P4 – 2(
√

2 – 1)n2P3P1 – nP2P2
1 + 2(

√
2 – 1)P4

1 ∈ H[n]
4 . For the input line containing

n := n, the coefficients of f3, and (r, s) := (r, s), running the first part of QE4 gives A = r(n +
r)(n – r)(n + 2r – 2

√
2r) (≥ 0), and so (1) holds for f3. For the input change n := r + s,

running again the first part of QE4 gives G, H ≥ 0 = K . By Theorem 8 we conclude that
QE(f3) holds.

Fourth inequality (the best of the form M4 – M4
1 ≥ λ(M3M1 – M2M2

1), with λ > 0). Let
f4 = n3P4 – 2

√
2n2P3P1 + 2

√
2nP2P2

1 – P4
1 ∈ H[n]

4 . For the input line containing n := n, the
coefficients of f4, and (r, s) := (r, s), running the first part of QE4 gives A = r(n – r)(n2 + nr +
r2 – 2

√
2nr) (≥ 0), and so (1) holds for f4. Table 9 describes a way of checking conditions

(26)r .
By Theorem 8 we conclude that QE(f4) holds. �

Table 7 Checking conditions (26)r for the first inequality from Example 11

Restrictions Input n := Input (r, s) := (26)r holds since

s ≤ r
3 r + s (3s + p, s) G,H ≥ 0 = K

r
3 < s < 5r r + s (r, r(q+15)3(q+1) ) K = 0 >	

s ≥ 5r r + s (r, 5r + q) G,H ≥ 0 = K

Table 8 Checking conditions (26)r for the second inequality from Example 11

Restrictions Input n := Input (r, s) := (26)r holds since

s ≤ r
2 r + s (2s + p, s) G,H ≥ 0 = K

r
2 < s < 10r r + s (r, r(q+20)2(q+1) ) K = 0 >	

s ≥ 10r r + s (r, 10r + q) G,H ≥ 0 = K

Table 9 Checking conditions (26)r for the fourth inequality from Example 11

Restrictions Input n := Input (r, s) := (26)r holds since

s ≤ r
7 r + s (7s + p, s) G,H ≥ 0 = K

r
7 < s < 2r r + s (r, r(q+14)7(q+1) ) K = 0 >	

s ≥ 2r r + s (r, 2r + q) G,H ≥ 0 = K
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Example 12 On R
n we have the inequality

(M3 – M2M1)2 ≤ (M4 – M2
2
)(

M2 – M2
1
)
.

Proof Let ξ ∈ R
n \ M–1

1 ({0}) and mk := Mk(ξ ) for every k ∈ 1, 4. The inequality will follow
if we show that g(λ) := (m4 – m2

2)λ2 – 2m1(m3 – m2m1)λ + m2
1(m2 – m2

1) has no sign change
for λ ∈R, since m1 �= 0. Let us define

fλ = λ2n3P4 – 2λn2P3P1 – λ2n2P2
2 + (2λ + 1)nP2P2

1 – P4
1 ∈H[n]

4 (λ ∈R).

It is easily seen that fλ(ξ ) = n4g(λ). For the input line containing n := n, the coefficients of
fλ, and (r, s) := (r, s), running the first part of QE4 gives

A = r(n – r)(nλ – r)2, G = 16n4r4(n – r)4(2λ – 1)4(nλ – r)4, H = K = 0.

Since Ar , Gr , Hr , Kr ≥ 0 for every r, by Theorem 8 we conclude that QE(fλ) holds. It follows
that g(λ) = n–4fλ(ξ ) ≥ 0 for every λ ∈R, and hence that

4m2
1
[
(m3 – m2m1)2 –

(
m4 – m2

2
)(

m2 – m2
1
)]

= 	g ≤ 0.

We thus have proved the claimed inequality on R
n \M–1

1 ({0}), which is dense in R
n. There-

fore, the inequality extends by continuity to R
n. �

Remark 9 Inequalities as in Examples 9–12 yield corresponding inequalities for the ex-
pected values of random variables on a probability space (�,F , P). For instance, let us
show that

E
(
X4) + 3E

(
X2)2 ≥ 4E

(
X3)E(X) for every X ∈ L3(�,R). (29)

Proof In order to prove the above inequality, let us first observe that

n∑

i=1

pix4
i + 3

( n∑

i=1

pix2
i

)2

≥ 4
n∑

i=1

pix3
i ·

n∑

i=1

pixi for every x ∈ R
n, (30)

where p1, . . . , pn ∈ [0, 1] and
∑n

i=1 pi = 1. Indeed, if pi ∈ Q for every i ∈ 1, n, then pi = ri
r for

some r, r1, . . . , rn ∈ N, such that
∑n

i=1 ri = r > 0. In this case we have
∑n

i=1 pixk
i = Mk(x̃) for

every k ∈ N
∗, where x̃ := (x1 · 1r1 , . . . , xn · 1rn ) ∈R

r . By the first inequality from Example 9 it
follows that (30) holds if all pi are rational. As Q is dense in R, we conclude that (30) also
holds for p1, . . . , pn ∈ [0, 1] such that

∑n
i=1 pi = 1. According to the definition of the abstract

integral, it suffices to prove (29) for simple functions8 X0 =
∑n

i=1 xiχ�i , where x1, . . . , xn ∈R

and the �i ∈ F are pairwise disjoint, with
⋃n

i=1 �i = �. We see that E(Xk
0 ) =

∑n
i=1 pixk

i ,
where pi := P(�i) ∈ [0, 1] for every i ∈ 1, n and

∑n
i=1 pi = 1. By (30) it follows that (29)

holds for every simple function X0, and hence for every X ∈ L3(�,R). �

8By a slight abuse we identify functions and a.e.-equality equivalence classes.
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5 Representation in other standard bases
Since a given quartic is often expressed in the monomial symmetric polynomials or in
the elementary symmetric polynomials, we next indicate in either case how to find the
coefficients from (2) in order to use the algorithms. Assume

f = αM4,0,0,0 + βM3,1,0,0 + γ M2,2,0,0 + δM2,1,1,0 + εM1,1,1,1 (α,β ,γ , δ, ε ∈R), (31)

where each Mp,q,r,s ∈ R[x1, . . . , xn] is the sum of all distinct monomials xp
i xq

j xr
kxs

l , with dis-
tinct i, j, k, l ∈ 1, n. An easy computation shows that switching between representations
(31) and (2) may be done by using the equality

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a
b
c
d
e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 –1 – 1
2 1 – 1

4

0 1 0 –1 1
3

0 0 1
2 – 1

2
1
8

0 0 0 1
2 – 1

4

0 0 0 0 1
24

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α

β

γ

δ

ε

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If f is given as an expression in the elementary symmetric polynomials e1, . . . , e4

f = αe4 + βe3e1 + γ e2
2 + δe2e2

1 + εe4
1 (α,β ,γ , δ, ε ∈R), (32)

then switching between (32) and (2) may be done by using the equality

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a
b
c
d
e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

– 1
4 0 0 0 0

1
3

1
3 0 0 0

1
8 0 1

4 0 0

– 1
4 – 1

2 – 1
2 – 1

2 0
1

24
1
6

1
4

1
2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α

β

γ

δ

ε

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus both algorithms QE4+ and QE4 may be slightly modified in order to accept as input
the coefficients α, β , γ , δ, ε from (31) or from (32).
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