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Abstract
He (J. Inequal. Appl. 2012:Article ID 162 2012) introduced the proximal point CQ
algorithm (PPCQ) for solving the split equilibrium problem (SEP). However, the PPCQ
converges weakly to a solution of the SEP and is restricted to monotone bifunctions.
In addition, the step-size used in the PPCQ is a fixed constant μ in the interval
(0, 1

‖A‖2 ). This often leads to excessive numerical computation in each iteration, which
may affect the applicability of the PPCQ. In order to overcome these intrinsic
drawbacks, we propose a robust step-size {μn}∞n=1 which does not require
computation of ‖A‖ and apply the adaptive step-size rule on {μn}∞n=1 in such a way
that it adjusts itself in accordance with the movement of associated components of
the algorithm in each iteration. Then, we introduce a self-adaptive extragradient-CQ
algorithm (SECQ) for solving the SEP and prove that our proposed SECQ converges
strongly to a solution of the SEP with more general pseudomonotone equilibrium
bifunctions. Finally, we present a preliminary numerical test to demonstrate that our
SECQ outperforms the PPCQ.
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1 Introduction
The equilibrium problem (EP) associated with a bifunction f : C ×C →R and a nonempty
subset C of a real Hilbert space H consists of finding a vector x∗ ∈ C such that

f
(
x∗, y

) ≥ 0, ∀y ∈ C. (1)

It is well known that the mathematical basis for the EP pre-dates the works of Ky Fan [10].
However, due to his dedication to the subject, the EP is often called the Ky Fan inequality.
The EP is an incredibly important powerful tool that unifies a number of useful and elegant
nonlinear problems. In recent days, the EP is one of the major nonlinear methods that has
provided significant success in modeling several real world problems (see, e.g., [1, 2, 8, 9,
13, 14, 18, 23, 24]).
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The set of solutions of EP is denoted by SOL(f , C). To solve the EP, it is common to use
the proximal point method proposed by Combettes and Hirstoaga [8]: given xn ∈ C, as a
current iterate, the next iterate xn+1 solves the following problem:

find x ∈ C such that f (x, y) +
1
rn

〈y – x, x – xn〉 ≥ 0, ∀y ∈ C, {rn}∞n=1 ⊂ (0,∞). (2)

In 2008, Tran et al. [23] (see also Dang [9]) submitted that a large number of important
real-world problems can be reformulated as pseudomonotone bifunctions. A well-known
example is the Nash–Cournot oligopolistic electricity market model. Unfortunately, the
traditional proximal point method (2) does not converge if f is pseudomonotone (see, e.g.,
[21, Example 2.1]). Hence, Tran et al. [23] introduced the following proximal-extragradient
algorithm for solving (1) when f is pseudomonotone.

⎧
⎪⎪⎨

⎪⎪⎩

select arbitrary x1 ∈ C,

yn = argminy∈C{f (xn, y) + 1
2ρn

‖y – xn‖2},
xn+1 = argminy∈C{f (yn, y) + 1

2ρn
‖y – xn‖2}, n ∈ N.

(3)

It is worthy to mention that, unlike the proximal point method (2), the extragradient al-
gorithm (3) falls within the applicable scope of standard matlab optimization toolbox. So,
in order to implement algorithm (3), one only needs to solve a pair of strongly convex
programs via matlab optimization toolbox.

On the other hand, the study of classical split feasibility problem (SFP) is pioneered by
Censor and Elfving [5]. It provides effective tools for obtaining the existence of solutions of
constrained and inverse problems arising in optimization, engineering, medical sciences,
and most notably in image reconstruction, signal processing, and phase retrieval (see, e.g.,
[3, 4, 6]). The SFP is to find a vector

x∗ ∈ C such that A
(
x∗) ∈ Q, (4)

where C and Q are given nonempty, closed, and convex subsets of real Hilbert spaces H1

and H2, respectively, and A : H1 → H2 is a bounded linear operator. Bryne [3] imposed the
restrictive condition {γn}∞n=1 ⊂ (0, 2

‖A‖2 ) on the CQ-method for solving (4):

x1 ∈ C, xn+1 := PC
(
xn – γnA∗(I – PQ)Axn

)
, n ∈N, (5)

where PC and PQ stand for the metric projection onto C and Q, respectively, and A∗ de-
notes the adjoint operator of A from H2 to H1. The concept of self-adaptive step-size for
solving (4) was introduced by Yang [26] and developed by Lopez et al. [15] in order to dis-
pense with the restrictive condition {γn}∞n=1 ⊂ (0, 2

‖A‖2 ). In general, self-adaptive algorithms
operate under the assumption that future events (inputs) are uncertain so they are charac-
terized by step-sizes that continuously monitor themselves, gather data, analyze data, and
adapt when their requirements fail due to unexpected changes in their components. Re-
search found out that an ever-growing number of algorithms with adaptive step-sizes for
solving nonlinear problems are faster and robust to failure (see, e.g., [11, 19, 20, 22, 27, 28]).
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The SFP is a particular case of a more general problem, called the split equilibrium problem
(SEP)

⎧
⎨

⎩
find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C and

A(x∗) = u∗ ∈ Q solves g(u∗, v) ≥ 0, ∀v ∈ Q.
(6)

Here, g : Q × Q →R stands for another bifunction on H2. The SEP was briefly introduced
by Moudafi [17] in 2011. Perhaps, due to its relevance, the problem was reintroduced a
year after by He [12], and the following proximal point-CQ algorithm (PPCQ) for solving
SEP (6) was proposed:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Select arbitrary: x1 ∈ C, {ρn}∞n=1 ⊂ (0,∞), and μ ∈ (0, 1
‖A‖2 ),

f (yn, y) + 1
ρn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C,

g(vn, v) + 1
ρn

〈v – vn, vn – Ayn〉 ≥ 0, ∀v ∈ Q,

xn+1 = PC(yn – μA∗(Ayn – vn)), n ∈N.

(7)

It is worth noting that, as a prototype of the proximal point method, the PPCQ may not
converge when f and g are pseudomonotone. In addition, the PPCQ converges weakly to a
solution of (6) when it is consistent and the step-size μ ∈ (0, 1

‖A‖2 ) depends on ‖A‖, which,
in turn, may lead to excessive numerical computation that may affect the convergence of
the PPCQ. The question now becomes: is it possible to develop an extragradient algorithm
with an adaptive step-size that converges strongly to a solution of (6) when f and g are
pseudomonotone? In answering this question, we present a self-adaptive extragradient-
CQ algorithm (SECQ) for solving (6) and prove that a sequence generated by our proposed
SECQ converges strongly to solutions of (6) when f and g are pseudomonotone. A numer-
ical example is also given to demonstrate the effectiveness of our iterative scheme.

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖.
Let C ⊆ H be a nonempty, closed, and convex set, and denote by the symbols ⇀ and −→
weak and strong convergence of a sequence {xn}∞n=1.

Definition 2.1 A bifunction f : C × C →R is said to be
(i) monotone on C, if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

(ii) pseudomonotone on C with respect to x ∈ C, if

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0, ∀y ∈ C;

(iii) pseudomonotone on C with respect to ∅ �= � ⊂ C, if ∀x∗ ∈ �,

f
(
x∗, y

) ≥ 0 ⇒ f
(
y, x∗) ≤ 0, ∀y ∈ C;
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(iv) Lipschitz-type continuous, if there are two positive constants L1, L2 such that

f (x, y) + f (y, z) ≥ f (x, z) – L1‖x – y‖2 – L2‖y – z‖2, ∀x, y, z ∈ C;

(v) jointly weakly continuous on C × C in the sense that, given any x, y ∈ C and
{xn}∞n=1, {yn}∞n=1 ⊂ C converge weakly to x and y, respectively, then

lim
n→∞ f (xn, yn) = f (x, y).

The following conditions will be used in the sequel.

Assumption A
(A1). f is pseudomonotone with respect to SOL(f , C);
(A2). f is jointly weakly and Lipschitz-type continuous on C with constants L1 and L2;
(A3). f (x, ·) is convex and subdifferentiable on C;
(A4). � = {x ∈ SOL(f , C) such that A(x) ∈ SOL(g, Q)} �= ∅.

Lemma 2.2 ([2]) If the bifunction f satisfies conditions (A1)–(A4), then SOL(f , C) is weakly
closed and convex.

Recall that a metric projection of H onto C is the mapping PC : H → C which assigns to
each x ∈ H the (nearest) unique point PC(x) in C satisfying

∥
∥x – PC(x)

∥
∥ = min

{‖x – y‖ : y ∈ C
}

.

Lemma 2.3 Given u ∈H and z ∈ C. Then

z = PC(u) ⇐⇒ 〈u – z, z – y〉 ≥ 0, ∀y ∈ C.

Lemma 2.4 ([16]) Let {an}∞n=1 be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+1 for all i ≥ 0. Then there exists an increasing sequence
{mk}∞k=1 ⊂N such that mk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈N:

amk ≤ amk+1 and ak ≤ amk+1 .

In fact, mk is the largest number n in the set {1, 2, . . . , k} such that the condition an ≤ an+1

holds.

Lemma 2.5 ([25]) Let {γn}∞n=1 be a sequence in (0, 1) and {δn}∞n=1 be in R satisfying
∑∞

n=1 γn = ∞ and lim supn→∞ δn ≤ 0 or
∑∞

n=1 |γnδn| < ∞. If {an}∞n=1 is a sequence of non-
negative real numbers such that an+1 ≤ (1 – γn)an + γnδn, ∀n ≥ 0, then limn→∞ an = 0.

3 Main results
The following is our main algorithm for solving (6).
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Algorithm 3.1 (Self-adaptive proximal-extragradient algorithm for SEP)
Initialization: Given initial choice x1 and u in C. Pick parameters
{δn}∞n=1 ⊂ [δ, δ̄] ⊂ (0, 1), {σn}∞n=1 ⊂ (0, 2), {ρn}∞n=1 ⊂ [ρ, ρ̄], and {rn}∞n=1 ⊂ [r, r̄] such that

[ρ, ρ̄], [r, r̄] ⊂
(

0, min

{
1

2L1
,

1
2L2

})
, lim

n→∞ δn = 0, and
N∑

i=1

δn = ∞.

Iterative steps: Assume that xn is known for n ∈N, then compute the update xn+1

according to the following rule.
Step 1: Compute:

yn = argmin
y∈C

{
f (xn, y) +

1
2ρn

‖y – xn‖2
}

and zn = argmin
y∈C

{
f (yn, y) +

1
2ρn

‖y – xn‖2
}

.

Step 2: Set v̂n := PQ A(zn).
Step 3: Compute:

vn = argmin
v∈Q

{
g(v̂n, v) +

1
2rn

‖v – v̂n‖2
}

and un = argmin
v∈Q

{
g(vn, v) +

1
2rn

‖v – v̂n‖2
}

.

Step 4: Set F(zn) := 1
2‖Azn – un‖2 and G(zn) := A∗(Azn – un).

Step 5: Compute

xn+1 = δnu + (1 – δn) PC
(
zn – μnG(zn)

)
, where

μn =

⎧
⎨

⎩
σn

F(zn)
‖G(zn)‖2 , if G(zn) �= 0;

0, otherwise.

Stopping criterion: If xn+1 = xn, then xn is a solution of SEP (6) and the iterative process
stops, otherwise, put n := n + 1 and go back to Step 1.

Lemma 3.2 ([1], Lemma 3.1) Let H1 and H2 be real Hilbert spaces. Let C and Q be
nonempty, closed, and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be
a bounded linear operator with adjoint A∗. Assume that f : C × C → R satisfies con-
ditions (A1)–(A4). Let {xn}∞n=1 be a sequence generated by Algorithm 3.1. Then, for all
x∗ ∈ SOL(f , C), the following statements hold:

(a). ρn(f (xn, y) – f (xn, yn)) ≥ 〈yn – xn, yn – y〉 for all y ∈ C;
(b). ‖zn – x∗‖2 ≤ ‖xn – x∗‖2 – (1 – 2ρnL1)‖xn – yn‖2 – (1 – 2ρnL2)‖yn – zn‖2.

The following theorem gives conditions that guarantee strong convergence of Algo-
rithm 3.1.

Theorem 3.3 Let H1 and H2 be real Hilbert spaces. Let C and Q be nonempty, closed, and
convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator
with adjoint A∗. Assume that f : C × C → R and g : Q × Q → R satisfy conditions (A1)–
(A4). Let {xn}∞n=1 be any sequence generated by Algorithm 3.1. Then xn → P�(u) under the
following conditions:
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(C1). 0 < t1 ≤ μn ≤ t2 for some t1, t2 ∈R and ∀n ∈ � = {n ≥ 1 : G(zn) �= 0};
(C2). lim infn→∞(2 – σn) > 0;
(C3). 〈Gzn, zn – x∗〉 ≥ F(zn) for all x∗ ∈ �.

Proof Let x∗ = P�(u) and πn = PC(zn – μnG(zn)). Then, by using (C3), we have

∥∥πn – x∗∥∥2 =
∥∥PC

(
zn – μnG(zn)

)
– PC

(
x∗)∥∥2

≤ ∥
∥zn – μnG(zn) – x∗∥∥2 =

∥
∥zn – x∗ – μnG(zn)

∥
∥2

≤ ∥
∥zn – x∗∥∥2 +

∥
∥μnG(zn)

∥
∥2 – 2μn

〈
G(zn), zn – x∗〉

≤ ∥
∥zn – x∗∥∥2 + μ2

n
∥
∥G(zn)

∥
∥2 – 2μnF(zn)

=
∥∥zn – x∗∥∥2 + σ 2

n
[F(zn)]2

‖G(zn)‖4

∥∥G(zn)
∥∥2 – 2σn

F(zn)
‖G(zn)‖2 F(zn)

=
∥∥zn – x∗∥∥2 + σ 2

n
[F(zn)]2

‖G(zn)‖2 – 2σn
[F(zn)]2

‖G(zn)‖2 .

Thus

∥
∥πn – x∗∥∥2 ≤ ∥

∥zn – x∗∥∥2 – σn(2 – σn)
[F(zn)]2

‖G(zn)‖2 . (8)

This implies

∥
∥πn – x∗∥∥2 ≤ ∥

∥zn – x∗∥∥2. (9)

Consequently, by Lemma 3.2 and (9), we get

∥∥πn – x∗∥∥2 ≤ ∥∥zn – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2. (10)

By Algorithm 3.1 and (10), we have

∥∥xn+1 – x∗∥∥ =
∥∥δnu + (1 – δn)πn – x∗∥∥

=
∥
∥δn

(
u – x∗) + (1 – δn)

(
πn – x∗)∥∥

≤ δn
∥
∥u – x∗∥∥ + (1 – δn)

∥
∥πn – x∗∥∥

≤ δn
∥
∥u – x∗∥∥ + (1 – δn)

∥
∥xn – x∗∥∥

≤ max
{∥∥u – x∗∥∥,

∥
∥xn – x∗∥∥}

...

≤ max
{∥∥u – x∗∥∥,

∥
∥x1 – x∗∥∥}

.

Hence {xn}∞n=1 is bounded. Then, from (10), we deduce that {πn}∞n=1 and {zn}∞n=1 are
bounded. By using Algorithm 3.1 and subdifferential inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈H,
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we obtain

∥∥xn+1 – x∗∥∥2 ≤ (1 – δn)
∥∥πn – x∗∥∥2 + 2δn

〈
u – x∗, xn+1 – x∗〉. (11)

Thus, by Lemma 3.2, (10), and (11), we have

∥∥xn+1 – x∗∥∥2 ≤ (1 – δn)
∥∥xn – x∗∥∥2 – (1 – δn)

(
(1 – 2ρnL1)‖xn – yn‖2

+ (1 – 2ρnL2)‖yn – zn‖2) + 2δn
〈
u – x∗, xn+1 – x∗〉.

(12)

Case 1. Suppose that there exists n0 ∈N such that {‖xn –x∗‖}∞n=1 is decreasing for n ≥ n0.
Then the limit of {‖xn – x∗‖}∞n=1 exists. Consequently,

lim
n→∞

(∥∥xn – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2) = 0. (13)

Moreover, by using 0 < ρ ≤ ρn ≤ ρ̄ < min{ 1
2L1

, 1
2L2

} and (12), we have

0 ≤ (1 – δn)
(
(1 – 2ρ̄L1)‖xn – yn‖2 + (1 – 2ρ̄L2)‖yn – zn‖2)

+ δn
∥
∥xn – x∗∥∥2 – 2δn

〈
u – x∗, xn+1 – x∗〉

≤ ∥∥xn – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2.

(14)

Since limn→∞ δn = 0, (1 – 2ρ̄L1) > 0, and (1 – 2ρ̄L2) > 0, then it follows from (14) and (13)
that

lim
n→∞‖xn – yn‖ = 0 and lim

n→∞‖yn – zn‖ = 0. (15)

This implies that

lim
n→∞‖zn – xn‖ = 0. (16)

By combining (10) and (11), we obtain

0 ≤ ∥∥xn – x∗∥∥2 –
∥∥πn – x∗∥∥2 – δn

∥∥xn – x∗∥∥2 – 2δn
〈
u – x∗, xn+1 – x∗〉

≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2.

(17)

Thus, from (13) and (17), we get

lim
n→∞

(∥∥xn – x∗∥∥2 –
∥∥πn – x∗∥∥2) = 0. (18)

Owing to (C1), (8), and (10), we have

0 ≤ t1(2 – σn)F(zn) ≤ ∥∥xn – x∗∥∥2 –
∥∥πn – x∗∥∥2. (19)

Clearly, from (19), (18), and (C2), we obtain

lim
n→∞ F(zn) = 0. Hence lim

n→∞‖Azn – un‖ = 0. (20)
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Since ‖Azn – Ax∗‖ ≤ ‖Azn – un‖ + ‖un – Ax∗‖, then it follows from (20) that

lim
n→∞

(∥∥Azn – Ax∗∥∥2 –
∥∥un – Ax∗∥∥2) = 0. (21)

By Lemma 3.2, we have

∥
∥un – Ax∗∥∥2 ≤ ∥

∥v̂n – Ax∗∥∥2 – (1 – 2rnL1)‖v̂n – vn‖2 – (1 – 2rnL2)‖vn – un‖2. (22)

Similarly, from 0 < r ≤ rn ≤ r̄ < min{ 1
2L1

, 1
2L2

} and (22), we get

(1 – 2r̄L1)‖v̂n – vn‖2 + (1 – 2r̄L2)‖vn – un‖2 ≤ ∥
∥Azn – Ax∗∥∥2 –

∥
∥un – Ax∗∥∥2. (23)

Moreover, since (1 – 2r̄L1) > 0 and (1 – 2r̄L2) > 0, then it follows from (23) and (21) that

lim
n→∞‖v̂n – vn‖ = 0 and lim

n→∞‖vn – un‖ = 0. (24)

Now, let ζn = zn – μnG(zn). Then

‖ζn – zn‖ = μn
∥
∥G(zn)

∥
∥ = μn

∥
∥A∗∥∥∥

∥A(zn) – un
∥
∥. (25)

Again, by using (C1), (20), and (25), we get

lim
n→∞‖ζn – zn‖ = 0. (26)

Since ‖πn – zn‖2 ≤ ‖ζn – zn‖2, then it follows from (26) that

lim
n→∞‖πn – zn‖ = 0. (27)

By the triangle inequality in conjunction with (16) and (27), we obtain

lim
n→∞‖πn – xn‖ = 0. (28)

It is clear that

‖xn+1 – πn‖ ≤ δn‖u – πn‖. (29)

Since δn → 0 as n → ∞ and {‖u – πn‖}∞n=1 is bounded, then

lim
n→∞‖xn+1 – πn‖ = 0. (30)

Consequently, from (30) and (28), we have

lim
n→∞‖xn+1 – xn‖ = 0. (31)
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Furthermore, since H1 is reflexive and {xn}∞n=1 ⊂ H1 is bounded, then there exists a subse-
quence {xnk }∞k=1 of {xn}∞n=1 such that

xnk ⇀ e∗ ∈ H1 as k → ∞. Therefore, assume w.o.l.o.g. that (32)

lim sup
n→∞

〈
u – x∗, xn – x∗〉 = lim

k→∞
〈
u – x∗, xnk – x∗〉. (33)

Moreover, since {zn}∞n=1, {yn}∞n=1, and {πn}∞n=1 are bounded, then it follows from (15), (16),
(28), and (32) that

znk ⇀ e∗, ynk ⇀ e∗, πnk ⇀ e∗ as k → ∞. (34)

It will now be shown that the weak limit e∗ solves SEP (6). That is, e∗ ∈ �. Indeed, since C
and Q are closed and convex, then

C and Q are weakly closed. (35)

Also, since {xn}∞n=1 ⊂ C, then it follows from (32) and (35) that e∗ ∈ C. Note that A is linear
and bounded. So, from (34), we obtain Aznk ⇀ Ae∗ as k → ∞. In view of (20) and the
boundedness of {un}∞n=1, we see that

unk ⇀ A
(
e∗) as k → ∞. (36)

Likewise, since {vn}∞n=1 and {v̂n}∞n=1 are bounded, then, from (36) and (24), we get

vnk ⇀ A
(
e∗), ˆvnk ⇀ A

(
e∗) as k → ∞. (37)

Clearly, since { ˆvnk }∞k=1 ⊂ Q, then, from (35) and (37), we deduce that A(e∗) ∈ Q. It remains
to show that e∗ ∈ EP(C, f ) and Ae∗ ∈ EP(Q, g). By Lemma 3.2, in particular, for all k ∈ N,
we have

ρnk

(
f (xnk , y) – f (xnk , ynk )

) ≥ 〈ynk – xnk , ynk – y〉, ∀y ∈ C.

This implies

〈ynk – xnk , ynk – y〉
ρnk

≤ f (xnk , y) – f (xnk , ynk ), ∀y ∈ C. (38)

However, since ρnk ≥ ρ > 0, then, by applying the Cauchy–Schwartz inequality, we see that

∣
∣∣
∣
〈ynk – xnk , ynk – y〉

ρnk

∣
∣∣
∣ =

|〈ynk – xnk , ynk – y〉|
ρnk

≤ |〈ynk – xnk , ynk – y〉|
ρ

≤ ‖ynk – xnk ‖‖ynk – y‖
ρ

, ∀y ∈ C.
(39)

On the other hand, since {ynk }∞k=1 is bounded and limk→∞ ‖ynk – xnk ‖ = 0, then ‖ynk –
xnk ‖‖ynk – y‖ → 0 as k → ∞. Consequently,

lim
k→∞

〈ynk – xnk , ynk – y〉
ρnk

= 0. (40)
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Since f satisfies (A2), then, by passing limit as k → ∞ in (38) in conjunction with (34),
(32), and (40), we have

lim
k→∞

〈ynk – xnk , ynk – y〉
ρnk

≤ lim
k→∞

(
f (xnk , y) – f (xnk , ynk )

)

= f
(
e∗, y

)
– f

(
e∗, e∗), ∀y ∈ C.

(41)

Thus e∗ ∈ EP(C, f ). Again, by Lemma 3.2, we see that

rnk

(
g( ˆvnk , y) – g( ˆvnk , vnk )

) ≥ 〈vnk – ˆvnk , vnk – v〉, ∀v ∈ Q.

Therefore

〈vnk – ˆvnk , vnk – v〉
rnk

≤ g( ˆvnk , v) – g( ˆvnk , vnk ), ∀v ∈ Q. (42)

Since rnk ≥ r > 0, applying the Cauchy–Schwarz inequality, we have

∣
∣∣
∣
〈vnk – ˆvnk , vnk – v〉

rnk

∣
∣∣
∣ =

|〈vnk – ˆvnk , vnk – v〉|
rnk

≤ |〈vnk – ˆvnk , vnk – v〉|
r

≤ ‖vnk – ˆvnk ‖‖vnk – v‖
r

, ∀v ∈ Q.
(43)

Now, since {vnk }∞k=1 is bounded and limk→∞ ‖vnk – ˆvnk ‖ = 0, then ‖vnk – ˆvnk ‖‖vnk – v‖ → 0
as k → ∞. Hence,

lim
k→∞

〈vnk – ˆvnk , vnk – v〉
rnk

= 0. (44)

Again since g satisfies (A2), then by passing limit as k → ∞ in (42) using (36), (37), and
(44), we get

0 ≤ lim
k→∞

(
g( ˆvnk , v) – g( ˆvnk , vnk )

)
= g

(
Ae∗, v

)
– g

(
Ae∗, Ae∗), ∀v ∈ Q. (45)

Hence e∗ ∈ �. Since � is closed, convex, and x∗ = P�(u), then it follows from (31), (32),
(33), and Lemma 2.3 that

lim sup
n→∞

〈
u – x∗, xn+1 – x∗〉 ≤ lim sup

n→∞

〈
u – x∗, xn – x∗〉 = lim

k→∞
〈
u – x∗, xnk – x∗〉

=
〈
u – x∗, e∗ – x∗〉 ≤ 0.

(46)

Consequently, by Lemma 2.5, (11), and (46), we conclude that

lim
n→∞

∥∥xn – x∗∥∥2 = 0.

Case 2. Suppose that {‖xn – x∗‖}∞n=1 is not decreasing such that there exists a subse-
quence {‖xnl – x∗‖}∞l=1 of {‖xn – x∗‖}∞n=1 satisfying

∥∥xnl – x∗∥∥ <
∥∥xnl+1 – x∗∥∥ for all l ∈N.
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In view of Lemma 2.4, there exists a nondecreasing sequence {mk}∞k=1 ⊂ N such that
limk→∞ mk = ∞ and the following inequalities hold for all k ∈N:

∥∥xmk – x∗∥∥ ≤ ∥∥xmk+1 – x∗∥∥ and
∥∥xk – x∗∥∥ ≤ ∥∥xmk+1 – x∗∥∥. (47)

Note that by discarding the repeated terms of {mk}∞k=1, but still denoted by {mk}∞k=1, we can
have {xmk }∞k=1, as a subsequence of {xn}∞n=1. Since {xmk }∞k=1 is bounded, then limn→∞(‖xmk –
x∗‖ – ‖xmk+1 – x∗‖) = 0. Then, following arguments similar to those in Case 1, we deduce
that

lim
k→∞

‖xmk+1 – xmk ‖ = 0 and (48)

lim sup
k→∞

〈
u – x∗, xmk+1 – x∗〉 ≤ 0, where x∗ = P�(u). (49)

It follows from (47) and (11) that

∥∥xmk+1 – x∗∥∥2 ≤ (1 – δmk )
∥∥xmk – x∗∥∥2 + 2δmk

〈
u – x∗, xmk+1 – x∗〉

≤ (1 – δmk )
∥∥xmk+1 – x∗∥∥2 + 2δmk

〈
u – x∗, xmk+1 – x∗〉.

(50)

Clearly, by dividing through by δmk , we get

∥
∥xmk+1 – x∗∥∥2 ≤ 2

〈
u – x∗, xmk+1 – x∗〉. (51)

Passing limit as k → ∞ in (51) using (49), we obtain

lim
k→∞

∥∥xmk+1 – x∗∥∥2 = 0.

Consequently, from (47), we see that

lim
k→∞

∥∥xk – x∗∥∥2 = 0.

Hence xn → x∗ ∈ � in both cases and this ends the proof. �

Remark 1
(1) Theorem 3.3 will take the form of the extragradient method studied by Tran et al.

[23] if we set g ≡ 0 and H1 ≡ H2.
(2) Theorem 3.3 coincides with the work of Lopez et al. [15], whenever g = f ≡ 0.
(3) The restriction on the step-size μ ∈ (0, 1

‖A‖2 ) is imposed by He [12], while the
step-size μ ∈ (0, 1

‖A‖2 ) is relaxed with adaptive step-size that uses a simpler
initialization sequence {σn}∞n=1 ⊂ (0, 2) in our work.

(4) Moreover, in the work of He [12], a weak convergence result was obtained for
solving (6) and the strong convergence follows only through the hybrid proximal
point algorithm, which is not easy to implement. In this paper, we obtain a strong
convergence result for solving (6) without using the hybrid scheme.

(5) The conclusion of our Theorem 3.3 holds for pseudomonotone bifunctions, while
the corresponding result by He [12] is restricted to monotone bifunctions.
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Table 1 Example 4.1: Comparison of Algorithm 3.1 with He’s algorithm (7)

m Number of iterations (n) CPU time (s)

Algorithm 3.1 He’s algorithm (7) Algorithm 3.1 He’s algorithm (7)

5 13 111 0.0942812 0.8982632
10 23 197 0.8638912 2.9385731
20 33 201 1.2636421 4.3829392
50 53 403 1.5485732 8.0197482
70 63 445 1.8735482 8.6749302
100 57 501 2.1294532 9.1485839
150 51 499 2.5394313 12.9829482

4 Numerical results
In this section, a preliminary numerical test is presented to compare the convergence be-
havior of proposed Algorithm 3.1 with algorithm (7).

Example 4.1 Consider the Nash–Cournot equilibrium problem studied in [20, 23], where
f : C × C →R is defined by

f (x, y) = 〈Ux + Vy + c, y – x〉,

where c ∈ R
m and U , V are two matrices of order m such that V is symmetric positive

semidefinite and V – U is negative semidefinite with Lipschitz constants L1 = L2 = 1
2‖U –

V‖. The matrices U , V are randomly generated 1 and the entries of c randomly belong to
[–1, 1]. The constraint set C ⊂R

m is taken as follows:

C :=

{

x ∈R
m :

m∑

i=1

xi ≥ –1, –10 ≤ xi ≤ 10

}

.

Assume that g : Q × Q → R is defined by g(x, y) = x(y – x), ∀x, y ∈ Q = [–1,∞). Suppose
that A : Rm → Q is a linear operator defined by Ax = 〈a, x〉, ∀x ∈ R

m, where a is a vector
in R

m whose elements are randomly generated from [1; m]. Thus, A∗ : [–1,∞) →R
m is of

the form A∗y = y.a for all y ∈ R and ‖A‖ = ‖a‖. The starting points x1 ∈ C are randomly
generated in the interval [–10, 10], and we choose μ = 1

2‖a‖2 , ρn = rn = 1
4L1

, δn = 1
n+2 , and

σn = 2 – 1
n+1 . We define the function TOLn by TOLn := ‖xn+1 – xn‖ and use the stopping

rule TOLn < ε for the iterative process, where ε is the predetermined error. The equiva-
lent convex quadratic problems are solved using the function fmincon and implemented
in MATLAB 7.0 running on an HP Compaq510, Core(TM)2 Duo Processor T5870 with
2.00 GHz and 2 GB RAM. Table 1 shows that Algorithm 3.1 outperforms He’s algorithm
(7) in running time and in the number of iterations for different cases of m.

5 Conclusion
In this paper, we have proposed a self-adaptive extragradient iterative process for solv-
ing split pseudomonotone equilibrium problems. We established strong convergence of
our proposed algorithm, and the performance of the algorithm such as CPU time and the

1Two matrices are randomly generated E and F with entries from [–1, 1]. The matrix V = ET E, S = FT F and U = S + V .
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number of iterations required for convergence is highlighted through preliminary numeri-
cal tests that show that our proposed algorithm is faster than the corresponding algorithm
by He [12].
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