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Abstract

We have constructed the sequence space (E(, 1))y, where ¢ = () is a strictly
increasing sequence of positive reals tending to infinity and t = (t;) is a sequence of
positive reals with 1 < t; < oo, by the domain of (£)-Cesaro matrix in the Nakano

sequence space £, equipped with the function v(f) = ijo(lzlziiﬂ)“ for all
f=(f,) € E(¢,1). Some geometric and topological properties of this sequence space,
the multiplication mappings defined on it, and the eigenvalues distribution of
operator ideal with s-numbers belonging to this sequence space have been
investigated. The existence of a fixed point of a Kannan pre-quasi norm contraction
mapping on this sequence space and on its pre-quasi operator ideal formed by
(E(Z, 1)y and s-numbers is presented. Finally, we explain our results by some
illustrative examples and applications to the existence of solutions of nonlinear
difference equations.
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1 Introduction

Variable exponent Lebesgue spaces go back many years, and in successive centuries, vari-
able Lebesgue and Sobolev spaces have been systematically examined. Many variable ex-
ponent real function spaces and complex function spaces have been presented since then,
including Hardy spaces, Besov spaces, Bessel potential spaces, Trieble—Lizorkin spaces,
Morrey spaces, Herz—Morrey spaces, Herz spaces, Fock spaces, and Bergman spaces. For
three centuries, variable exponent function spaces have been widely applied in approxi-
mation theory, image processing, and differential equations. Thus far, the theory of vari-
able exponent function spaces has pensively built upon the boundedness of the Hardy—
Littlewood maximal operator, and this confines its procedure to differential equations,
approximation, and optimization. By CN, £, ¢,, and ¢, we suggest the spaces of each,
bounded, r-absolutely summable, and null sequences of complex numbers, where N =
{0,1,2,...}. We denote the space of all, finite rank, approximable, and compact bounded
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linear mappings from a Banach space P into a Banach space Q by B(P, Q), F(P, Q),
A(P, Q), and K(P, Q), and if P = Q, we mark B(P), F(P), A(P), and K(P), respectively.
The ideals of all, finite rank, approximable, and compact mappings are denoted by B, F,
A, and K. We designate ¢; = (0,0,...,1,0,0,...), as 1 presents at the 1" coordinate, with
leN.

Definition 1.1 ([1]) An s-number function is a mapping defined on B(P, Q) which maps
every mapping X € B(P, Q) to a nonnegative scalar sequence (s;(X))7, that satisfies the
following conditions:
(@) IX] = s0(X) > 51(X) > 52(X) > - -- > 0 for every X € B(P, Q);
(b) Sprac1(X71 + X5) < 51(X7) + 5,(X>) for each X1,X, € B(P,Q) and [, a € N;
(c) Ideal property: s,(ZYX) < || Z||s.(Y) || X|| for all X € B(Py, P), Y € B(P, Q), and
Z € B(Q, Qy), where Py and Qy are discretionary Banach spaces;
(d) For GeB(P,Q)and y €C, one has s,(y G) = |y |s,(G);
(e) Rank property: Assume rank(X) < a, then s,(X) = 0 for each X € B(P, Q);
(f) Norming property: s;>,(I;) = 0 or s;.,(I;) = 1, where I, mirrors the unit mapping on
the a-dimensional Hilbert space £5.

For an assorted illustration of s-numbers, we provide the next setting:
(1) The ath Kolmogorov number, denoted by d,(X), is defined as

d,(X)= inf sup inf|Xf —g]|.
dim/<af)<18/

(2) The ath approximation number, denoted by o,(X), is defined as
a,(X) =inf{|X = Y| : Y € B(P, Q) and rank(Y) < a}.
Notations 1.2 ([2])

BS, := | BS,(P, Q); Pand Qare Banach spaces}, where
B},(P, Q)= {X € B(P,Q): ((sa(X)) -, € V}.

B, := {BS,(P, Q); Pand Qare Banach spaces}, where
B(P, Q)= {X e B(P, Q) : ((¢a(X)) -, € V}.

BY, := {B,(P, Q)PandQare Banach spaces}, where
BL(P, Q)= {X € B(P,Q): (da(X)) -, € V}.

A few of ideals in the class of Banach spaces or Hilbert spaces are evident by inconsis-
tent scalar sequence spaces. For example, the ideal of compact mappings is constructed
by the space ¢ and d,(X), for X € B(P, Q). Pietsch [3] approved the quasi-ideals B, for
0 < b < 00. He investigated that the ideals of nuclear mappings and of Hilbert—Schmidt
mappings between Hilbert spaces are explored by ¢; and ¢5, respectively. He examined
that F(¢;) are dense in B(£;), and the algebra B(¢;), where (1 < b < 00), constructed a sim-
ple Banach space. Pietsch [4] proved that By, for 0 <b < oo is small. Makarov and Faried
[5] examined that, for each infinite dimensional Banach space P, Q, and r > b > 0, then
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]B%‘Li‘b (P,Q) & By (P, Q) ;Cé B(P, Q). Yaying et al. [6], introduced the sequence space !, the
domain of r-Cesaro matrix in £;, with r € (0,1] and 1 < ¢ < oco. They investigated the quasi
Banach ideal of type x! for r € (0,1] and 1 < ¢ < co. They found its Schauder basis, «—, 8-,
and y— duals, and determined certain matrix classes related to this sequence space. On
sequence spaces, Basarir and Kara probed the compact mappings on some Euler B(m)-
difference sequence spaces [7], some difference sequence spaces of weighted means [8],
the Riesz B(m)-difference sequence space [9], the B-difference sequence space derived by
weighted mean [10], and the mth order difference sequence space of generalized weighted
mean [11]. Mursaleen and Noman [12, 13] recognized the compact mappings on some dif-
ference sequence spaces. The multiplication mappings on Cesaro sequence spaces with
the Luxemburg norm were introduced by Komal et al. [14]. {lkhan et al. [15] analyzed the
multiplication mappings on Cesaro second order function spaces. Recently, many authors
in the literature have investigated some nonabsolute type sequence spaces and introduced
recent high quality papers. For example, Mursaleen and Noman [16] defined the sequence
spaces £ and £}, of nonabsolute type and showed that the spaces £, and £}, are linearly
isomorphic for 0 < p < o0, KI’} is a p-normed space, a BK-space in the cases for O<p <1
and 1 < p < oo, and formed the basis for the space E; for 1 < p < o0.In [17], they studied
the o—, B—, and y — duals ofﬁz and %, of nonabsolute type for 1 < p < co. They character-
ized some related matrix classes and derived the characterizations of some other classes
by means of a given basic lemma. On Cesaro summable sequences, Mursaleen and Basar
[18] defined some spaces of double sequences whose Cesaro transforms are bounded, con-
vergent in the Pringsheim’s sense, null in the Pringsheim’s sense, both convergent in the
Pringsheim’s sense and bounded, regularly convergent, and absolutely g-summable, re-
spectively, and examined some topological properties of those sequence spaces. The Ba-
nach fixed point theorem [19] opened the door for many mathematicians to investigate
many extensions of contraction mappings defined in space or generalize space itself. Kan-
nan [20] examined an instance of a class of operators with the identical fixed point ac-
tions as contractions, though it fails to be continuous. Ghoncheh [21] was the only one
who described Kannan operators in modular vector spaces. He proved the existence of a
fixed point of Kannan mapping in complete modular spaces that have the Fatou property.
Bakery and Mohamed [22] introduced the concept of the pre-quasi norm on a Nakano
sequence space with its variable exponent in (0, 1]. They investigated the sufficient condi-
tions on it equipped with the definite pre-quasi norm to form pre-quasi Banach and closed
space and examined the Fatou property of different pre-quasi norms on it. Moreover, they
proved the existence of a fixed point of Kannan pre-quasi norm contraction mappings on
it and on the pre-quasi Banach operator ideal constructed by s-numbers which belong
to this sequence space. The given inequality will be used in the sequel [23]: If £, > 1 and
%424 € C, with a € N, and h = sup,, £,, then

%0+ zal™ < 277 (Ixal™ + |za]"). (1)

The organization of the paper is efficient like so: In Sect. 3, we give the definition and
some inclusion relations of the sequence space (2(¢, £)), under the function v. In Sect. 4,
we explain the sufficient conditions for E(¢,¢) with definite function v to become pre-
modular private sequence space (pss). This implies that (E(¢, ¢)), is a pre-quasi normed
pss. In Sect. 5, we define a multiplication mapping on (E(¢,t)), and give the necessary
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and sufficient conditions on this sequence space such that the multiplication mapping
is bounded, approximable, invertible, Fredholm, and closed range. In Sect. 6, firstly, we

introduce the sufficient settings (not necessary) on (2(¢, £)),, so that F is dense in st( e

This explains a negative answer of the Rhoades [24] open problem about the linearity of

s-type (E(¢,1)), spaces. Secondly, we introduce the conditions on (E(¢,t)), so that the

S

E(¢.t)
sufficient conditions on (E(¢, t)),, for B

components of pre-quasi ideal B are complete and closed. Thirdly, we investigate the

o

(D)
and powers. We explain the set-ups for which the pre-quasi ideal B

to be precisely confined for altered weights
£,0), 1S minimum.
Fourthly, we describe the settings for which the Banach pre-quasi ideal Bz, .\

Fifthly, we expound the sufficient settings on (E(¢, t)), such that the class of all bounded

is simple.

linear mappings whose sequence of eigenvalues in (£(¢, £)), equals Biz, ;) .InSect.7, the
existence of a fixed point of Kannan pre-quasi norm contraction mapping on this sequence
space and on its pre-quasi operator ideal formed by (E(¢,?)), and s-numbers is given.
Finally, in Sect. 8, we explain our results by some illustrative examples and applications to

the existence of solutions of nonlinear difference equations.

2 Definitions and preliminaries
Lemma 2.1 ([3]) IfU € B(P, Q) and U ¢ A(P, Q), then there are mappings X € B(P) and
Y € B(Q) so that YUXe; = e; for every [ € N.

Definition 2.2 ([3]) A Banach space V is said to be simple if the algebra B()) includes a

unique nontrivial closed ideal.

Theorem 2.3 ([3]) Let V be an infinite dimensional Banach space, then
FOV) & AWV) & KOV) & BY).

Definition 2.4 ([25]) A mapping U € B(V) is said to be Fredholm if dim(Range(U))* <
00, dim(ker(U)) < oo, and Range(U) is closed, where (Range(U/))° is the complement of
Range(U).

Definition 2.5 ([26]) A subclass W of B is called an operator ideal if every component
W(P, Q) =W NB(P, Q) verifies the next set-ups:
(i) I € W if Q illustrates a Banach space of one dimension.
(i) W(P, Q) is a linear space on C.
(iii) Suppose X € B(Po,P), Y € W(P, Q), and Z € B(Q, Qy), then ZYX € W(Py, Qy),
where Py and Qp are normed spaces.

Faried and Bakery [2] introduced the notion of pre-quasi ideal, which is more general

than the quasi ideal.

Definition 2.6 A function ¥ : W — [0, 00) is said to be a pre-quasi norm on the operator
ideal W if the following conditions hold:

(1) Foreach X e W(P,Q), ¥(X)>0and ¥(X) =0 <= X =0;

(2) We have Eqg > 1 such that W(«X) < Eg|c|W(X) for all X € W(P, Q) and k €C;

(3) We have Gy > 1 for W (Z; + Z5) < Go[¥(Z1) + W(Z,)] for all Z1,Z, € W(P, Q);
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(4) We have Dy > 1,if X € B(Po, P), Y € W(P, Q), and Z € B(Q, Qo), then W(ZYX) <
Dol ZIN (Y)IIX]].

Theorem 2.7 ([2]) W is a pre-quasi norm on the ideal W, whenever V is a quasi norm on
the operator ideal W.

Definition 2.8 ([27]) The linear space of sequences V is called a private sequence space
(pss) if it satisfies the following:
(1) ep € VwithbeN;
(2) Vissolid, ie., for f = (f,) € CN, |g| = (Ig»]) € V and |fy| < |g»| over b € N, then || € V;
(3) ([f[%] Do € V, while [g] illustrates the integral part of g if (D)2 € V-

Theorem 2.9 ([27]) Ifthe linear sequence spaceV is a pss, then B, is an operator ideal.

Definition 2.10 ([27]) A subclass of the pss is said to be a pre-modular pss if there is a
mapping v : V — [0, 00) with the settings:

(i) Whenf eV, f =0 <= v(|f]) =0, with v(f) > 0, where 0 is the zero element of V;

(i) Iff €V and p € C, we have Ey > 1 with v(pf) < |p|Eov(f);

(ili) v(f +g2) < Go(uv(f) + v(g)) holds for some Gy > 1 with f,g € V;

(iv) For b e N, |fp| < Igpl, we get v(([fz])) < v((lgs]));

(v) The inequality v((|f])) < v(([f[g]|)) < Dou((|fy])) holds for Dy > 1;

(vi) If F denotes the space of all sequences with finite nonzero coordinates, then

F =V
(vii) We have @ > 0 so that v(p,0,0,0,...) > @|p|v(1,0,0,0,...) with p € C.

Definition 2.11 ([27]) The pss V), is called a pre-quasi normed pss if v supports points
(i)—(iii) of Definition 2.10. If V is complete equipped with v, then V), is called a pre-quasi
Banach pss.

Theorem 2.12 ([27]) A pre-quasi normed pss V,,, whenever it is pre-modular pss.

Theorem 2.13 ([27]) The function V is a pre-quasi norm on By, where Y(Z) =
v(sp(2))p2 for all Z € By, (P, Q) if V), is a pre-modular pss.

Definition 2.14 ([22]) A pre-quasi norm v on V verifies the Fatou property if, for every
sequence {t*} €V, with lim,_, , v(t* —¢t) =0andallz€ V,, v(z-¢) < sup; inf,>; v(z —t%).

Definition 2.15 ([22]) A pre-quasinorm W on the ideal B,, where W(W) = v((s,(W))32,),
verifies the Fatou property if, for all sequence {W,},en € B, (Z, M) with lim,_, oo W(W, —
W) =0 and every V e B,(Z, M),

W (V—W) <supinf W (V- W;).

a i=a

Definition 2.16 ([22]) An operator W : )V, — V), is said to be a Kannan v-contraction if
there is A € [0, %) such that v(Wz — Wt) < A(u(Wz — z) + v(Wt - t)) for every z,£ € V,,.

An element t € V), is called a fixed point of W if W (¢) = ¢.



Bakery and Mohammed Journal of Inequalities and Applications (2021) 2021:139 Page 6 of 30

Definition 2.17 ([22]) An operator W : B},(Z, M) — B3,(Z, M) is called a Kannan W-
contraction if there is A € [0, E) such that W(WV — WT) < A(W(WV - V) + U (WT -T))
for every V, T € BS,(Z, M).

Definition 2.18 ([22]) Let V), be a pre-quasi normed (sss), W:V, — V,,and b € V,.. The
operator W is called v- sequentlally continuous at b if and only if, when lim,_, o v(f, — ) =
0, then lim,_, ., u(Wt, — Wh) = 0.

Definition 2.19 ([22]) For the pre-quasi norm W on the ideal BS,, where W(W) =
v((sa(W))32y), G: B3, (Z, M) — B3,(Z, M), and B € B,(Z, M). The operator G is called W-
sequentially continuous at B if and only if, when lim, . W (W, — B) = 0, then
lim,_, oo ¥ (GW,, — GB) = 0.

Definition 2.20 ([27]) If = (wx) € CN and V), is a pre-quasi normed pss. The mapping
H,:V, =V, is called a multiplication mapping on V,,, when H,f = (wpfy) € V,, with
f €V,. The multiplication mapping is called created by w if H,, € B(},).

Theorem 2.21 ([28]) Fors-type V, := {f = (s,(X)) € RN : X € B(P, Q)anduv(f) < oo}. IfIB%ﬁ;U
is a mapping ideal, then the following conditions are verified:
1. F Cs-type V.
2. Assume (s,(X1))S, € s-type V,, and (s,(X2))S, € s-type Vy, then (s, (X1 + X)), €
s-type V.
3. If » € C and (s,(X))2, € s-type V., then |A|(s,(X))2, € s-type V.
4. The sequence space V,, is solid, i.e., if (s,(Y)):2, € s-type V,, and s,(X) < s,(Y) for all
reNand X,Y € B(P, Q), then (s,(X))2, € s-type V,,.

3 The sequence space (E(¢, 1))y
We introduce in this section the definition and some inclusion relations of the sequence

space (E(¢, 1)), under the function v.

Definition 3.1 For all (;) € R*N, where R*N is the space of all sequences of positive reals
and () e RN is strictly increasing tending to infinity, the sequence space (2(¢, ), under
the function v is defined as follows:

(E{t)u {f (fi)eCN:v ,of)<ooforsome,0>0} where

Z('Zz Of;.ACz ) and Afzzgz_§Z—1'

1=0

Suppose that £, = 0 for z < 0.

Theorem 3.2 If (/) € R*™N N, then

(1), ={f =R ) € CN 2 v(pf) < oo for any p > 0}.
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Proof Assume (t;) € RN N2, one has
(B(,0), ={f = (k) € CN : v(pf) < cofor somep > 0}

[e9) ) ty
={f=(h)ecCN: Z(M) < oofor somep >O}

an &

00 1 t
= f:(fk)eCN:il}fptl;;(W) <ooforsomep>0}
SYIATANAAN
— - cN . (L)
f=(f)e ; . <oo}
={f:(fk)eCN:v(pf)<ooforanyp>O}. 0

Remark 3.3
(1) Fort, =t, forall z€ N and ¢ > 1, the sequence space Z(¢,t) = £; was defined and
investigated by Mursaleen and Noman [16].
(2) Assumet, =t, A, =r*forallzeN,0<r<1,and > 1, the sequence space
E(¢,¢) = x! was investigated by Yaying et al. [6].
(3) Ift,=t, At,=1forallze Nand ¢t > 1, hence E(Z, t) = ces’ was made current and
considered by Ng and Lee [29].

Theorem 3.4 If (A¢), (t;) € R*N with 1 < t; < 0o, then (E(L, 1)), is of nonabsolute type.

Proof By taking f = (1,-1,0,0,0,...), then |f| = (1,1,0,0,0,...). We have

t _ ty ty
U(f):1+<|2;o—cll) +(|2§0 Cll) +...¢2+(9) = o(If)).
&1 ¢ &2

Therefore, the sequence space (Z(¢, t)), is of nonabsolute type. O

Definition 3.5 For all (Ag),(t;) € R*N. The (¢;)-generalized Cesaro sequence space of
absolute type (ces({, £)),, is defined as follows:

(ces(g“,t))w = {f =(fr) € cN: @(pf) < oo for some p > O}, where

w(f)=i(w>fl.

o &
Theorem 3.6 If(Ag),(t;) € R*N N €4 with inf; Az > 0, then (ces(, )y ;Cé (B(¢,1)y.

Proof Let f € (ces(,t)),, since

i(@ingAcA)” g i(Ziogzm:z)” e

=0 =0

Then f € (E(Z, 1)), For () € (1,00)N N £, we choose g = (%)zeN, one has g € (E(¢, 1)),

and g ¢ (ces({,2)),. For (#) € (0, 1]N, we choose & = (%, ﬁ,0,0, 0,...), one has & €
(E(¢,1)y and & ¢ (ces(¢, 1)), = {(0,0,...)}. a
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4 Pre-modular private sequence space
In this section, we offer enough set-ups for E(¢, ¢) with the definite function v to become
pre-modular pss. This implies that E(¢, t) is a pre-quasi normed pss.

Here and after, we denote the space of all monotonic decreasing and monotonic increas-
ing sequences of positive reals by I\, and J , respectively.

Theorem 4.1 E(¢,?) is a pss if the following conditions hold:
(f1) (&) €I Nl with ty > 1.
(f2) (AL, € I with inf, AL, >0 or (AL)X, € 1 N Lo, and there exists C > 1 such
that Ay < CAL,.

Proof (1-i) Assume f,g € E(¢,t). One has

S SN +gz)Azz|>f’
;( ]

§2h1<2(|2z c;szcz ) +i<|22 0 &AL ) ) .

1=0 =0

sof +g€ EB(¢,¢).
(1-ii) Suppose p € C, f € E(¢,t) and as (£;) € I » N £, we obtain

00 I t 00 ! t
Z(IZz=opﬁAcz|> 5sup|p|”2(|21=0ﬁMz')
=0 & 1 o 9]

Hence pf € E(¢, ). Relative to (1-i) and (1-ii), we have E(¢, £) is a linear space.
Also as (t;) € I » N Lo with £y > 1, one has

oo ! Y o0 oo t
Z<|2z=o(eb)zAcz|) :Z(ﬂ> <sup(Acb)”Z(1> e
1=0 & AN o \b

Therefore, e, € E(¢,t) with b € N.
(2) If |f| < |gp| for each b € N and |g| € E(¢,£), one can see

i(Zi-olﬂM?Z)tl . i(xi_o |gz|A€z)” <o0,
=0 & B =0 &

hence |f| € E(¢, £).
(3) Assume (|f;]) € E(¢,¢), where (¢),(AL;) € I~ N Ly and there is C > 1 such that
Aloz1 < CAL,, we get

y(Eiey
i( > lfiz) |Acz) +Z(22’”m]mcz)tzm

any = $ois1

(il A + Zz o el(ALy, + A52z+1)> (Zio (AL, + A§2z+1))tl
Z( & ; &

1=0
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<> (Z(ﬂ> 3 (Eeercliscy )

=0 =0

+§:(Z ozcvzmcz)

=0

[ee] 1 t
< (22h—1 Lohl 2h) ch Z > oo | AL < 00,
o &

~

~

so (fiz)]) € E(Z,9). O
By using Theorem 2.9, we can get the next theorem.
Theorem 4.2 If conditions (f1) and (£2) are satisfied, then IB%S , is an operator ideal.
Theorem 4.3 (E(¢, 1)), is a pre-modular pss if setups (f1) and (£2) are satisfied.

Proof
(i) Easily, v(f) > 0and v(|f]) =0« f =6.
(ii) We have Ey = max{1,sup,|p|?"*} > 1 with v(of) < Eo|p|v(f) for every f € E(¢,?)
and p €C.
(iii) One has v(f +g) < 2" (v(f) + v(g)) for each f,g € E(,1).
(iv) Definitely, from the proof part (2) of Theorem 4.1.
(v) Indeed, the proof part (3) of Theorem 4.1 gives that Dy > (2201 4 oh=1 4 ohyCh > 1.
(vi) Obviously, F = E(¢, ).
(vii) We have 0 < @ < sup; |p|%~! with v(p,0,0,0,...) > @|p|v(1,0,0,0,...) for each
p#0and @ >0,if p =0. |

Theorem 4.4 If settings (f1) and (£2) are satisfied, then (E(¢,t)), is a pre-quasi Banach
pss.

Proof Let the set-ups be satisfied, then from Theorem 4.3 the space (E(¢,t)), is a pre-
modular pss. By using Theorem 2.12, the space (E(¢,t)), is a pre-quasi normed pss. To
show that (E(¢,2)), is a pre-quasi Banach pss, assume that f* = (f*)2° is a Cauchy se-
quence in (E(¢,t))y, then for all ¢ € (0,1), there is a9 € N so that, for all a,b > ay, one
has

V(7 ) = (1ol =BG,
4 ”“;( G ) =

Hence, for a,b > ag and z € N, we have |[f* - f’| < &. So (f?) is a Cauchy sequence in C
for fixed z € N, this gives limy_.o f? = f2 for fixed z € N. Hence v(f* — f°) < &" for all
a > ay. Finally, to show that f° € (E(Z,1)),, one has v(f°) < 2" 1(v(f* - f°) + v(f%)) < oo,
50 f0 € (E(Z, 1)), This means that (2(¢,t)), is a pre-quasi Banach pss. O

By using Theorem 2.21, we conclude the following properties of the s-type (E(¢,£)),.

Theorem 4.5 For s-type (E(¢,t))y = {f = (s,(X)) e RN : X € B(P, Q) and v(f) < 0o}. The
following settings are verified:

Page 9 of 30
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1. We have s-type (E(C, 1)), D F.
2. I (5,(X0) %, € s-type (E(E, 1), and (5,06))Z, € s-type (B(¢, 1))y, then
(s-(X1 + X2))%, € s-type (B(Z,1))y.
3. Forall x € C and (s.(X)), € s-type (E(L, 1))y, then |X|(s, (X)), € s-type (E(S,1))y.
4. The s-type (E(¢, 1)), is solid.

5 Multiplication mappings on (£ (¢, t)),
In this section, we define a multiplication mapping on the pre-quasi normed pss (E(¢, t)),
and investigate the necessary and sufficient conditions on (E(¢, ¢)),, for the multiplication

mapping to be bounded, invertible, approximable, Fredholm, and closed range.

Theorem 5.1 Suppose w € CN, conditions (f1) and (£2) are satisfied, then w € L, if and
only if H,, € B((E(¢,1))v).

Proof Let w € £. Hence there is v > 0 such that |w,| < v with b € N. For f € (E({, 1))y,

one has

it = vion = 3 (o] Lo 0 A )

an q/
< 3 <7| Zizo Uszgz')tl < supvtli(l Zioszfz|>tl
% & o Py q/
= supvu(f).
!

Therefore, H,, € B((E(Z,1)),).
On the contrary, let H,, € B((E(¢,t)),) and w € €. Hence, for all b € N, there is x;, € N

such that w,, > b. We have

U(Hwexb) = U(Cl)@xh) = Z( | Zz=0 wZ(exb)ZA§z|) !

o &
= |a)xb|Abe>” - (bAgxb>” :
= — > —2 ) >b"vuley,).
g( & gc; 9} v b)
Hence H,, ¢ B((E(Z,1))y). So w € L. O

Theorem 5.2 Assume w € CN and (2(¢,t)), is a pre-quasi normed pss, then wy, = g for
every b € N and g € C with |g| = 1 ifand only if H, is an isometry.

Proof Let the sufficient condition be verified. One has

M)” _ i(%ﬂ)” —u(f)
1=0

V(Hf) = v(ef) = Z( - :

1=0

with f € (E(¢, t)),. So H,, is an isometry.
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Let the necessity condition be satisfied and |w;| < 1 for some b = by. We get

U(H,ep,) = v(wep,) = Z( Lk C()"(ebo)l<A§k|> !

o &
> |wbo|A§bo>tl - (AQo)tl
Y (1220 )T ST (2o ) g, .
%( & % & 0

Also when |wp, | > 1, it is easy to show that v(H,ep,) > v(ep, ), which is an inconsistency for
the two cases. Therefore, |wy| = 1 for all b € N. a

By § we denote the space of all sets with a finite number of elements.

Theorem 5.3 Suppose w € CN, setups (f1) and (f2) are satisfied, then H,, € A(E(¢,1)),) if
and only if (wp)32, € co.

Proof Let H, € A((E(¢,1)),), so H, € K((E(Z,t)),). Suppose limy_, o wp # 0. Therefore,
we have g > 0 such that the set K, = {b € N : |wy| > 0} g S If {ap}pen C Ky, hence {eg, :
ap € K, } € £ is an infinite set in (8(¢, £)),. Since

o0 l _ i
v(Hyeo, — Hoew,) = v(wey, — wey,) = Z( 2o wk((e%zk (Cu )AL )
=0 !

> illlfg”u(eaa —eq,)

< <| 3 i 0((€ay )k = (ea )AL )
o G
with a,, p € K,,. Therefore, {eq, : o € K,} € £, which cannot have a convergent subse-
quence under H,,. Hence H,, ¢ KC((E(¢,£)),). This implies H, ¢ A((E(¢,£)),), this gives an
inconsistency. So, lim,_, o wp, = 0. On the other hand, let lim,_, o, w;, = 0. Hence, for all o >
0, one has K, = {b € N : |wp| > 0} C §. Hence, for each ¢ > 0, we have dim(((E(¢, ))v)x,) =
dim(CXe) < 00. S0 H,, € F(((E(¢,)v)k,)- Define w, € CN for alla € N by

wp, beK 1,
(wa)p = a+l
0, otherwise.

a+1

It is clear that H,, € F(((E(¢,£))y)s , ) as dim(((E(¢,1))v)s , ) < oo for all a € N. From
@t
() € I » N Lo with £y > 1, one can see

v((H, ~ Ha,)f) v(((wb-(wa>b) »)po0)

=0
) i (IZI, o(@p ;wa)bfbA:m)
1=0,leK

a+1

o0

S <| Y o(@p = (@) )fp AL )

0JeK 1 &
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v lzézowhﬁA¢b|>”
- Z ( &1

l:O,léK%
. i <|220A¢bﬁ|)fl
(@+1)o, i 1 &
a+1
1 IZLoﬁAm)” 1
(a+1)l0 Z( 19 C(a+ 1) vif).

=0

Hence ||H, — H,, || < m This gives H,, is a limit of finite rank mappings. Therefore,

H, € A(E(Z,1)). 0

Theorem 5.4 Assume w € CN, conditions (f1) and (£2) are satisfied, then H,, € K((E(¢,
1)) if and only if (wp);2, € co.

Proof Obviously, since A((E(¢,1)),) & K((E(Z, 1)) (|
Corollary 5.5 If setups (f1) and (£2) are satisfied, then IC((E(,1)),) & B((E(Z,1))v).

Proof As w = (1,1,...) creates the multiplication mapping I on (E(¢,?)),. Therefore, I ¢
K((E(¢,1)y) and I € B((E(¢,1))y)- O

Theorem 5.6 If(E(¢,?)), is a pre-quasi Banach pss and H,, € B((E(¢,t)),), then there are
a >0and n >0 such that a < |wp| < n with b € (ker(w))° if and only if Range(H,,) is closed.

Proof Assume that the sufficient condition is confirmed. Hence there is ¢ > 0 such that
lwp| > 0 with b € (ker(w))’. To show that Range(H,,) is closed, if g is a limit point of
Range(H,,), we have H,f, € (E(¢, 1)), with b € N so that lim_, o H,f; = g. Obviously, the
sequence H,fj is a Cauchy sequence. As (£;) € I ~ N £o, with £y > 1, one has

V(Hofs — Hofy) = i(' Zi:o(wk(fa)kg— wk(ﬁa)k)Afk|>tl

=0

_ i (l S o @r(fudk — ox (i) ALk >t’

1=0,(Ker(w))¢ &

.\ i (lZi:o(wk(fa)/}l— o (fp) i) Akl )”

1=0,l¢(ker(w))°

N i <|Zi_()(wk(zz)kg—wk(ﬁ)kmcu)tl
)C

1=0,le(ker(w)

_ i ( | Zio(wk(ua)/}l— o (up)) ALkl )t’

=0

. i(| Do 0(ta)i = (1)) ALy

t
) > info"v(u, — up),
& !

~

=0
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where

(fdr Kk € (ker(w))",
(ua)k =
0, k ¢ (ker(w))°.

This implies that {u,} is a Cauchy sequence in (E(¢,t)),. As (E(¢, ), is complete, there
is f € (E(¢, 1)), so that limy,_, o, up, = f. Since H, € B((E(¢,1))y), we have limy,_, o, H,u), =
H,f.But limy,_, o H,up = lim,_, o H,f, = g. So H,f = g. Hence g € Range(H,,). Therefore,
Range(H,,) is closed. Next, suppose that the necessary condition is satisfied. So, there is
o > 0 such that v(H,f) > ovu(f) with f € ((E(Z,£)v)ker(w))c- If K = {b € (ker(w))° : |wp| <
o} #, then for ay € K, one has

v(Hyeq,) = U((“)b(eao)b))b 0

= <| > owb(eug)b)AEbl)

219 11

= <|Zb ol€aq bQA§b|)

< Sup Qtl U(eao )’
l
1=0

this gives an inconsistency. Therefore, K = ¢, we have |w,| > o with b € (ker(w))¢. This
proves the theorem. d

Theorem 5.7 Suppose that w € CN and (2(¢,t)), is a pre-quasi Banach yss, then there are
a>0andn >0sothat o < |wp| < withb € N ifand only if H,, € B((E(¢,1))y) is invertible.

Proof Let the set-up be true. Assume « € CN with «;, = i By using Theorem 5.1, the
mappings H, and H, are bounded linear. We have H,, HK = H..H, = I. Therefore, H, =
H'. Next, let H,, be invertible. So Range(H,,) = ((E(¢,t)),,)n- Hence Range(H,,) is closed.
Therefore, by Theorem 5.6, there is « > 0 so that |w| > « for each b € (ker(w))¢. We have
ker(w) = 9 if wy, = 0 with by € N, this gives e, € ker(H,) which is an inconsistency as
ker(H,,) is trivial. Therefore, |wp| > a with b € N. As H,, € £, from Theorem 5.1, there is
n > 0 so that |wp| < n with b € N. Hence, one has o < |wp| < with b € N. a

Theorem 5.8 Let (E(¢,t)), be a pre-quasi Banach pss and H,, € B((E(¢, t))y), then H,, is
a Fredholm mapping if and only if (i) ker(w) g N is finite and (ii) |wp| > o with b € (ker(w))°.

Proof Assume that the sufficient condition is satisfied. Let ker(w) ; N be infinite,
hence e, € ker(H,) with b € ker(w). Since e,s are linearly independent, this gives that
dim(ker(H,,)) = oo, this implies an inconsistency. Hence, ker(w) ;Cé N must be finite. Con-
dition (ii) comes from Theorem 5.6. Next, let set-ups (i) and (ii) be confirmed. From Theo-
rem 5.6, set-up (ii) implies that Range(H,,) is closed. Setting (i) gives that dim(ker(H,,)) < co
and dim((Range(H,,))¢) < co. This implies that H,, is Fredholm. O

6 Pre-quasiideal
In this section, firstly, we introduce the sufficient settings (not necessary) on (E(¢, t)),

such that F is dense in B} . This investigates a negative answer of the Rhoades [24]

(B0
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open problem about the linearity of s-type (E(¢,£)), spaces. Secondly, for which condi-
tions on (E(Z, £)), are B ey
on (E(¢, 1)), such that IB% 20),
explain the settings in order that B

complete and closed? Thirdly, we give the sufficient set-ups
is strictly contained for different weights and powers. We
»), is minimum. Fourthly, we explain the conditions

so that the Banach pre-quasi ideal IB% , is simple. Fifthly, we give the sufficient condi-

B(Z,t))
tions on (E(¢, £)), such that the space of all bounded linear mappings whose sequence of

eigenvalues in (E(¢,£)), equals BiE(C,t))u'

6.1 Finite rank pre-quasi ideal
Theorem 6.1 Efs(;,r))u(P’ Q) = F(P, Q), whenever setups (f1) and (£2) are satisfied. But

the converse is not necessarily true.

Proof To show that F(P, Q) C Bize ), (P, Q) as ¢; € (E(¢, 1)), with [ € N and (E(Z, 1)),
is a linear space. Let Z € F(P, Q) one has (5,(2));%, € F. To show that Biz, ,, (P, Q) €
F(P, Q), one can see leo )tl <oo.ForZ € Big, ), (P, Q), we have (sl(Z))l % € (B(Z,0))w.
As u(s;(2))57%, < 00, suppose 0 €(0,1), then there is [y € N — {0} with v((s;(Z ))l:lo) <
for some d > 1, where n = max{1, Zloflo({ll)tl}. As 5/(Z) is decreasing, one has

2 ! 2 !
SO N VAV 0 Zjosj(Z)A§j>t’
Z < & ) = Z < &

I=ly+1 I=ly+1

sj (Z)AC 0
_Z( 10 J /> <2h*3nd' (2)

I=ly

P
Zh*?’nd

Therefore, there is Y € Fy;, (P, Q) so that rank(Y) < 2/y and

3 (Zﬁo LRICH 5 (Zfo CaE A ®
& - e 2M3nd’

1=2lp+1 I=lp+1

since (¢;) € I » N £, we have

I=ly

il
P
sup(ZIIZ Y||A§,> < gy (4)

Therefore, one has

b S IZ=Y A\
Z(Z}O” l §1>l P (5)

<
h+3
pn g 2M3nd

By using inequalities (1)—(5), one has

dZ,Y) =v(s(Z-Y)),,

9 1=3ly i

=0
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3 3lp <w)q . i(zlhélo S](Z— Y)Ag)tlﬂlo
- o & 1=l Zl+2lo AC]
=0 G I=lo ¢
)/ !
-3 i(w)”
=0 é‘l

<Zzlo §(Z-Y)Ag + z}’.jjgs,(z—ymgj)u
&

o0
2
I=ly

0 (Z,Lo 1Z - Y||A;,-)fz

I

<3
n 9]
Lol i(zf’% s(Z - Y)Ag,)fl . i(Zj*jﬁﬁ 5;(Z - Y)A§j>tz
= 9] P 9]
[/ !
< 3ZO(ZJ=0 1z - YllAé“f)”
n 9]
L ohl i(z% I1Z~ Y“M/) N i(ﬂo%zzo(z— Y)Ajian )”
o g1 o G
0 0
[/ !
S Bi(zjzo 12 - Y||A;,)fl
1=0 &

3 = Z)A
(Z”Z—YHAQ-) ZQ f1+2h12< 1051( {,)

_ o0
+201 sup
=l \j20 I=ly I=ly

=t

Conversely, we give a counterexample as I, € Bjg ey (P, Q), where (Ag) = (0,0,0,0,1,
1,...)and £ =(1,1,1,...), but £, > 1 is not verlﬁed. This confirms the proof. O

6.2 Pre-quasi Banach and closed ideal
Theorem 6.2 Suppose that setups (1) and (£2) are satisfied, then (B|g
quasi Banach ideal, where ¥ (X) = v((s;(X))5%,)-

o), V) is a pre-

Proof As(E(¢,t)), isa pre-modular pss, hence from Theorem 2.13, W is a pre-quasi norm
on B{g ey . Suppose that (X;)sen is @ Cauchy sequence in Big 20), (P,Q). AsB(P,Q) D
Biz( s, (P> Q), one has

X s(Xa — Xp)AG\ 1
=0 °j\ra )
V(X - Xp) =) ( ’ 2 ) > [1X, = Xpll,
=0

s0 (Xp)pen is a Cauchy sequence in B(P, Q). Since B(P, Q) is a Banach space, there is
X e B(P, Q) with lim,_, | X5 — X|| = 0. Since (s;(X3));5, € (E(¢, 1)), forallb € N, therefore,
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from Definition 2.10 parts (ii), (iii), and (v), one can see

W(X) = i(zf—oSi(X)chy

o &

(X - Xp) A o S Xp) AL
/0 [] ] h-1 j=0°[4] d
3= ) (T

0 1=0
= !

MY X - X+ 271D Z(M)
=0 1=0 &

Hence (s;(X))i, € (E(¢,1))u, s0 X € Big(, ) (P, Q). O

Mg

Theorem 6.3 Suppose that P, Q are normed spaces, conditions (f1) and (£2) are satisfied,
then (B( 20), , V) is a pre-quasi closed ideal, where W(X) = v((s;(X))7,)-

Proof As(E(¢,t)), isa pre-modular pss, hence from Theorem 2.13, W is a pre-quasi norm
on Big, . - Assume X, € Biz (73, Q) for each b € N and limp_, oo ¥ (X, — X) = 0. As

B(P, Q)DIBBE S00), (P, Q), we have
2 /3o (X — X)) AL\ 1
w(X—Xb)=Z<Z’°S’( Z & ;]) > X - X,

1=0

hence (X3)sen is a convergent sequence in B(P, Q). Since (s;(X3));5, € (E(¢, 1)), for every
b € N, by using Definition 2.10 parts (ii), (iii), and (v), one can see

W(X) = i(zf‘osf(X)A{j)”

o &

<oh- 12( 10 i ](X Xb)A;’) - 12( 10 54 ](Xb)Agf)

5i(Xp) AL
<2hlzllX X" + 2" Dy Z( ’0] ’)

We get (s/(X))%, € (E(8, ), s0 X € Big ey (P, Q). O

6.3 Minimum pre-quasi ideal

Theorem 6.4 For any infinite dimensional Banach spaces P, Q and if conditions (f1) and
(2 (1)
2

(£2) are satisfied with 1 < tl(l) <t,” and A;’ < A;(—’Dfor alll e N, we have

S s C
B(s((c}“),(t}”))n(P’ AEB @) ), (P, Q) & B(P, Q).
Proof SupposeZeBz 2 (73 Q), then (5,(2)) € (E((¢"), (¢"))),. One has
= (Y s @A\ Sy s @Al
Z (T) < Z (7) < 00,
=0 9 1=0 g
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then Z € Bz 2P (’P Q). Afterwards, if we choose (s5;(2))75, such that
()

Zizosz( )A{ZD- ;) , we have Z € B(P, Q) such that
P

= s s@ad\ T &1
S

=0

~

and

@
i

o0 oo @ oo
Z zosz(zmz ) <Z(Ziosz(zm;é”)‘l Z( 1 )t;“
< = < 0Q.
( =0 =0 i+l

(1)
1=0 ¢

SoZ¢B P, dZeB* P, Q). Clearly, B* P,Q) C
© >u( Q)an (s«c;z))(t(”)))u( Q). Clearly <s<<c,(2)>,(t;2>)>)u( )

(ElGRGR) (8}
(2)
B(P, Q). Next, if we take (s;(Z))7%, such that Zi:o sZ(Z)A§Z(2> = (g ,we have Z € B(P, Q)
t

I VI+1
so that Z ¢ IBSS ” (P, Q). This confirms the proof. d

2(¢e?

Theorem 6.5 For any infinite dimensional Banach spaces P, Q, if setups (f1) and (£2) are

satisfied, then B, is minimum.

(B0

Proof Assume that the set-ups are confirmed. So (IB%%@J),\IJ), where W (Z) =

hyar L{')U is a pre-quasi Banach ideal. Let BZ (P, Q) = B(P, Q), hence there
isp>0 such that W(Z) < n||Z|| for each Z € B(P, Q). Then, by Dvoretzky’s theorem [30]
with b € N, one has quotient spaces P/Y}, and subspaces M), of Q which can be mapped
onto Elz’ by isomorphisms V}, and X}, with ||V} ||| Vb’1 | <2and || X, ||le1 || <2.If I, is the
identity mapping on €5, Ty, is the quotient mapping from P onto P/Y}, and J, is the nat-
ural embedding mapping from M}, into Q. Assume m1, to be the Bernstein numbers [31],
hence

1 = m,(l) = m (XX, I,V V; )
< ||Xb||mz(X1;11be) || v, || = ||Xb||mz(]bXb_11be) || 7% ||
< IXp (16X 1 Vi) | Vi || = 11X Nz U X5 1 Vi To) | V3|
< 1 Xplloz (X, 1o Vi Tp) | V|
for 0 <[ < b. We have
!

a=< Z Xl |V, ez (6 X5 1 Vi Th) AL, =
z=0

! 71 ,
1< (160 v; )" (Zzo az(lble LV, Ty) AQ) |

Hence, for some ¢ > 1, one has

b 1 1 4
b+1=olXll| v, Z(ZZO “ZUbXbQ fbeTbmcz) .
=0
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b+ 1 <olXpll|| Vi | W (o Xy I Vi To) < onllXall| Vi | 176X5 16 Vi T |
< onl Xl | Vi | 1765 126 11 Vi T

=onl Xl |V || X5 [ 1611Vl < 4on.

We have an inconsistency as b is arbitrary. Then P and Q both cannot be infinite dimen-

sional when Bg . ,(P, Q) = B(P, Q). This completes the proof. O

B(¢.t)

Theorem 6.6 For any infinite dimensional Banach spaces P, Q and if setups (f1) and (£2)

are satisfied, then IBL  is minimum.

6.4 Simple Banach pre-quasi ideal
Theorem 6.7 Presume that P and Q are inﬁnite dimensional Banach spaces. Let setups

(1)
(f1) and (£2) be satisfied with 1 < " < * and “l Af(—g) foralll €N, then
l !

B(B* P, ]B%S P,
( &) ( Q) @M ,r,‘“)»u( )
= A(B* ,0), B¢ , .
A( <s<(;,<2)),(t§2)>))v(73 9 EEME" M (P.Q)
P For X € B(B* P, 0Q),B* P, dX ¢ AB* P,
mof o ( <s<<;}2)>,(t§2’>>)u( 2 <s<(¢}“),(t§”>»v( Q) an ( <s<(r§2)>,(t}2’>>)u(
0),B (P, Q)). From Lemma 2.1, one has Y € B(B* (77, Q))and Z €

21N @2
)

]B%(IBBS (77 Q)) with ZXYI, = I,,. Therefore, for each b € N, we have

&M

(1)

! 1
Ml > ZosagTy!
’ B(s(@il) 0y, P&~

)
WMo pany g

< NZXY || bl s (P.Q)
GEh @

- = (ZJ oS;(Ib)A§ >
- (2)
1=0 &
This defies Theorem 6.4. Then X € A(an((;(z)) @y (P, Q),]]33“(g @, (P, Q)), which
ALY A
confirms the proof. O

Corollary 6.8 For any inﬁnite dimensional Banach spaces P and Q, if setups (f1) and (£2)

@ 1)
A A
{l %for alll e N, then
4

are satisfied with 1 < tz < t, ) and
i

B(B( 22 (P Q) B @) ,t,“’»)U(P’ )

= ’C( (P,Q),B 1)) (1 (P Q))

EE Mo

Proof Clearly, as A C K. O

Theorem 6.9 Assume that setups (f1) and (£2) are satisfied, then Big =), S simple.
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Proof Let the closed ideal IC(BS », (P> Q) include a mapping X ¢ A(]B%s e (Pr Q).
From Lemma 2.1, one has Y,Z e B(B 2.y, (Pr Q) with ZXYI, = I,. This gives that

Ig ), (PQ) € KBz, (P» Q). Accordingly, BBz , (P, Q) = KBz ), (P, Q).

Hence IBS S, 152 51mple Banach space. 0

t))

6.5 Eigenvalues of s-type mappings
Notation 6.10

(BS,)" := {(BS,)" (P, Q); P and Q are Banach spaces}, where

(B})" (P, Q)
={XeB(P,9Q): ((PI(X)) € Vand || X - p/(X)I| is not invertible for all / € N}.

Theorem 6.11 For any infinite dimensional Banach spaces P and Q, suppose that setups
(f1) and (£2) are satisfied, then

(Bf E(¢,t)) ) (P, Q)= z))U(P’ Q).

Proof Let X € (Big, , ) (P, Q), hence (pi(X))75, € (E(¢, 1))y and | X — pi(X)1]| = 0 for all
[ € N. We have X = p;(X)I with [ € N, so s;(X) = s;(0;(X)I) = | p;(X)| with [ € N. Therefore,
(100N € (B¢, )ur s0 X € By, (P, Q).

Secondly, let X € B?E(Lt))u (P, Q). Therefore, (s/(X))5, € (E(¢,1)),. Hence, we have

oo l t 00
Z < ZZ:O SZEX)A§2> > Z[SI(X)]H'

1=0 =0

So limy_, o 5;(X) = 0. Assume that || X — s;(X)I|| ™! exists for every [ € N. Therefore, || X —
s:1(X)I|| 7! exists and is bounded for every [ € N. So, lim;_, » [| X — s;(X)I| 7! = || X|| ! exists
and is bounded. From the pre-quasi operator ideal of (B3, ., , W), we obtain

I=XX"€Big, ), (P.Q = (s) €& = IETOSI(I)ZO‘

We have a contradiction since lim;_, » 5;(I) = 1. Therefore, || X —s;(X)I|| = O for every [/ € N.
This gives X € (Big, ), )" (P, Q). This provides the proof. O

7 Kannan contraction mapping
Theorem 7.1 The function v(f) = [leo(‘zz 0J(“Am)’fl & for every f € B(L,t) satisfies the
Fatou property if setups (f1) and (£2) are satzsﬁed

Proof Assume that the set-ups are verified and {g*} C (2(¢, £)), with lim,_, o, v(g” —g) = 0.
As the space (E(¢, 1)), is a pre-quasi closed space, then g € (E(¢,t)),. Hence, for all f €
(8(¢,1)), we have

v(f -g) = [i(|220(fz§l—gz)A§Z|>tz:| %

1=0
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St

_[Z<IZZ o(fZQ )A;“z) ]_+[i<|2z 0@ - gz)A§z>i|

=0 =0
<supinfu(f - ¢"). 0
j b=

Theorem 7.2 The function v(f) = Y o, (F==22=2 XAl "fz 21 does not verify the Fatou property for
every f € B(¢,¢t) if setups (f1) and (£2) are satzsﬁed

Proof Assume that set-ups are verified and {gb} C (E(¢,1))y with limy_, o U(gb —9)=0
As the space (E(¢, 1)), is a pre-quasi closed space, then g € (E(¢,¢)),. Hence, for all f €
(E(¢,2))y, we have

u(f-g) = i<|Zi=o(fz —gz)A§Z|)tz

= &
g [i(lZio(ﬂz—gf)Azzl)” . li <|zz o8 - & A§Z|> }

=0 !

< 2" supinfu(f - g°).
- /‘pbzf (f § )
Therefore, v does not verify the Fatou property. 0

Now, we study the sufficient settings on (E(¢,£)), constructed with definite pre-quasi
norm so that there is one and only one fixed point of the Kannan pre-quasi norm contrac-
tion mapping.

Theorem 7.3 Ifsetups (f1) and (£2) are satisfied and W : (E (;“ t)y — (E(¢, 1))y is a Kan-
nan v-contraction mapping, where v(f) = [)_ oo (F=2=22=5 | Eegfettl OfZAm )17 foreveryf € B(Z,t),s0 W
has a unique fixed point.

Proof Assume that the conditions are verified. For allf € E(¢, £), then W?f € E(¢, ). Since
W is a Kannan v-contraction mapping, we have

v(WPHf = W2F) < A(u(WP'f = W2F) + u(WPf = WPTlf)) =

v(WPHf — WPf) <

v(W2f - wPlf)
(- 2U(Wp71f_Wp72f) <...< Y v(Wf = f).
“\1-A - T A\1-A

Therefore, for every p,q € N with g > p, we have

v(W2f — Wif) < A(u(WPF - WP™Lf) + u(Wf - W L))

o(25) ) e

Hence, {W?f} is a Cauchy sequence in (E(¢, t)),. Since the space (E(¢, 1)), is pre-quasi
Banach space, there is g € (E(¢, 1)), so that lim,_, ., W?f = g. To show that Wg =g, as v

Page 20 of 30



Bakery and Mohammed Journal of Inequalities and Applications (2021) 2021:139

has the Fatou property, we get

v(Wg - g)<sup1nfv(W1’”f W/pf)<sup1nf( * )U(Wf -f) =0,

so Wg = g. Then g is a fixed point of W. To prove that the fixed point is unique, assume
that we have two different fixed points b,g € (E(¢, t)), of W. Therefore, one can see

v(b-g) <uv(Wb-Wpg) < S(U(Wb -b) + U(Wg—g)) =
Hence, b=g. O

Corollary 7.4 Suppose that setups (f1) and (f2) are satisfied and W : (B (;’,t))v —

(B(¢,1))y is a Kannan v-contraction mapping, where v(f) = [Y_,- 0(|ZZ =0/zAL] )] ,for ev-
eryf € E(¢,t), then W has a unique fixed point b with v(W?f — b) < A( il Lu(WF - f).

Proof Assume that the set-ups are verified. By Theorem 7.3, there is a unique fixed point
b of W. Therefore, one can see

v(WPf - b) = v(WPf — Wb)
A\
<ao(wrr-wein) sows-0) -a(125) wor-p o

Theorem 7.5 Ifsetups (f1) and (£2) are satisfied and W : (E(¢,t)), — (E(¢, 1)), where
=0 0(‘22 0sz{Zl)’fl,for every f € E(¢,t). The point g € (E(Z,1)), is the only fixed
pomt of W if the followmg conditions are verified:
(a) W is a Kannan v-contraction mapping;
(b) W is v-sequentially continuous at g € (E(Z,1))y;
(c) We havev e (E(¢,t)), such that the sequence of iterates {W¥v} has a subsequence
{WPiv} converging to g.

Proof If the settings are satisfied, let g be not a fixed point of W, then Wg # g. By set-ups
(b) and (c), one can see

lim v(W?if-g)=0 and lim v(W?*'f - Wg)

pPi— 00 pPi— 00

0.

Since the operator W is a Kannan v-contraction, we have

0<v(Wg-g)
=v((Wg — WPHf) + (WPif — g) + (WPHLf — WPif))

A pi-1
< 22h—2U(WPi+1V - Wg) + 22h72U(WP"V —g) + 2h1)\(ﬁ> v(Wf =f).

Since p; — 00, we get a contradiction. Hence, g is a fixed point of W. To show that the

fixed point g is unique, suppose that we have two different fixed points g,b € (E(¢, 1)),
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of W. Therefore, we have

v(g—b) <v(Wg - Wb) < A(v(Wg - g) +v(Wb-b)) =

So,g=b. O
Example 7.6 Let W : (E((XL_o 22)%%, (Z22)2))y — (B((XL.o Z2)%,, (2£2)22)).,,, where
o) = SRS forall € B o 2D () and
L u(f)elo,1)
W(f) _ 4} ) )
L () el1,0).
Since for all f,g € (E ((Zz -0 iﬁ )0 (21{:23) o)v with v(f),u(g) € , we have

u(Wf — Wg) = v(ﬁ - %)

e (o) o)) et o

Forallf,g € ( ((Z “2)1 0 (M);’fo))v with v(f), v(g) € [1,00), we have

z=0 z+1 1+2

wtwy - - v(f - %)

< \/1_( <4f) +u<%g>) = %M(U(Wf—f)w(Wg—g)).

Forall f,g € (B((Y_" z2yoo (2£3)%)), with v(f) € [0,1) and v(g) € [1, 00), we have

z=0 z+1 1+2

w(Wf — Wg) = (’f - ‘5)

< (2) () <o) ()

- y12_7(v(VVJ’—f) +u(We—g)).

Therefore, the mapping W is a Kannan v-contraction mapping. Since v satisfies the Fatou
z+2

property, by Theorem 7.3, the mapping W has a unique fixed point 6 € (E ((Zz -0 o)
CE))o-
Let {f™} C (E((XL., 22)%2%,, (222)%)), be such that lim, . v(f® — f©) = 0, where

z=0 z+1 1+2
f(0 e (B ((Zz 0 iﬁ)l 0 211:23)1 0))v with U(f )) = 1. Since the pre-quasi norm v is continu-

ous, we have

lim v(Wf"™ — wr©) = lim U(J? —ﬂ) = U(ﬂ> >0.

n—>00 n—00 5 20

Hence W is not v-sequentially continuous at . So, the mapping W is not continuous

atf (0)
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|\ 2143 + +3\00 .
If v(f) = 3.2 O(IZZ Omfl) for all f € u((zz 0 22)22, (322)%)). Since for all f,g €

Zz 0 z+1
(B((Xh 22)5%,, (222) ), with u(f), u(g) € , we have

v(Wf — Wg) = U(g _ %)

= (o(F) (%)) - S vove-o).

Forallf,g € (B((X!_, 22)%2, (242)), with v(f), v(g) € [1,00), we have

z=0 z+1

o(Wf = W) = v (f i)_4< (%>+ (45g>) 2 (0O —f) + u(Wg ~ g).

Forallf,g € (E((Zl ﬂ)§’°0, (%);’:"0))U with v(f) € [0,1) and v(g) € [1, 00), we have

z=0 z+1/1=

V(W — W) = v({;: . g)

(52 52 (2)

2
v(Wj + (W
= 755 WOV =f) +v(Wg - g)).
Therefore, the mapping W is a Kannan v-contraction mapping and
L
W) - 4;, v(f) € [0,1),
&, u(f) €[1,00).

It is clear that W is v-sequentially continuous at 6 € (E ((ZZ 0 zﬁ b 0,(211:23')1:0))1,
and {W?f} has a subsequence {W?if} converging to 6. By Theorem 7.5, the point 6 €
(E((Zizo %);’fo, (z’l{r—";’)}’fo))u is the only fixed point of W.

Example 7.7 Let W : (E ((Zz 0 Z2)%, (2E2)% )y — (B((C Lo Z2)5%, (222)22)),, where
v(f) = ST B forall £ € BT 22)7% (22)7%,) and

2
Zz =0 Zl

i(el +f)’ _ﬂ) S (_OO) %):
W(f) = %311 _ﬁ) = %)

iely ﬁ) [S (%,OO)

Since for all f,g € (E ((ZZ -0 iﬁ o (2/:23 )% with fo,go € (—o0, %), we have
v(Wf - Wg) = ( (fo—go.fi 1.2~ g2 ))

S (2)(9)

(v(Wf —f) + v(Wg - g)).

IA

S
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Forallf,g € ( ((Zz 0 Z%)l 0 (%)ffo))U with fo, g0 € (%, 00), then for any ¢ > 0 we have

v(Wf — Wg) =0 < e(v(Wf - f) + v(Wg —g)).

Forallf,g e (E((Zl ﬂ)foo, (M)fjo))u with fp € (—o0 ) and gy € ( ,00), we have

z=0 z+1/1= 1+2

v(Wf - Wg) = U<£> < \/%_71)(%)

\/— (Wf f)<\/—_(v(Wf—f)+v(Wg—g))'

Therefore, the mapping W is a Kannan v-contraction mapping. It is clear that W is v-

sequentially continuous at %el € ((ZZ ozﬁ)l 0 211:23);’00))1, and there is f €

(= ((ZZ 0 iﬁ o 2;:23)1 o) With fy € (—o0, 3) such that the sequence of iterates {Wl’f}

or 4n e + 4pf} has a subsequence {W?if} = {Zn 1 4n e + 417;f} converging to el By

Theorem 7.5, the mapping Whas one fixed point 3 lee(E ((ZZ 0 zﬁ )icor (z/j)l:o))u. Note

that W is not continuous at 3e; € ( (X, 22y (2232w

If u(f) = \/Zl 0(|Zz 0 z;lzfz ) e for all f € u((ZZ 0 ﬁﬁ)l 0,(%);’:’0). Since for all f,g €

z— z+1

(B Z2)5%,, (222)%)), with fo, g0 € (~00, 1), we have

U(Wf_Wg):U<L_1L(fO_gO’ 1— &1 2—g2,...))

=g ((3) (V)

(v(Wf —f) + v(Wg - g)).

Y27

Forallf,g € ( ((ZZ 0 ;ﬁ)l 0 (%)fjo))v with fo, g0 € (%, 00), then for any ¢ > 0 we have

v(Wf - Wg) =0 < e(v(Wf —f) + v(Wg - ).

Forallf,g € (B((X .o £2)%%,, (2)%2)), with f; € (00, 1) and g € (4, 00), we have

z=0 z+1/1=

cor-mes() < g (2)-

1
< W(v(Wf—fnv(Wg—g»

Therefore, the mapping W is a Kannan v-contraction mapping. Since v satisfies the Fatou

z+2

property, by Theorem 7.3, the mapping W has a unique fixed point 3 le, e (B ((ZZ 0 )

(355)%)o-

We study the existence of a fixed point of the Kannan pre-quasi norm contraction map-
ping in the pre-quasi Banach operator ideal constructed by (2(¢, £)), and s-numbers.

Theorem 7.8 The pre-quasi norm V(W) = [y O(M)”] ® for each W €
S(&(¢,0), (£, M) does not verify the Fatou property if setups (f1) and (£2) are satisfied.
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Proof Suppose that the conditions are verified and {W,}yen € S(z(r.), (£, M) with
limp_>Oo W (W, — W) = 0. As the space Siz(,), is a pre-quasi closed ideal, hence W €
g(c,0), (Z, M). Then, for all V' € Sz ), (Z, M), one has

0 ! at
U(V-W)= |:Z<| Zzosz(‘;_ W)ACA) l:|

=0

Y osiz1(V - W)ALINEE
= [Z( : & >

=0

> 1Tk osia(W - Wias\ ]
+|:Z< 0 gl >
1=0
00 |ZiOSZ(V_vVi)A§'Z|)tl %
Z( &

Therefore, ¥ does not verify the Fatou property. 0

<2 supinf|:

Theorem 7.9 If setups (f1) and (£2) are satisfied and G : Sz 1)), (Z, M) = Sz »), (Z, M),
where V(W) = [3 2 0(\210&#):, for all W € Sz, (Z,M). The point A €
S0, (Z, M) is the unique fixed point of G if the following settings are verified:

(a) G isa Kannan V-contraction mapping;

(b) G is V-sequentially continuous at a point A € S(z(¢ ), (Z, M);

(c) We have B € Sz (¢ 1), (Z, M) such that the sequence of iterates {GFB} has a

subsequence {GPiB} converging to A.

Proof Suppose that the settings are satisfied. If A is not a fixed point of G, then GA # A.
From conditions (b) and (c), one has

lim ¥(G"B-A)=0 and lim ¥(G"*'B-GA)=0.

pi—> 00 pi—> 00

As G is a Kannan W-contraction mapping, we have
0<W(GA-A)=V¥((GA-G"'B)+(G"B-A)+(G'""'B-G"B))

A pi-1
<25 W(GP* B- GA) + 27 W (GPB - A) +2%x(ﬁ> W(GB-B).
Since p; — 00, one has a contradiction. Hence, A is a fixed point of G. To prove that
the fixed point A is unique, assume that we have two different fixed points A,D €
S0, (Z, M) of G. Therefore, we have

V(A - D) < V(GA - GD) < A(V¥(GA - A) + ¥(GD - D)) =0.
So,A=D. g
Example 7.10 Let Z and M be Banach spaces,

G:S (z,M),

z+1 2[+3 yoo
(Cheo Z3)0 FDN

(ZM)—>SE

(&( z+1 20+3 yoo
(E((Cho 20 D
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where

20+3

| Zz 0 Z+;SZ| =
won = |1,

=0 Zz:O zZ+2

for every W e S, 2:3)00 ) (Z, M) and

z+1
ZZ 0 z+2 l 0’ (T2 1+2 )1:0

, W(W)e[1,00).

Since for all Wy, W, € S (L, 2 Uz, with W(W7), ¥(W53) € [0, 1), we have
Z= 0

z+2)l 0( 1+2

Y (GW, - GW,) = \IJ<— -—

<5 (+(6) (%)

2
12

(V(GW, - W1) + W(GW, — Wh)).

n

For all Wy, W € Six( ztlyoo (2043100 with W (W7), W (W3) € [1,00), we have
E(Th, (2B,

z+210

W, W
U(GW, — GW,) = xp<—1 - 72>

<G ((F) (7))

= 5 (V(GW1 = W1) + W(GW, — Wh)).

~N

§0\

Forall W, W, € S(T((Zl ztlyoo (Ai3yo0 ) with W(W7) € [0,1) and W(W5>) € [1,00), we have
= z=0 1=0"" [+2 /1=0

=0 z+2

W, W
U(GW, - GW,) = \p(?l - 72>

() ()
/125 6 /216 7
< %(W(G\% Wl) + \IJ(GWQ — Wz))

Therefore, the mapping W is a Kannan W-contraction mapping and

(W) elo,1),

GP(W) = v VW)
W w(W)ell,o00).

7P’

It is clear that G is W-sequentially continuous at the zero operator ® €
i i -
S B 22125 (3302 ), and {G” W} has a subsequence {G”: W} converging to ®. By The

orem 7.9, the zero operator ©® S = + 1300 1y 18 the only fixed point of G.
z P € 2@UThy 2Ry DT y ixed p
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Let {W(”)} C Sg silve (213100 v be such that lim, .o W (W® — W) = 0, where
(8 Zz 0 z+2)l 0’ Ty 1+2 )l O))

) ¢ Sz 213100y, With W(W©) = 1, Since the pre-quasi norm W is continu-
B((E- 0 50T v

ous, we have

wo WO wo
lim ¥(GW" - GW©?) = lim \IJ<— - —) = \11(—) >0.
n—>00 n—00 6 7 42

Hence G is not W-sequentially continuous at W(©. So, the mapping G is not continuous
at W

8 Application to the existence of solutions of nonlinear difference equations

Summable equations like (6) were studied by Salimi et al. [32], Agarwal et al. [33], and
Hussain et al. [34]. In this section, we search for a solution to (6) in (E(¢, £)),,, where set-
ups (f1) and (f2) are satisfied and v(f) = [Z}fo(lzizoﬂ)”] # for all f € E(¢,t). Consider

4]
the summable equations

fo=pe+ ) Alz,m)gm.f,), 6)

m=0

and let W: (E(¢,¢)), — (E(¢, t)), defined by

m=0

W (F.)zen = (pz + A, m)g(m,fm>> . ?)
zeN

Theorem 8.1 Summable equation (6) has a solution in (E(L, 1)), zfA N2 —R,g:N x
R — R, p: N — R, suppose that there is a number X\ such that sup; L% * € [0, ) and for all
l e N, we have

1
Z (Z A(Z, m)[g(m’fm) _g(mx rm)]) A{z

z=0 “meN

g

! )
+ Z (pz —r;+ ZA(Zlm)g(m’ I"m)) Aé‘z

z=0 m=0

! 00
> (pz —f+) Al m)g(m,fm)> AL

z=0 m=0

Proof Let the conditions be verified. Consider the mapping W : (E(¢, 1)), — (E(S, 1)),

defined by equation (7). We have

1

W - | Y eo(WE = Wr) AL\ ]"
oy - 3Bl |

1

|Zz Zme ( [‘gmfm g(m’rm)])Aé-A i "
) [IZ( : - 9] > }
=0

St

IA

i {i(@ olp: ~f: + Yo (;A(z,m>g(mfm AL ) }
l

T
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1
. 00 1 _ 00 AR
+Sllp)»ﬁl Z(lzz()(pz rz"‘ZmgA(Z:m)g(m:rm))Agzl)
l I

=0

= sup AT (U(WF —f) + v(Wr = 7).
i
Then, from Theorem 7.3, we have a solution of equation (6) in (E(¢, ), a

Example 8.2 Given the sequence space (& ((ZZ 0 "z‘ﬁ)lzo, (%)750))4» where

20+3

z+2 )
vif) = Z('ZZZ,“;Z) ,

=0 z=0 z+1

forallf e u((Zz 0 ;ﬁ) o (211:23) %)- Consider the nonlinear difference equations:

[

—(3z+6) z+m

+ 1 T 8
fi- m§0j< K (8)
with p, g,f-2,f1 > 0, and let W+ E((¥2 21 (350 = E((X EDy (5055 de-

fined by

Z £\
—(3z+6) +m z-2

W(f;é =0 = z + . ( 1)Z m Z_O. (9)

Clearly, there is a number A such that sup; )\%5_:2 €0, %), and for all / € N, we have

m m)Z+2
(D" =" ) 5

(e ,,+

2
z=0 \m=0 m+1

l —(3z+6) = +m fzp2 z+2
S LA 2D Y

2
o — 1+m +1/z+1

! (32+6) > ”, z+2
+)LZ e~ Z+ Z 1)z+m zZ—

L em?+l z+1/|

z=0 m=0

By Theorem 8.1, the nonlinear difference equation (8) has a solution in u((z “2)[:0,

f z=0 z+1
20+3
(1+_2)1=0)-
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