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Abstract
In this paper, we introduce a regularization method for solving the variational
inclusion problem of the sum of two monotone operators in real Hilbert spaces. We
suggest and analyze this method under some mild appropriate conditions imposed
on the parameters, which allow us to obtain a short proof of another strong
convergence theorem for this problem. We also apply our main result to the fixed
point problem of the nonexpansive variational inequality problem, the common fixed
point problem of nonexpansive strict pseudocontractions, the convex minimization
problem, and the split feasibility problem. Finally, we provide numerical experiments
to illustrate the convergence behavior and to show the effectiveness of the
sequences constructed by the inertial technique.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H . The variational in-
clusion problem is to find x∗ ∈ H such that

0 ∈ Ax∗ + Bx∗, (1.1)

where A : H → H is an operator, and B : D(B) ⊂ H → 2H is a set-valued operator.
If A = ∇F and B = ∂G, where ∇F is the gradient of F , and ∂G is the subdifferential of G

defined by

∂G(x) =
{

z ∈ H : 〈y – x, z〉 + G(x) ≤ G(y),∀y ∈ H
}

,

then problem (1.1) is reduced to the following convex minimization problem:

F
(
x∗) + G

(
x∗) = min

x∈H
F(x) + G(x) ⇔ 0 ∈ ∇F

(
x∗) + ∂G

(
x∗).
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If A = 0 and B = ∂G, then problem (1.1) is reduced to a proximal minimization problem,
and if A = ∇F and B = 0, then problem (1.1) is reduced to a constrained convex mini-
mization problem and also to a split feasibility problem. Some typical problems arising in
various branches of sciences, applied sciences, economics, and engineering, such as ma-
chine learning, image restoration, and signal recovery, can be viewed as problems of the
form (1.1).

To solve the variational inclusion problem (1.1) via fixed point theory, for r > 0, we define
the mapping Tr : H → D(B) as

Tr = (I + rB)–1(I – rA).

For x ∈ H , we see that

Trx = x ⇔ x = (I + rB)–1(x – rAx)

⇔ x – rAx ∈ x + rBx

⇔ 0 ∈ Ax + Bx,

which shows that the fixed point set of Tr coincides with the solution set of (A + B)–1(0).
This suggests the following iteration process: x0 ∈ C, and

xn+1 = (I + rnB)–1(xn – rnAxn) = Trn xn, n = 0, 1, 2, . . . ,

where {rn} ⊂ (0,∞) and D(B) ⊂ C. This method is called the forward–backward splitting
algorithm [1, 2]. In the literature, many methods have been suggested to solve the varia-
tional inclusion problem (1.1) for maximal monotone operators (see also, e.g., [3–11]).

Very recently, Cholamjiak et al. [12, 13] proved the following theorems in real Hilbert
spaces.

Theorem C1 Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : C → H be an α-inverse strongly monotone mapping, and let B be a maximal monotone
operator on H such that D(B) ⊂ C and (A + B)–1(0) is nonempty. Let f : C → C be a k-
contraction, and let Jrn = (I + rnB)–1. Let {zn} be a sequence in C of the following process:
z0 ∈ C, and

⎧
⎨

⎩
wn = αnf (zn) + (1 – αn)zn,

zn+1 = Jrn (wn – rnAwn + en), n = 0, 1, 2, . . . ,

where {αn} ⊂ (0, 1), {en} ⊂ H , and {rn} ⊂ (0, 2α). Suppose that the control sequences satisfy
the following restrictions:

(C1) limn→∞ αn = 0, and
∑∞

n=0 αn = ∞,
(C2) 0 < a ≤ rn ≤ b < 2α for some a, b > 0,
(C3)

∑∞
n=0 ‖en‖ < ∞, or limn→∞ ‖en‖

αn
= 0.

Then the sequence {zn} converges strongly to a point x̄ ∈ (A + B)–1(0), where x̄ =
P(A+B)–1(0)f (x̄).
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Theorem C2 Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A be an α-inverse strongly monotone mapping of H into itself, and let B be a maximal
monotone operator on H such that the domain of B is included in C. Let Jλ = (I + λB)–1

be the resolvent of B for λ > 0, let S be a nonexpansive mapping of C into itself such that
Fix(S)∩ (A + B)–1(0) �= ∅, and let f : C → C be a contraction. Let x0, x1 ∈ C, and let {xn} ⊂ C
be the sequence generated by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = βnxn + (1 – βn)S(αnf (xn) + (1 – αn)Jλn (yn – λnAyn)),

for all n ∈ N, where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1), {λn} ⊂ (0, 2α), and {θn} ⊂ [0, θ ] such that
θ ∈ [0, 1) satisfy

(C1) limn→∞ αn = 0, and
∑∞

n=1 αn = ∞,
(C2) lim infn→∞ βn(1 – βn) > 0,
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2α,
(C4) limn→∞ θn

αn
‖xn – xn–1‖ = 0.

Then the sequence {xn} converges strongly to a point x̄ ∈ Fix(S) ∩ (A + B)–1(0), where x̄ =
PFix(S)∩(A+B)–1(0)f (x̄).

In this paper, we modify the algorithms in Theorems C1 and C2 under the same as-
sumptions to solve the variational inclusion problem (1.1) as follows: let x0, x1 ∈ C, and
let {xn} ⊂ C be the sequence generated by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = S(αnf (xn) + (1 – αn)Jλn (yn – λnAyn + en)),

for all n ∈ N. We suggest and analyze this method under some mild appropriate condi-
tions imposed on the parameters, which allow us to obtain a short proof of another strong
convergence theorem for those problem.

We also apply our main result to the fixed point problem of nonexpansive variational
inequality problem, the common fixed point problem of nonexpansive strict pseudocon-
tractions, the convex minimization problem, and the split feasibility problem. Finally, we
provide numerical experiments to illustrate the convergence behavior and to show the
effectiveness of the sequences constructed by the inertial technique.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H . We use the notation:
→ denotes the strong convergence, ⇀ denotes the weak convergence,

ωw(xn) =
{

x : ∃{xnk } ⊂ {xn} such that xnk ⇀ x
}

denotes the weak limit set of {xn}, and Fix(T) = {x : x = Tx} is the fixed point set of the
mapping T .

Recall that the metric projection PC : H → C is defined as follows: for each x ∈ H , PCx
is the unique point in C satisfying

‖x – PCx‖ = inf
{‖x – y‖ : y ∈ C

}
.



Tianchai Journal of Inequalities and Applications        (2021) 2021:126 Page 4 of 23

The operator T : H → H is called:
(i) monotone if

〈x – y, Tx – Ty〉 ≥ 0, ∀x, y ∈ H ,

(ii) L-Lipschitzian with L > 0 if

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H ,

(iii) k-contraction if it is k-Lipschitzian with k ∈ (0, 1),
(iv) nonexpansive if it is 1-Lipschitzian,
(v) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ H ,

(vi) α-strongly monotone if

〈Tx – Ty, x – y〉 ≥ α‖x – y‖2, ∀x, y ∈ H ,

(vii) α-inverse strongly monotone if

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖2, ∀x, y ∈ H .

Let B be a mapping of H into 2H . The domain and the range of B are denoted by D(B) =
{x ∈ H : Bx �= ∅} and R(B) = ∪{Bx : x ∈ D(B)}, respectively. The inverse of B, denoted by
B–1, is defined by x ∈ B–1y if and only if y ∈ Bx. A multivalued mapping B is said to be
a monotone operator on H if 〈x – y, u – v〉 ≥ 0 for all x, y ∈ D(B), u ∈ Bx, and v ∈ By. A
monotone operator B on H is said to be maximal if its graph is not strictly contained in
the graph of any other monotone operator on H . For a maximal monotone operator B on
H and r > 0, we define the single-valued resolvent operator Jr : H → D(B) by Jr = (I + rB)–1.
It is well known that Jr is firmly nonexpansive and Fix(Jr) = B–1(0).

We collect together some known lemmas, which are the main tools in proving our result.

Lemma 2.1 Let H be a real Hilbert space. Then, for all x, y ∈ H ,
(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2,

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 2.2 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Then

(i) z = PCx ⇔ 〈x – z, z – y〉 ≥ 0,∀x ∈ H , y ∈ C,
(ii) z = PCx ⇔ ‖x – z‖2 ≤ ‖x – y‖2 – ‖y – z‖2,∀x ∈ H , y ∈ C,

(iii) ‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉,∀x, y ∈ H .

Lemma 2.3 ([15]) Let H be a real Hilbert space. For any x, y ∈ H and λ ∈R, we have

∥∥λx + (1 – λ)y
∥∥2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2.
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Lemma 2.4 ([16]) Let H and K be two real Hilbert spaces, and let T : K → K be a firmly
nonexpansive mapping such that ‖(I – T)x‖ is a convex function from K to R = [–∞, +∞].
Let A : H → K be a bounded linear operator and f (x) = 1

2‖(I – T)Ax‖2 for all x ∈ H . Then
(i) f is convex and differential,

(ii) ∇f (x) = A∗(I – T)Ax for all x ∈ H such that A∗ denotes the adjoint of A,
(iii) f is weakly lower semicontinuous on H , and
(iv) ∇f is ‖A‖2-Lipschitzian.

Lemma 2.5 ([16]) Let H be a real Hilbert space, and let T : H → H be an operator. The
following statements are equivalent:

(i) T is firmly nonexpansive,
(ii) ‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉,∀x, y ∈ H ,

(iii) I – T is firmly nonexpansive.

Lemma 2.6 ([17]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mapping A : C → H be an α-inverse strongly monotone, and let r > 0 be a constant.
Then we have

∥∥(I – rA)x – (I – rA)y
∥∥2 ≤ ‖x – y‖2 – r(2α – r)‖Ax – Ay‖2

for all x, y ∈ C. In particular, if 0 < r ≤ 2α, then I – rA is nonexpansive.

Lemma 2.7 ([18] (Demiclosedness principle)) Let C be a nonempty closed convex subset
of a real Hilbert space H , and let S : C → C be a nonexpansive mapping with Fix(S) �= ∅. If
the sequence {xn} ⊂ C converges weakly to x and the sequence {(I – S)xn} converges strongly
to y, then (I – S)x = y; in particular, if y = 0, then x ∈ Fix(S).

Lemma 2.8 ([19, 20]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let {Tn} and ϕ be two classes of nonexpansive mappings of C into itself such that

∅ �= Fix(ϕ) =
∞⋂

n=0

Fix(Tn).

Then, for any bounded sequence {zn} ⊂ C, we have:
(i) if limn→∞ ‖zn – Tnzn‖ = 0, then limn→∞ ‖zn – Tzn‖ = 0 for all T ∈ ϕ, which is called

the NST-condition (I),
(ii) if limn→∞ ‖zn+1 – Tnzn‖ = 0, then limn→∞ ‖zn – Tmzn‖ = 0 for all m ∈N∪ {0}, which

is called the NST-condition (II).

Lemma 2.9 ([21]) Let {an} and {cn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 – δn)an + bn + cn, n = 0, 1, 2, . . . ,

where {δn} is a sequence in (0, 1), and {bn} is a real sequence. Assume that
∑∞

n=0 cn < ∞.
Then we have:

(i) if bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence,
(ii) if

∑∞
n=0 δn = ∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an = 0.
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Lemma 2.10 ([22]) Let {sn} be a sequence of nonnegative real numbers such that

sn+1 ≤ (1 – γn)sn + γnδn, n = 0, 1, 2, . . . ,

and

sn+1 ≤ sn – ηn + ρn, n = 0, 1, 2, . . . ,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers, and
{δn}, {ρn} are real sequences such that

(i)
∑∞

n=0 γn = ∞,
(ii) limn→∞ ρn = 0,

(iii) if limk→∞ ηnk = 0, then lim supk→∞ δnk ≤ 0 for any subsequence {nk} of {n}.
Then limn→∞ sn = 0.

3 Main result
Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A be an α-inverse strongly monotone mapping of H into itself, and let B be a maximal
monotone operator on H such that the domain of B is included in C. Let Jλ = (I + λB)–1

be the resolvent of B for λ > 0, let S be a nonexpansive mapping of C into itself such that
� := Fix(S) ∩ (A + B)–1(0) �= ∅, and let f be a k-contraction mapping of C into itself. Let
x0, x1 ∈ C, and let {xn} ⊂ C be the sequence generated by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = S(αnf (xn) + (1 – αn)Jλn (yn – λnAyn + en)),

for all n ∈ N, where {αn} ⊂ (0, 1), {λn} ⊂ (0, 2α), {en} ⊂ H , and {θn} ⊂ [0, θ ] such that θ ∈
[0, 1) satisfy the following conditions:

(C1) limn→∞ αn = 0, and
∑∞

n=1 αn = ∞,
(C2) 0 < a ≤ λn ≤ b < 2α for some a, b > 0,
(C3) limn→∞ ‖en‖

αn
= 0,

(C4)
∑∞

n=1 ‖en‖ < ∞, and limn→∞ θn
αn

‖xn – xn–1‖ = 0.
Then the sequence {xn} converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

Proof Picking z ∈ Fix(S) ∩ (A + B)–1(0) and fixing n ∈ N, it follows that z = S(z) = Jλn (z –
λnAz). Let

wn = αnf (xn) + (1 – αn)Jλn (yn – λnAyn + en).

Firstly, we will show that {xn} and {yn} are bounded. Since

‖yn – z‖ =
∥∥xn + θn(xn – xn–1) – z

∥∥

≤ ‖xn – z‖ + θn‖xn – xn–1‖. (3.1)

Therefore by (3.1) and the nonexpansiveness of S, Jλn , and I – λnA in Lemma 2.6 we obtain

‖xn+1 – z‖ = ‖Swn – Sz‖ ≤ ‖wn – z‖
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≤ αn
∥∥f (xn) – z

∥∥ + (1 – αn)
∥∥Jλn (yn – λnAyn + en) – Jλn (z – λnAz)

∥∥

≤ αn
(∥∥f (xn) – f (z)

∥∥ +
∥∥f (z) – z

∥∥)

+ (1 – αn)
∥∥(yn – λnAyn + en) – (z – λnAz)

∥∥

≤ αn
(
k‖xn – z‖ +

∥∥f (z) – z
∥∥)

+ (1 – αn)
(‖yn – z‖ + ‖en‖

)

≤ αn
(
k‖xn – z‖ +

∥∥f (z) – z
∥∥)

+ (1 – αn)
(‖xn – z‖ + θn‖xn – xn–1‖ + ‖en‖

)

≤ (
1 – αn(1 – k)

)‖xn – z‖ + αn
∥∥f (z) – z

∥∥ + θn‖xn – xn–1‖ + ‖en‖
=

(
1 – αn(1 – k)

)‖xn – z‖

+ αn(1 – k)
(‖f (z) – z‖

1 – k
+

1
1 – k

θn

αn
‖xn – xn–1‖

)
+ ‖en‖.

So, by condition (C4), putting M = 1
1–k (‖f (z) – z‖ + supn∈N

θn
αn

‖xn – xn–1‖) ≥ 0 in Lem-
ma 2.9(i), we conclude that the sequence {‖xn – z‖} is bounded, that is, the sequence
{xn} is bounded, and so is {yn}. Moreover, by condition (C4),

∑∞
n=1 ‖en‖ < ∞ implies

limn→∞ ‖en‖ = 0, that is, limn→∞ en = 0. It follows that the sequence {en} is also bounded,
and so is {wn}.

Since PFix(S)∩(A+B)–1(0)f is a k-contraction on C, by Banach’s contraction principle there
exists a unique element x∗ ∈ C such that x∗ = PFix(S)∩(A+B)–1(0)f (x∗), that is, x∗ ∈ Fix(S) ∩
(A + B)–1(0). It follows that x∗ = S(x∗) = Jλn (x∗ – λnAx∗). Now we will show that xn → x∗ as
n → ∞. On the other hand, we have

∥∥yn – x∗∥∥2 =
〈
yn – x∗, yn – x∗〉

=
〈
xn + θn(xn – xn–1) – x∗, yn – x∗〉

=
〈
xn – x∗, yn – x∗〉 + θn

〈
xn – xn–1, yn – x∗〉

≤ ∥∥xn – x∗∥∥∥∥yn – x∗∥∥ + θn‖xn – xn–1‖
∥∥yn – x∗∥∥

≤ 1
2
(∥∥xn – x∗∥∥2 +

∥∥yn – x∗∥∥2) + θn‖xn – xn–1‖
∥∥yn – x∗∥∥.

This implies that

∥∥yn – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 + 2θn‖xn – xn–1‖
∥∥yn – x∗∥∥. (3.2)

Therefore by (3.2), Lemma 2.6, and the firm nonexpansiveness of Jλn we obtain

∥∥Jλn (yn – λnAyn + en) – x∗∥∥2

=
∥∥Jλn (yn – λnAyn + en) – Jλn

(
x∗ – λnAx∗)∥∥2

≤ ∥
∥(yn – λnAyn + en) –

(
x∗ – λnAx∗)∥∥2

–
∥∥(I – Jλn )(yn – λnAyn + en) – (I – Jλn )

(
x∗ – λnAx∗)∥∥2

≤ (∥∥(yn – λnAyn) –
(
x∗ – λnAx∗)∥∥ + ‖en‖

)2

–
∥∥(I – Jλn )(yn – λnAyn + en) – (I – Jλn )

(
x∗ – λnAx∗)∥∥2
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=
∥∥(I – λnA)yn – (I – λnA)x∗∥∥2 + 2

∥∥(yn – λnAyn) –
(
x∗ – λnAx∗)∥∥‖en‖

+ ‖en‖2 –
∥∥(I – Jλn )(yn – λnAyn + en) – (I – Jλn )

(
x∗ – λnAx∗)∥∥2

≤ ∥∥yn – x∗∥∥2 – λn(2α – λn)
∥∥Ayn – Ax∗∥∥2

+ 2
∥∥(yn – λnAyn) –

(
x∗ – λnAx∗)∥∥‖en‖ + ‖en‖2

–
∥∥(I – Jλn )(yn – λnAyn + en) – (I – Jλn )

(
x∗ – λnAx∗)∥∥2

≤ ∥∥xn – x∗∥∥2 + 2θn‖xn – xn–1‖
∥∥yn – x∗∥∥ – λn(2α – λn)

∥∥Ayn – Ax∗∥∥2

+ 2
∥∥(yn – λnAyn) –

(
x∗ – λnAx∗)∥∥‖en‖ + ‖en‖2

–
∥∥(I – Jλn )(yn – λnAyn + en) – (I – Jλn )

(
x∗ – λnAx∗)∥∥2. (3.3)

We also have

∥∥wn – x∗∥∥2

=
〈
wn – x∗, wn – x∗〉

=
〈
αnf (xn) + (1 – αn)Jλn (yn – λnAyn + en) – x∗, wn – x∗〉

=
〈
αn

(
f (xn) – x∗) + (1 – αn)

(
Jλn (yn – λnAyn + en) – x∗), wn – x∗〉

= αn
〈
f (xn) – f

(
x∗), wn – x∗〉 + αn

〈
f
(
x∗) – x∗, wn – x∗〉

+ (1 – αn)
〈
Jλn (yn – λnAyn + en) – x∗, wn – x∗〉

≤ αnk
∥∥xn – x∗∥∥∥∥wn – x∗∥∥ + αn

〈
f
(
x∗) – x∗, wn – x∗〉

+ (1 – αn)
∥∥Jλn (yn – λnAyn + en) – x∗∥∥∥∥wn – x∗∥∥

≤ 1
2
αnk

(∥∥xn – x∗∥∥2 +
∥∥wn – x∗∥∥2) + αn

〈
f
(
x∗) – x∗, wn – x∗〉

+
1
2

(1 – αn)
(∥∥Jλn (yn – λnAyn + en) – x∗∥∥2 +

∥∥wn – x∗∥∥2).

This implies that

∥∥wn – x∗∥∥2 ≤ αnk
1 + αn(1 – k)

∥∥xn – x∗∥∥2 +
2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, wn – x∗〉

+
1 – αn

1 + αn(1 – k)
∥∥Jλn (yn – λnAyn + en) – x∗∥∥2. (3.4)

Hence by (3.3), (3.4), and the nonexpansiveness of S we obtain

∥∥xn+1 – x∗∥∥2

=
∥∥Swn – Sx∗∥∥2 ≤ ∥∥wn – x∗∥∥2

≤ αnk
1 + αn(1 – k)

∥∥xn – x∗∥∥2 +
2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, wn – x∗〉

+
1 – αn

1 + αn(1 – k)
(∥∥xn – x∗∥∥2 + 2θn‖xn – xn–1‖

∥∥yn – x∗∥∥

– λn(2α – λn)
∥∥Ayn – Ax∗∥∥2 + 2

∥∥(yn – λnAyn) –
(
x∗ – λnAx∗)∥∥‖en‖
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+ ‖en‖2 –
∥∥(I – Jλn )(yn – λnAyn + en) – (I – Jλn )

(
x∗ – λnAx∗)∥∥2).

It follows that

∥∥xn+1 – x∗∥∥2

≤
(

1 –
αn(1 – k)

1 + αn(1 – k)

)∥∥xn – x∗∥∥2 +
αn(1 – k)

1 + αn(1 – k)

(
2

1 – k
〈
f
(
x∗) – x∗, wn – x∗〉

+
2(1 – αn)

1 – k
θn

αn
‖xn – xn–1‖

∥∥yn – x∗∥∥

+
2(1 – αn)

1 – k
‖en‖
αn

∥∥(yn – λnAyn) –
(
x∗ – λnAx∗)∥∥ +

1 – αn

1 – k
‖en‖
αn

‖en‖
)

and

∥∥xn+1 – x∗∥∥2

≤ ∥∥xn – x∗∥∥2 –
(
λn(2α – λn)

∥∥Ayn – Ax∗∥∥2

+
∥∥(I – Jλn )(yn – λnAyn + en) – (I – Jλn )

(
x∗ – λnAx∗)∥∥2)

+
(

2αn

1 + αn(1 – k)
∥∥f

(
x∗) – x∗∥∥∥∥wn – x∗∥∥ + 2αn

θn

αn
‖xn – xn–1‖

∥∥yn – x∗∥∥

+ 2
∥∥(yn – λnAyn) –

(
x∗ – λnAx∗)∥∥‖en‖ + ‖en‖2

)
,

which are of the forms

sn+1 ≤ (1 – γn)sn + γnδn

and

sn+1 ≤ sn – ηn + ρn,

respectively, where sn = ‖xn – x∗‖2,γn = αn(1–k)
1+αn(1–k) , δn = 2

1–k 〈f (x∗) – x∗, wn – x∗〉 +
2(1–αn)

1–k
θn
αn

‖xn – xn–1‖‖yn – x∗‖+ 2(1–αn)
1–k

‖en‖
αn

‖(yn –λnAyn) – (x∗ –λnAx∗)‖+ 1–αn
1–k

‖en‖
αn

‖en‖,ηn =
λn(2α – λn)‖Ayn – Ax∗‖2 + ‖(I – Jλn )(yn – λnAyn + en) – (I – Jλn )(x∗ – λnAx∗)‖2, and
ρn = 2αn

1+αn(1–k)‖f (x∗) – x∗‖‖wn – x∗‖ + 2αn
θn
αn

‖xn – xn–1‖‖yn – x∗‖ + 2‖(yn – λnAyn) – (x∗ –
λnAx∗)‖‖en‖ + ‖en‖2. Therefore, using conditions (C1) and (C4), we can check that all
those sequences satisfy conditions (i) and (ii) in Lemma 2.10. To complete the proof, we
verify that condition (iii) in Lemma 2.10 is satisfied. Let limi→∞ ηni = 0. Then by condition
(C2) we have

lim
i→∞

∥∥Ayni – Ax∗∥∥ = 0 (3.5)

and

lim
i→∞

∥∥(I – Jλni
)(yni – λni Ayni + eni ) – (I – Jλni

)
(
x∗ – λni Ax∗)∥∥ = 0.
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It follows by conditions (C2) and (C4) and by (3.5) that

lim
i→∞

∥∥(yni – λni Ayni + eni ) – Jλni
(yni – λni Ayni + eni )

–
((

x∗ – λni Ax∗) – Jλni

(
x∗ – λni Ax∗))∥∥ = 0,

lim
i→∞

∥∥yni – Jλni
(yni – λni Ayni )

∥∥ = 0. (3.6)

Consider a subsequence {xni} of {xn}. As {xn} is bounded, so is {xni}, and thus there exists
a subsequence {xnij

} of {xni} that weakly converges to x ∈ C. Without loss of generality, we
can assume that xni ⇀ x as i → ∞. On the other hand, by conditions (C1) and (C4) we
have

lim
i→∞‖yni – xni‖ = lim

i→∞αni

θni

αni

‖xni – xni–1‖ = 0. (3.7)

It follows that yni ⇀ x as i → ∞. Therefore by (3.6) and the demiclosedness at zero in
Lemma 2.7 we obtain x ∈ Fix(Jλni

(I – λni A)), that is, x ∈ (A + B)–1(0). Next, we will show
that x ∈ Fix(S). By the nonexpansiveness of S we have

‖xni+1 – Sxni‖ = ‖Swni – Sxni‖ ≤ ‖wni – xni‖
≤ ‖wni – yni‖ + ‖yni – xni‖
≤ αni

∥∥f (xni ) – yni

∥∥

+ (1 – αni )
∥∥Jλni

(yni – λni Ayni + eni ) – yni

∥∥ + ‖yni – xni‖.

It follows by (3.6), (3.7), and conditions (C1) and (C4) that

lim
i→∞‖xni+1 – Sxni‖ = 0.

Then by NST-condition (II) in Lemma 2.8(ii) we get

lim
i→∞‖xni – Sxni‖ = 0. (3.8)

Hence by (3.8) and the demiclosedness at zero in Lemma 2.7 again we obtain x ∈ Fix(S),
that is, x ∈ Fix(S) ∩ (A + B)–1(0). Since

‖wni – xni‖ ≤ αni

∥∥f (xni ) – xni

∥∥ + (1 – αni )
∥∥Jλni

(yni – λni Ayni + eni ) – xni

∥∥

≤ αni

∥∥f (xni ) – xni

∥∥ + (1 – αni )
(∥∥Jλni

(yni – λni Ayni + eni ) – yni

∥∥

+ ‖yni – xni‖
)
,

by (3.6) and (3.7) and conditions (C1) and (C4) we obtain

lim
i→∞‖wni – xni‖ = 0.
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This implies that wni ⇀ x as i → ∞. Therefore by Lemma 2.2(i) we obtain

lim sup
i→∞

〈
f
(
x∗) – x∗, wni – x∗〉 =

〈
f
(
x∗) – x∗, x – x∗〉 ≤ 0.

It follows by conditions (C1), (C3), and (C4) that lim supi→∞ δni ≤ 0. So by Lemma 2.10 we
conclude that xn → x∗ as n → ∞. This completes the proof. �

Remark 3.2 ([23]) We remark here that as, by condition (C4), limn→∞ θn
αn

‖xn – xn–1‖ = 0,
the theorem is easily implemented in numerical computation since the values of ‖xn –
xn–1‖ are known before choosing θn. Indeed, the parameter θn can be chosen as 0 ≤ θn ≤ θ̄n

such that

θ̄n =

⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖ , θ} if xn �= xn–1,

θ otherwise,

where {ωn} is a positive sequence such that ωn = o(αn).

4 Applications and numerical examples
In this section, we give some applications of our result to the fixed point problem of the
nonexpansive variational inequality problem, the common fixed point problem of nonex-
pansive strict pseudocontractions, the convex minimization problem, and the split feasi-
bility problem.

4.1 Fixed point problem of the nonexpansive variational inequality problem
The variational inequality problem is to find x∗ ∈ C such that

〈
Ax∗, y – x∗〉 ≥ 0, ∀y ∈ C. (4.1)

We denote the solution set of (4.1) by VI(C, A). It is well known that Fix(PC(I – rA)) =
VI(C, A) for all r > 0. Define the indicator function of C, denoted by iC , as iC(x) = 0 if x ∈ C
and iC(x) = ∞ if x /∈ C. We see that ∂iC is maximal monotone. So, for r > 0, we can define
Jr = (I + r∂iC)–1. Moreover, x = Jry if and only if x = PCy. Hence by Theorem 3.1 we obtain
the following result.

Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H . Let A be
an α-inverse strongly monotone mapping of H into itself, let S be a nonexpansive mapping
of C into itself such that � := Fix(S) ∩ VI(C, A) �= ∅, and let f be a k-contraction mapping
of C into itself. Let x0, x1 ∈ C, and let {xn} ⊂ C be a sequence generated by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = S(αnf (xn) + (1 – αn)PC(yn – λnAyn + en)),

for all n ∈ N, where {αn} ⊂ (0, 1), {λn} ⊂ (0, 2α), {en} ⊂ H , and {θn} ⊂ [0, θ ] such that θ ∈
[0, 1) satisfy the following conditions:

(C1) limn→∞ αn = 0, and
∑∞

n=1 αn = ∞,
(C2) 0 < a ≤ λn ≤ b < 2α for some a, b > 0,
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(C3) limn→∞ ‖en‖
αn

= 0,
(C4)

∑∞
n=1 ‖en‖ < ∞, and limn→∞ θn

αn
‖xn – xn–1‖ = 0.

Then the sequence {xn} converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

We next provide a formulation that will be used in our example and its numerical re-
sults.

Proposition 4.2 ([24, 25]) For ρ > 0 and C = {x ∈R
N : ‖x‖2 ≤ ρ}, we have

PCx =

⎧
⎨

⎩

ρx
‖x‖2

, x /∈ C,

x, x ∈ C.

Example 4.3 Let C = {a ∈ R
2 : ‖a‖2 ≤ 1}. Find a point x∗ ∈ C that satisfies the following

variational inequality:

–2‖x‖2 + 2xT y + (1, 1)(x – y) ≥ 0, ∀y ∈ C.

Let H = (R2,‖ · ‖2). For each x = (u1, u2)T , y = (v1, v2)T ∈R
2, we have

– 2‖x‖2 + 2xT y + (1, 1)(x – y)

= –2
(
u2

1 + u2
2
)

+ 2(u1v1 + u2v2) + (u1 – v1) + (u2 – v2)

= (v1 – u1)(2u1 – 1) + (v2 – u2)(2u2 – 1)

= (y – x)T Ax = 〈Ax, y – x〉,

where Ax = (2u1 – 1, 2u2 – 1)T for x = (u1, u2)T ∈ R
2. Note that A is α-inverse strongly

monotone with α = 1
2 and 1

L -Lipschitzian with L = 1
2 .

We set S(x) = PC(1 – u1, 1 – u2)T and f (x) = 3x
5 for x = (u1, u2)T ∈ C. Then S is nonexpan-

sive, and f is k-contraction such that k ∈ [ 3
5 , 1). For each n ∈ N, we choose αn = 10–6

n+1 , en =
1

(n+1)3 (1, 1)T , θ = 0.5, and ωn = 1
(n+1)3 , and we define θn = θ̄n as in Remark 3.2.

On the best of our result, we consider the type of the sequences {λn} as in Table 1 so
that it converges to L, and also constant sequences converge to the value near L and near
to its boundary values, to study the best choice types of the sequences {λn} for amount to
the least loops in recursive computing of the sequence {xn} using the algorithm in Theo-
rem 4.1.

We choose the initial points x0 = (–1, 0)T , x1 = (0, 1)T ∈ C (indeed, x0, x1 can be chosen
arbitrarily in H) for recursive computing of the sequence {xn} using the algorithm in The-
orem 4.1 with an error 10–6. As n → ∞, we obtain xn → x∗ such that an approximate of
x∗ is (0.5, 0.5)T as in Table 1, and we also show the benchmark for all choice types of the
sequences {λn} in recursive computing of the sequence {xn} as in Fig. 1, and we also show
convergence behavior of the error sequences {‖xn+1 – xn‖2}, which converge to zero in all
the best choice types of the sequences {λn} as in Fig. 2.

In this example, we found that the sequences {λn} in the C1 and C2 types are the best
choice types in recursive computing of the sequence {xn}.
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Table 1 Numerical results of Example 4.3 for the initial points x0 = (–1, 0)T and x1 = (0, 1)T using the
algorithm in Theorem 4.1

Type λn for L = α = 1/2 n CPU (s) x∗ ‖xn+1 – xn‖2
A1 L

10 272 0.078 (0.50000, 0.50000)T 9.92819× 10–7

A2 L – L
10 44 0.016 (0.49999, 0.49999)T 9.80129× 10–7

A3 L 45 0.015 (0.49999, 0.49999)T 9.90160× 10–7

A4 L + L
10 47 0.031 (0.49999, 0.49999)T 9.30295× 10–7

A5 2α – L
10 105 0.031 (0.49999, 0.49999)T 9.41142× 10–7

B1 Ln
n+1 45 0.015 (0.49999, 0.49999)T 9.60866× 10–7

B2 L(n+2)
n+1 46 0.015 (0.49999, 0.49999)T 9.35467× 10–7

C1 L + (–1)nL
n+1 34 0.016 (0.49998, 0.49998)T 9.09566× 10–7

C2 L + (–1)n+1L
n+1 35 0.016 (0.49998, 0.49998)T 8.13627× 10–7

Figure 1 Benchmark for all choice types of the sequences {λn} in Example 4.3

4.2 Common fixed point problem of nonexpansive strict pseudocontractions
A mapping T : C → C is called β-strictly pseudocontractive if there exists β ∈ [0, 1) such
that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + β
∥∥(I – T)x – (I – T)y

∥∥2

for all x, y ∈ C. It is well known that if T is β-strictly pseudocontractive, then I – T is 1–β

2 -
inverse strongly monotone. Moreover, by putting A = I – T we have Fix(T) = VI(C, A). So
by Theorem 4.1 we obtain the following result.

Theorem 4.4 Let C be a nonempty closed convex subset of a real Hilbert space H . Let T
be a β-strict pseudocontraction of H into itself, let S be a nonexpansive mapping of C into
itself such that � := Fix(S) ∩ Fix(T) �= ∅, and let f be a k-contraction mapping of C into
itself. Let x0, x1 ∈ C, and let {xn} ⊂ C be a sequence generated by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = S(αnf (xn) + (1 – αn)PC((1 – λn)yn + λnTyn + en)),
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Figure 2 Convergence behavior of the error sequences {‖xn+1 – xn‖2} for all the best choice types A2, B1,
and C1 in Example 4.3

for all n ∈ N, where {αn} ⊂ (0, 1), {λn} ⊂ (0, 1 – β), {en} ⊂ H , and {θn} ⊂ [0, θ ] such that
θ ∈ [0, 1) satisfy the following conditions:

(C1) limn→∞ αn = 0, and
∑∞

n=1 αn = ∞,
(C2) 0 < a ≤ λn ≤ b < 1 – β for some a, b > 0,
(C3) limn→∞ ‖en‖

αn
= 0,

(C4)
∑∞

n=1 ‖en‖ < ∞, and limn→∞ θn
αn

‖xn – xn–1‖ = 0.
Then the sequence {xn} converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

Example 4.5 Let C = {a ∈ R
3 : ‖a‖2 ≤ 2}. Find a common fixed point x∗ ∈ C of the map-

pings S and T defined as follows:

S(x) = PC(2 – u, 2 – v, 2 – w)T , ∀x = (u, v, w)T ∈ C,

T(x) = (4 – 3u, 4 – 3v, 4 – 3w)T , ∀x = (u, v, w)T ∈R
3.

Let H = (R3,‖ · ‖2). Note that T is β-strictly pseudocontractive with β = 1
2 , I – T is 1

L -
Lipschitzian with L = 1

4 , and S is nonexpansive. We set f (x) = 3x
5 for x ∈ C. For each n ∈N,

we choose αn = 10–6

n+1 , en = 1
(n+1)3 (1, 1, 1)T , θ = 0.5, and ωn = 1

(n+1)3 , and we define θn = θ̄n as
in Remark 3.2.

We choose the initial points x0 = (1, –1, –1)T , x1 = (–1, 0, 1)T ∈ C (indeed, x0, x1 can be
chosen arbitrarily in H) for recursive computing of the sequence {xn} using the algorithm
in Theorem 4.4 with an error 10–6 in the same of choice types of the sequences {λn} with
L = 1

4 . As n → ∞, we obtain xn → x∗ such that an approximate of x∗ is (1, 1, 1)T as in
Table 2, and we also show the benchmark for all choice types of the sequences {λn} in
recursive computing of the sequence {xn} as in Fig. 3, and we also show convergence be-
havior of the error sequences {‖xn+1 – xn‖2}, which converse to zero in all the best choices
types of the sequences {λn} as in Fig. 4.

In this example, we found that the sequences {λn} in the C1 and C2 types are the best
choice types in recursive computing of the sequence {xn}.



Tianchai Journal of Inequalities and Applications        (2021) 2021:126 Page 15 of 23

Table 2 Numerical results of Example 4.5 for the initial points x0 = (1, –1, –1)T and x1 = (–1, 0, 1)T

using the algorithm in Theorem 4.4

Type λn for L = 1/4,β = 1/2 n CPU (s) x∗ ‖xn+1 – xn‖2
A1 L

10 272 0.062 (1.00000, 1.00000, 1.00000)T 9.92684× 10–7

A2 L – L
10 47 0.016 (0.99999, 0.99999, 0.99999)T 9.24684× 10–7

A3 L 48 0.016 (0.99999, 0.99999, 0.99999)T 9.39145× 10–7

A4 L + L
10 49 0.015 (0.99999, 0.99999, 0.99999)T 9.65739× 10–7

A5 (1 – β) – L
10 108 0.031 (0.99999, 0.99999, 0.99999)T 9.04352× 10–7

B1 Ln
n+1 47 0.016 (0.99999, 0.99999, 0.99999)T 9.91872× 10–7

B2 L(n+2)
n+1 48 0.016 (0.99999, 0.99999, 0.99999)T 9.66642× 10–7

C1 L + (–1)nL
n+1 36 0.016 (0.99998, 0.99998, 0.99998)T 8.94335× 10–7

C2 L + (–1)n+1L
n+1 35 0.016 (0.99998, 0.99998, 0.99998)T 9.96769× 10–7

Figure 3 Benchmark for all choice types of the sequences {λn} in Example 4.5

4.3 Convex minimization problem
We next consider the following convex minimization problem (CMP): find x∗ ∈ H such
that

F
(
x∗) + G

(
x∗) = min

x∈H
F(x) + G(x) ⇔ 0 ∈ ∇F

(
x∗) + ∂G

(
x∗), (4.2)

where F : H → R is a convex differentiable function, and G : H → R is a convex func-
tion. It is well known that if ∇F is (1/L)-Lipschitz continuous, then it is L-inverse strongly
monotone [26]. Moreover, ∂G is maximal monotone [27]. Putting A = ∇F and B = ∂G, by
Theorem 3.1 we obtain the following result.

Theorem 4.6 Let H be a real Hilbert space. Let F : H → R be a convex differentiable
function with (1/L)-Lipschitz continuous gradient ∇F , and let G : H → R be a convex and
lower semicontinuous function. Let Jλ = (I + λ∂G)–1 be the resolvent of ∂G for λ > 0, let S be
a nonexpansive mapping of H into itself such that � := Fix(S) ∩ (∇F + ∂G)–1(0) �= ∅, and
let f be a k-contraction mapping of H into itself. Let x0, x1 ∈ H , and let {xn} ⊂ H be the
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Figure 4 Convergence behavior of the error sequences {‖xn+1 – xn‖2} for all the best choice types A2, B1,
and C2 in Example 4.5

sequence generated by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = S(αnf (xn) + (1 – αn)Jλn (yn – λn∇F(yn) + en)),

for all n ∈ N, where {αn} ⊂ (0, 1), {λn} ⊂ (0, 2L), {en} ⊂ H , and {θn} ⊂ [0, θ ] such that θ ∈
[0, 1) satisfy the following conditions:

(C1) limn→∞ αn = 0, and
∑∞

n=1 αn = ∞,
(C2) 0 < a ≤ λn ≤ b < 2L for some a, b > 0,
(C3) limn→∞ ‖en‖

αn
= 0,

(C4)
∑∞

n=1 ‖en‖ < ∞, and limn→∞ θn
αn

‖xn – xn–1‖ = 0.
Then the sequence {xn} converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

We next provide the formulation which will be used in our example and its numerical
results.

Proposition 4.7 ([28]) Let G : RN → R be given by G(x) = ‖x‖1 for x ∈ R
N . For r > 0 and

x = (x1, x2, . . . , xN )T ∈ R
N , we have (I + r∂G)–1(x) = y such that y = (y1, y2, . . . , yN )T ∈ R

N

where yi = sign(xi) max{|xi| – r, 0} for i = 1, 2, . . . , N .

Example 4.8 Find a point minimizing the following �1-least square problem:

min
x∈R3

‖x‖1 +
1
2
‖x‖2

2 + (–2, 1, –3)x + 3,

where x = (u, v, w)T ∈R
3.

Let H = (R3,‖ · ‖2), F(x) = 1
2‖x‖2

2 + (–2, 1, –3)x + 3, and G(x) = ‖x‖1 for all x ∈ R
3. Then

∇F(x) = (u – 2, v + 1, w – 3)T for all x ∈R
3. It follows that F is convex and differentiable on
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Table 3 Numerical results of Example 4.8 for the initial points x0 = (1, –2, –1)T and x1 = (–2, –1, 2)T

using the algorithm in Theorem 4.6

Type λn for L = 1 n CPU (s) x∗ ‖xn+1 – xn‖2
A1 L

10 272 0.109 (0.99999, –2.48737× 10–2335, 2.00000)T 9.92500× 10–7

A2 L – L
10 44 0.047 (0.99999, –1.47065× 10–351, 1.99999)T 9.79481× 10–7

A3 L 45 0.032 (0.99999,+6.39411× 10–360, 1.99999)T 9.89477× 10–7

A4 L + L
10 47 0.031 (0.99999,+1.13371× 10–376, 1.99999)T 9.29597× 10–7

A5 2L – L
10 123 0.063 (0.99999,+7.06031× 10–1032, 1.99999)T 8.86229× 10–7

B1 Ln
n+1 45 0.016 (0.99999,+2.30611× 10–353, 1.99999)T 9.60213× 10–7

B2 L(n+2)
n+1 46 0.046 (0.99999, –2.72090× 10–368, 1.99999)T 9.34783× 10–7

C1 L + (–1)nL
n+1 34 0.015 (0.99998,+2.17358× 10–255, 1.99998)T 9.10791× 10–7

C2 L + (–1)n+1L
n+1 35 0.016 (0.99998,+9.23665× 10–277, 1.99998)T 8.14783× 10–7

R
3 with L = 1 of 1

L -Lipschitz continuous gradient ∇F . Moreover, G is convex and lower
semicontinuous but not differentiable on R

3.
We set S(x) = (2 – u, –v, 4 – w)T and f (x) = x

5 for x ∈ R
3. Then S is nonexpansive, and f is

k-contraction with k ∈ [ 1
5 , 1). For each n ∈ N, we choose αn = 10–6

n+1 , en = 1
(n+1)3 (1, 1, 1)T , θ =

0.5, and ωn = 1
(n+1)3 , and we define θn = θ̄n as in Remark 3.2.

For each n ∈ N, by Proposition 4.7 we have

(I + λn∂G)–1(x)

=
(
sign(u) max

{|u| – λn, 0
}

, sign(v) max
{|v| – λn, 0

}
, sign(w) max

{|w| – λn, 0
})T .

We choose the initial points x0 = (1, –2, –1)T and x1 = (–2, –1, 2)T for recursive computing
of the sequence {xn} using the algorithm in Theorem 4.6 with an error 10–6 in the same
of choice types of the sequences {λn} with L = 1. As n → ∞, we obtain xn → x∗ such that
an approximate minimum of F + G is (1, 0, 2)T and its approximate minimum value is 0.5
as in Table 3, and we also show the benchmark for all choice types of the sequences {λn}
in recursive computing of the sequence {xn} as in Fig. 5, and we also show convergence
behavior of the error sequences {‖xn+1 –xn‖2}, which converge to zero in all the best choice
types of the sequences {λn} as in Fig. 6.

In this example, we found that the sequences {λn} in the C1 and C2 types are the best
choice types in recursive computing of the sequence {xn}.

4.4 Split feasibility problem
We next consider the following split feasibility problem (SFP), which was first introduced
by Cencer and Elfving [29]: find

x∗ ∈ C such that Ax∗ ∈ Q, (4.3)

where C and Q are two nonempty closed convex subsets of two real Hilbert spaces H and
K , respectively, and A : H → K is a bounded linear operator. Then problem (4.3) becomes
to find x∗ ∈ C in the following minimization problem:

F
(
x∗) = min

x∈C
F(x) :=

1
2
‖Ax – PQAx‖2 ⇔ 0 ∈ ∇F

(
x∗), (4.4)
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Figure 5 Benchmark for all choice types of the sequences {λn} in example 4.8

Figure 6 Convergence behavior of the error sequences {‖xn+1 – xn‖2} for all the best choice types A2, B1,
and C1 in Example 4.8

which is a particular case of the convex minimization problem (4.2) when G = 0. It is well
known from Lemma 2.4 that F is a convex differentiable function with ‖A‖2-Lipschitz
continuous gradient ∇F and weakly lower semicontinuous function on H , and ∇F(x) =
A∗(I – PQ)Ax for all x ∈ H , where A∗ denotes the adjoint of A. Putting F(x) = 1

2‖Ax –
PQAx‖2 for x ∈ H , ∂G = 0, and S = PC , by Theorem 4.6 we obtain the following result.

Theorem 4.9 Let C and Q are two nonempty closed convex subsets of two real Hilbert
spaces H and K , respectively. Let A : H → K be a bounded linear operator, and let f be a
k-contraction mapping of H into itself. Assume that the SFP (4.3) has a nonempty solution
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set �. Let x0, x1 ∈ H , and let {xn} ⊂ H be a sequence generated by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = PC(αnf (xn) + (1 – αn)(yn – λnA∗(I – PQ)Ayn + en)),

for all n ∈ N, where {αn} ⊂ (0, 1), {λn} ⊂ (0, 2
‖A‖2 ), {en} ⊂ H , and {θn} ⊂ [0, θ ] such that θ ∈

[0, 1) satisfy the following conditions:
(C1) limn→∞ αn = 0, and

∑∞
n=1 αn = ∞,

(C2) 0 < a ≤ λn ≤ b < 2
‖A‖2 for some a, b > 0,

(C3) limn→∞ ‖en‖
αn

= 0,
(C4)

∑∞
n=1 ‖en‖ < ∞, and limn→∞ θn

αn
‖xn – xn–1‖ = 0.

Then the sequence {xn} converges strongly to a point x∗ ∈ �, where x∗ = P� f (x∗), which is a
minimizer of the minimum-norm solution of the SFP (4.3).

Example 4.10 Let C = {a ∈ R
4 : ‖a‖2 ≤ 2}. Find some point x∗ ∈ C that satisfies the fol-

lowing system of linear equations:

x + y – 2z + w = 1,

x – y + 3z + w = 2,

x + y + z – 3w = 3,

where x, y, z, w ∈R.
Let H = (R4,‖ · ‖2) and K = (R3,‖ · ‖2). We set

A =

⎛

⎜
⎝

1 1 –2 1
1 –1 3 1
1 1 1 –3

⎞

⎟
⎠ ,

Q = {b : b = (1, 2, 3)T } and f (u) = u
5 for u ∈ R

4. For each n ∈ N, we choose αn = 10–6

n+1 , en =
1

(n+1)3 (1, 1, 1, 1)T , θ = 0.5, and ωn = 1
(n+1)3 , and we define θn = θ̄n as in Remark 3.2.

We choose the initial points x0 = (1, 1, 0, 2)T and x1 = (2, 1, 3, 0)T for recursive computing
of the sequence {xn} using the algorithm in Theorem 4.9 with an error 10–6 in the same
of choice types of the sequences {λn} with L = 1

‖A‖2 of 1
L -Lipschitz continuous gradient

∇F defined by (4.4) such that ‖A‖ is the square root of the maximum eigenvalue of AT A.
By Proposition 4.2, as n → ∞, we obtain xn → x∗ such that x∗ is our solution, and the
numerical results are listed in Table 4. We also show the benchmark for all choice types of
the sequences {λn} in recursive computing of the sequence {xn} as in Fig. 7, and we also
show convergence behavior of the error sequences {‖xn+1 – xn‖2}, which converge to zero
in all the best choice types of the sequences {λn} as in Fig. 8.

In this example, we found that the sequences {λn} in the A2, A3, A4, B1, B2, C1, and C2
types are the best choice types in recursive computing of the sequence {xn}.

Remark 4.11 A new iterative shrinkage thresholding algorithm (NISTA) with an error is
obtained in our main result, based on the forward–backward splitting method with an
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Table 4 Numerical results of Example 4.10 for the initial points x0 = (1, 1, 0, 2)T and x1 = (2, 1, 3, 0)T

using the algorithm in Theorem 4.9

Type λn for L = 1/‖A‖2 n CPU (s) x∗ ‖xn+1 – xn‖2
A1 L

10 386 0.062 (1.18574, 1.12842, 0.651375, –0.114802)T 9.98894× 10–7

Ax∗ = (0.99993, 1.99996, 2.99998)T ‖x∗‖2 = 1.76174
A2 L – L

10 125 0.031 (1.08648, 1.32706, 0.730823, 0.048118)T 9.87153× 10–7

Ax∗ = (1.00001, 2.00001, 3)T ‖x∗‖2 = 1.86492
A3 L 125 0.031 (1.08274, 1.33452, 0.733809, 0.050358)T 9.86456× 10–7

Ax∗ = (1.00001, 2, 3)T ‖x∗‖2 = 1.8693
A4 L + L

10 125 0.032 (1.08078, 1.33845, 0.735378, 0.0515346)T 9.85966× 10–7

Ax∗ = (1, 2, 3)T ‖x∗‖2 = 1.87162
A5 2L – L

10 272 0.063 (1.20335, 1.09329, 0.637318, –0.0220119)T 9.92596× 10–7

Ax∗ = (0.999999, 2, 3)T ‖x∗‖2 = 1.74643

B1 Ln
n+1 125 0.047 (1.13489, 1.23023, 0.692093, 0.0190705)T 9.87325× 10–7

Ax∗ = (1.00001, 2, 3)T ‖x∗‖2 = 1.8113
B2 L(n+2)

n+1 125 0.046 (1.09528, 1.30945, 0.723779, 0.0428354)T 9.86595× 10–7

Ax∗ = (1.00001, 2, 3)T ‖x∗‖2 = 1.85472

C1 L + (–1)nL
n+1 125 0.031 (1.13411, 1.23179, 0.692716, 0.0195383)T 9.86427× 10–7

Ax∗ = (1.00001, 2, 3)T ‖x∗‖2 = 1.81211

C2 L + (–1)n+1L
n+1 125 0.031 (1.07889, 1.34224, 0.736895, 0.0526719)T 9.87253× 10–7

Ax∗ = (1.00001, 2, 3)T ‖x∗‖2 = 1.87387

Figure 7 Benchmark for all choice types of the sequences {λn} in Example 4.10

error as follows: x1 ∈ C, and

xn+1 = (I + λnB)–1
︸ ︷︷ ︸
backward step

(
(I – λnA)xn + en

)

︸ ︷︷ ︸
forward step with an error

= JB
λn

(
(I – λnA)xn + en

)
, ∀n ∈N,

where {λn} ⊂ (0,∞), {en} ⊂ H , D(B) ⊂ C, and JB
λn = Jλn = (I + λnB)–1. It can be applied to

solve many kinds of problems in optimization. For the fast convergence of the sequence
{xn} to its solution using this method with an α-inverse A strongly monotone (or 1

L -
Lipschitzian with L = α), we choose the inertial parameter λn, which depends on L as
a momentum to controlled by the operator A in the forward step of algorithm using an
alternating sequence {λn} ⊂ (0, 2L) such that λn → L as n → ∞, which guarantees the fast
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Figure 8 Convergence behavior of the error sequences {‖xn+1 – xn‖2} for all the best choice types A4, B1 and
C1 in example 4.10

convergence of the sequence {xn} to its solution. For instance,

λn =

⎧
⎨

⎩
L + (–1)nL

n+1 or

L + (–1)n+1L
n+1 ,

n ∈N.

Furthermore, we can choose the parameter θn that controls the momentum of xn – xn–1

for the fast convergence of the sequence {xn} to its solution as follows:

θn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σn ∈ [0, 1) such that σn → 0 as n → ∞ if n ≤ N ,⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖ , θ} if xn �= xn–1,

θ otherwise,
otherwise,

∀n ∈N,

where N ∈N, θ ∈ [0, 1), and {ωn} is a positive sequence such that ωn = o(αn). For instance,
σn = 1

2n for all n ∈ N, which guarantees the fast convergence of the sequence {xn} to its
solution, except for complex problems (e.g., the image/signal recovery problems). In this
case, the parameter θn can be chosen as follows:

θn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σn = tn–1
tn+1

such that t1 = 1 and tn+1 = 1+
√

1+4t2
n

2 if n ≤ N ,⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖ , θ} if xn �= xn–1,

θ otherwise,
otherwise,

∀n ∈N,

where N ∈ N, θ ∈ [0, 1), σn ∈ [0, 1) are such that σn → 1 as n → ∞, and {ωn} is a positive
sequence such that ωn = o(αn).

5 Conclusion
We obtain the regularization method for solving the variational inclusion problem of the
sum of two monotone operators in real Hilbert spaces. Under some mild appropriate con-
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ditions on the parameters, we obtain a short proof of another strong convergence theorem
for this problem.
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