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Abstract
In this paper, we introduce the two-sided fractional quaternion Fourier transform
(FrQFT) and give some properties of it. The main results of this paper are divided into
three parts. Firstly we give a definition of the FrQFT. Secondly based on properties of
the two-sided QFT, we study the relationship between the two-sided QFT and the
two-sided FrQFT, and give some differential properties of the two-sided FrQFT and
the Parseval identity. Finally, we give an example to illustrate the application of the
two-sided FrQFT and its inverse transform in solving partial differential equations.
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1 Introduction
There are two aspects of the generalization of the classical Fourier transform: one is to the
high dimensional space, the other is to the fractional Fourier transform. The quaternion
Fourier transform (QFT) is one of the generalized forms of the classical Fourier transform
in high dimensional space and has been proved to be very useful in signal processing, non-
marginal color image processing, electromagnetism, multi-channel processing, quantum
mechanics, and partial differential systems. Many scholars have done a lot of research on
the QFT and got many excellent results. In recent years, some properties of the QFT and
the two-sided QFT have been studied [4–11].

In 2007, Hitzer [6] researched the QFT properties useful for applications to differen-
tial equations, image processing and optimized numerical implementations and studied
the general linear transformation behavior of the QFT with matrices. In 2010, Hitzer [7]
derived a directional uncertainty principle for quaternion-valued functions subject to the
QFT. In 2016, Hitzer [4] defined the FT on the quaternion domain and analyzed its main
properties, including quaternion dilation, modulation, shift properties and Parseval iden-
tities. In 2017, Haoui and Fahlaoui [2] presented the Heisenberg inequality and Hardy’s
theorem for the two-sided QFT. In [11], Yang et al. studied uncertainty principles of the
QFT under the polar coordinate form. In [1], Bahri proposed the uncertainty principle for
the two-sided QFT. That uncertainty principle described that the spread of a quaternion-
valued function and its two-sided QFT was inversely proportional.
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On the basis of the above work, we give some properties of the two-sided FrQFT and its
application. The structure of the article is as follows: in the second section, we introduce
the basic knowledge related to the quaternion Fourier analysis. In the third section, we
first give a definition of the two-sided FrQFT. Then based on the nature of the two-sided
QFT, we study the relationship between the two-sided QFT and the two-sided FrQFT. We
give some differential properties, shift properties of the two-sided FrQFT and Parseval
identity. Finally, we give an example to illustrate the application of the two-sided FrQFT
and its inverse transform in solving partial differential equations.

2 Preliminaries
Let R2 be a real linear space with basis {e1, e2}, the quaternion algebra H which is an asso-
ciative and noncommutative algebra structure spanned by

{1, e1, e2, e1e2}.

And basis elements satisfy the following multiplication laws:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2
i = –1, i = 1, 2;

e1e2 = –e2e1 = e12;

e12
2 = e12e12 = –1;

e2e12 = –e12e2 = e1;

e12e1 = –e1e12 = e2.

Every quaternion

q = q0 + q1e1 + q2e2 + q3e12 ∈H, q0, q1, q2, q3 ∈R,

has a quaternion conjugate q = q0 – q1e1 – q2e2 – q3e12, where (q)0 = q0.
For arbitrary p, q ∈H, pq = qp.
For quaternion-valued functions f , g : R2 → H, the quaternion-valued inner product is

defined by

(f , g) =
∫

R2
f (x)g(x) dx,

and the real scalar part is

〈f , g〉 =
1
2
[
(f , g) + (g, f )

]
=

∫

R2

(
f (x)g(x)

)

0 dx,

where dx = dx1 dx2.
In particular, when f = g , this leads to

‖f ‖2
L2(R2;H) = (f , f ) = 〈f , f 〉 =

∫

R2

∣
∣f (x)

∣
∣2 dx.
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Definition 2.1 ([12]) For any infinitely differentiable function f (x), if

∫ ∞

–∞
δ(x)f (x) dx = lim

ε→0+

∫ ∞

–∞
δε(x)f (x) dx,

we call the weak limit of δε(x) a δ function and denote limε→0+ δε(x) = δ(x), where

δε(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0;
1
ε
, 0 ≤ x ≤ ε;

0, x > ε.

Here are some properties of δ function as described below.

Lemma 2.1 ([12]) Suppose that limε→0+ δε(x) = δ(x), then
(1)

∫ ∞
–∞ δ(x) dx = 1;

(2) 1
2π

∫ ∞
–∞ ejwx dw = δ(x), 1

2π

∫ ∞
–∞ ejw(x–x0) dw = δ(x – x0);

(3)
∫ ∞

–∞ δ(x)f (x) dx = f (0),
∫ ∞

–∞ δ(x – x0)f (x) dx = f (x0).

Definition 2.2 We define

L1(
R

2;H
)

=
{

f : R2 →H

∣
∣
∣

∫

R2

∣
∣f (x)

∣
∣dx < ∞

}

,

L2(
R

2;H
)

=
{

f : R2 →H

∣
∣
∣

∫

R2

∣
∣f (x)

∣
∣2 dx < ∞

}

.

Next, we define the space

S
(
R

2;H
)

=
{

f ∈ C∞(
R

2;H
)∣
∣ sup

x∈R2

(
1 + |x|k)∣∣∂α f (x)

∣
∣ < ∞

}
,

where C∞(R2;H) is the set of all infinitely differentiable functions from R
2 to H, and α =

(α1,α2), α1,α2, k ∈ Z+.

For convenience, we divide f ∈H into two parts as follows.

Lemma 2.2 Let el ∈H, l = 1, 2. For any f ∈H, we define

f+el =
1
2

(f + elfel), f–el =
1
2

(f – elfel).

Then f = f+el + f–el , and f+el = f +el
, f–el = f –el

.

Lemma 2.3 ([3]) Let α ∈ R and el ∈ H with e2
l = –1. We have a natural generalization of

Euler’s formula in quaternion analysis as follows:

eelα = cosα + el sinα.

Theorem 2.1 Suppose el is as stated above, for any f ∈H, the following equation is always
true
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(1) ecel f+el = f+el e
–cel , ecel f–el = f–el e

cel .

(2)
√

1–el cot θi
2π

f+el = f+el

√
1+el cot θi

2π
,
√

1–el cot θi
2π

f–el = f–el

√
1–el cot θi

2π
,

where c ∈R, i = 1, 2.

Proof (1) According to Lemma 2.2, we have

ecel f+el = (cos c + el sin c)
1
2

(f + elfel)

=
1
2

(f + elfel) cos c +
1
2

el(f + elfel) sin c

=
1
2

(f + elfel) cos c +
1
2
(
elfel(–el) – fel

)
sin c

=
1
2

(f + elfel) cos c +
1
2

(elfel + f )(–el) sin c

=
f + elfel

2
(cos c – el sin c) = f+el e

–cel .

Similarly, we have ecel f–el = f–el e
cel .

(2) According to Lemma 2.2, we have

√
1 – el cot θi

2π
=

√
sin θi – el cos θi

2π sin θi
=

√
–el(el sin θi + cos θi)

2π sin θi

=

√

–eleelθi

2π sin θi
=

√

e– π
2 el eelθi

2π sin θi
=

√

e(– π
2 +θi)el

2π sin θi
.

The above equation as a function of θi is periodic with π .

When θi ∈ (0,π ),
√

e(– π
2 +θi)el

2π sin θi
= e

1
2 (– π

2 +θi)el√
2π sin θi

.
According to Eq. (1), we have

e 1
2 (– π

2 +θi)el√
2π sin θi

f+el = f+el

e 1
2 ( π

2 –θi)el√
2π sin θi

,

that is,

√
1 – el cot θi

2π
f+el = f+el

√
1 + el cot θi

2π
.

When θi ∈ (–π , 0),
√

e(– π
2 +θi)el

2π sin θi
= e

1
2 ( π

2 +θi)el√
–2π sin θi

.

So we have
√

1–el cot θi
2π

f+el = f+el

√
1+el cot θi

2π
.

The other cases are similar. �

Theorem 2.2 Let el ∈H, l = 1, 2. For any f1, f2 ∈H, we have

e–αel f1+f2+ = f1+f2+e–αel , e–αel f1–f2– = f1–f2–e–αel .

e–αel f1–f2+ = f1–f2+eαel , e–αel f1+f2– = f1+f2–eαel .
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Proof According to Lemma 2.2 and Theorem 2.1, we have

e–αel f1+f2+ = f1+eαel f2+ = f1+eαel
1
2

(f2 + elf2el)

= f1+eαel
1
2

(f2 + elf2el) = f1+eαel
1
2

(f2 + elf2el) = f1+f2+e–αel ,

where

eαel
1
2

(f2 + elf2el)

= (cosα + el sinα)
1
2

(f2 + elf2el)

=
1
2

(f2 + elf2el) cosα +
1
2
(
elf2 + e2

l f2el
)

sinα

=
1
2

(f2 + elf2el) cosα +
1
2
(
elf2

(
–e2

l
)

– f2el
)

sinα

=
1
2

(f2 + elf2el) cosα +
1
2

(elf2el + f2)(–el) sinα

=
1
2

(f2 + elf2el)(cosα – el sinα) = f2+e–αel .

Similarly, we have

e–αel f1–f2– = f1–f2–e–αel ,

e–αel f1–f2+ = f1–f2+eαel ,

e–αel f1+f2– = f1+f2–eαel . �

3 Some properties of the two-sided FrQFT
In this section we state some properties of the two-sided FrQFT. We first give a defini-
tion of the two-sided FrQFT and its inverse transformation. Then we get the relationship
between two-sided QFT and the two-sided FrQFT. Finally we study the properties of this
transformation, such as the shift property, differential properties of functions and their
image functions, and differential properties of kernel functions.

Definition 3.1 Suppose that the function f ∈ L1(R2;H). We define p = (p1, p2)-order two-
sided FrQFT as follows:

Fθ1,θ2{f }(w) =
∫

R2
Kθ1 (x1, w1)f (x)Kθ2 (x2, w2) dx, (3.1)

where

Kθ1 (x1, w1) = Cθ1 ee1
x2

1+w2
1

2 cot θ1–e1x1w1 csc θ1 , Cθ1 =
√

1 – e1 cot θ1

2π
,

Kθ2 (x2, w2) = Cθ2 ee2
x2

2+w2
2

2 cot θ2–e2x2w2 csc θ2 , Cθ2 =
√

1 – e2 cot θ2

2π
,

and θi 
= nπ , pi = 2θi
π

, i = 1, 2.
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Definition 3.2 Suppose that f ∈ L1(R2;H). We define the inverse transformation of the
two-sided FrQFT as follows:

Hθ1,θ2{f }(w) =
∫

R2
K–θ1 (x1, w1)f (x)K–θ2 (x2, w2) dx, (3.2)

where

K–θ1 (x1, w1) = C–θ1 e–e1
x2

1+w2
1

2 cot θ1+e1x1w1 csc θ1 , C–θ1 =
√

1 + e1 cot θ1

2π
,

K–θ2 (x2, w2) = C–θ2 e–e2
x2

2+w2
2

2 cot θ2+e2x2w2 csc θ2 , C–θ2 =
√

1 + e2 cot θ2

2π
,

where θi (i = 1, 2) are as mentioned above.

When p1 = p2 = 1, the two-sided FrQFT becomes the two-sided QFT.
We know that the two-sided QFT is defined as (see [1])

F{f }(w) =
∫

R2
e–e1x1w1 f (x)e–e2x2w2 dx. (3.3)

Its inverse transformation is defined as

F–1{f }(x) =
1

(2π )2

∫

R2
ee1x1w1 f (w)ee2x2w2 dw. (3.4)

The Plancherel identity is given by

(f1, f2) =
1

(2π )2

(
F{f1}(w),F{f2}(w)

)
. (3.5)

Theorem 3.1 The two-sided FrQFT and the two-sided QFT have the following relation-
ship:

Fθ1,θ2{f }(w)

= Cθ1 ee1
w2

1
2 cot θ1

∫

R2
ee1

x2
1
2 cot θ1–e1x1w1 csc θ1 f (x)ee2

x2
2
2 cot θ2–e2x2w2 csc θ2 dx

× (
Cθ2 ee2

w2
2

2 cot θ2
)

= Cθ1 ee1
w2

1
2 cot θ1F

{
ee1

x2
1
2 cot θ1 f (x)ee2

x2
2
2 cot θ2

}
(w csc θ )

(
Cθ2 ee2

w2
2

2 cot θ2
)
,

where w csc θ = (w1 csc θ1, w2 csc θ2).

Theorem 3.2 Let f ,Fθ1,θ2{f } ∈ L1(R2;H) and 0 < |θi| < π , i = 1, 2. Then

(Hθ1,θ2 ◦Fθ1,θ2 ){f } = (Fθ1,θ2 ◦Hθ1,θ2 ){f } = f .
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Proof According to the Fubini replacement theorem and Theorem 2.1, we have

(Hθ1,θ2 ◦Fθ1,θ2 ){f }(y)

= Hθ1,θ2

{
Fθ1,θ2{f }(w)

}
(y)

=
∫

R2
K–θ1 (y1, w1)

(∫

R2
Kθ1 (x1, w1)f (x)Kθ2 (x2, w2) dx

)

K–θ2 (w2, y2) dw

=
∫

R2

∫

R2
K–θ1 (y1, w1)Kθ1 (x1, w1)f (x)Kθ2 (x2, w2) dxK–θ2 (w2, y2) dw

=
∫

R2

∫

R2
Cθ1 C–θ1 ee1

x2
1–y2

1
2 cot θ1–e1(x1–y1)w1 csc θ1 f (x)

× Cθ2 C–θ2 ee2
x2

2–y2
2

2 cot θ2–e2(x2–y2)w2 csc θ2 dx dw

=
(

1
2π

)2 1
| sin θ1 sin θ2|

∫

R2
ee1

–y2
1

2 cot θ1 ee1y1w1 csc θ1

∫

R2
e–e1x1w1 csc θ1 ee1

x2
1
2 cot θ1

× f (x)e–e2x2w2 csc θ2 ee2
x2

2
2 cot θ2 dxee2

–y2
2

2 cot θ2 ee2y2w2 csc θ2 dw.

Let wi csc θi = ti, then wi = ti
sin θi

, i = 1, 2. According to (3.3) and (3.4), we have

(Hθ1,θ2 ◦Fθ1,θ2 ){f }(y)

= ee1
–y2

1
2 cot θ1

(
1

2π

)2 ∫

R2
ee1y1t1

∫

R2
e–e1t1x1 ee1

x2
1
2 cot θ1 f (x)ee2

x2
2
2 cot θ2 e–e2t2x2

× dxee2y2t2 dtee2
–y2

2
2 cot θ2

= ee1
–y2

1
2 cot θ1F–1(F

{
ee1

y2
1
2 cot θ1 f (y)ee2

y2
2
2 cot θ2

})
ee2

–y2
2

2 cot θ2

= f (y).

Similarly we have (Fθ1,θ2 ◦Hθ1,θ2 ){f } = f . It means that Fθ1,θ2{f }(w) and Hθ1,θ2{f }(w) are
inverse transformations of each other. �

Next, we give some important properties of the two-sided FrQFT; we begin with the
shift property.

Theorem 3.3 Let f ∈ L1(R2;H) and t = (t1, t2), the following property holds

Fθ1,θ2

{
f (x – t)

}
(w)

= ee1
t2
1
2 cot θ1–e1t1w1 csc θ1Fθ1,θ2

{
ee1y1t1 cot θ1 f (y)ee2y2t2 cot θ2

}
(w)

× ee2
t2
2
2 cot θ2–e2t2w2 csc θ2 .

Proof

Fθ1,θ2

{
f (x – t)

}
(w)

=
∫

R2
Kθ1 (x1, w1)f (x – t)Kθ2 (x2, w2) dx
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=
∫

R2
Cθ1 ee1

x2
1+w2

1
2 cot θ1–e1x1w1 csc θ1 f (x – t)

× Cθ2 ee2
x2

2+w2
2

2 cot θ2–e2x2w2 csc θ2 dx.

Let xi – ti = yi, i = 1, 2, we have

Fθ1,θ2

{
f (x – t)

}
(w)

=
∫

R2
Cθ1 ee1

(y1+t1)2+w2
1

2 cot θ1–e1(y1+t1)w1 csc θ1 f (y)

× Cθ2 ee2
(y2+t2)2+w2

2
2 cot θ2–e2(y2+t2)w2 csc θ2 dy

= ee1
t2
1
2 cot θ1–e1t1w1 csc θ1

∫

R2
Cθ1 ee1

y2
1+w2

1
2 cot θ1–e1y1w1 csc θ1 ee1y1t1 cot θ1 f (y)

× Cθ2 ee2
y2
2+w2

2
2 cot θ2–e2y2w2 csc θ2 ee2y2t2 cot θ2 dyee2

t2
2
2 cot θ2–e2t2w2 csc θ2

= ee1
t2
1
2 cot θ1–e1t1w1 csc θ1Fθ1,θ2

{
ee1y1t1 cot θ1 f (y)ee2y2t2 cot θ2

}
(w)

× ee2
t2
2
2 cot θ2–e2t2w2 csc θ2 . �

In the following theorem we give the differential properties of the two-sided FrQFT.
These conclusions are similar in nature to those of the classical FT, although they have
different forms.

Theorem 3.4 Let f ∈ S(R2;H), then, for each component xs and ws with s = 1, 2, the fol-
lowing relation is fulfilled:

Fθ1,...,θn

{
∂f
∂xs

}

(w)

=

⎧
⎨

⎩

–e1 cot θ1Fθ1,θ2{x1f }(w) + e1w1 csc θ1Fθ1,θ2{f }(w), s = 1;

– cot θ2Fθ1,θ2{x2f }(w)e2 + w2 csc θ2Fθ1,θ2{f }(w)e2, s = 2.

Proof When s = 1, using integration by parts we have

Fθ1,θ2

{
∂f
∂x1

}

(w)

=
∫

R2
Cθ1 ee1

x2
1+w2

1
2 cot θ1–e1x1w1 csc θ1

∂f (x)
∂x1

Cθ2 ee2
x2

2+w2
2

2 cot θ2–e2x2w2 csc θ2 dx

=
∫

R

∫

R

(

Cθ1 ee1
x2

1+w2
1

2 cot θ1–e1x1w1 csc θ1
∂f (x)
∂x1

dx1

)

Cθ2

× ee2
x2

2+w2
2

2 cot θ2–e2x2w2 csc θ2 dx2

=
∫

R

(

Cθ1 ee1
x2

1+w2
1

2 cot θ1–e1x1w1 csc θ1 f (x)|x1=+∞
x1=–∞

–
∫

R

∂

∂x1

(
Cθi e

e1
x2

1+w2
1

2 cot θ1–e1x1w1 csc θ1
)
f (x) dx1

)



Li et al. Journal of Inequalities and Applications        (2021) 2021:121 Page 9 of 15

× ee2
x2

2+w2
2

2 cot θ2–e2x2w2 csc θ2 dx2

= –
∫

R2

∂

∂x1

(
Cθ1 ee1

x2
1+w2

1
2 cot θ1–e1x1w1 csc θ1

)
f (x)

× ee2
x2

2+w2
2

2 cot θ2–e2x2w2 csc θ2 dx

= –e1 cot θ1Fθ1,θ2{x1f }(w) + e1w1 csc θ1Fθ1,θ2{f }(w).

Using a similar calculation, the conclusion is valid when s = 2. �

Theorem 3.4 describes the relationship between the two-sided FrQFT of the derivative
of a function f and the two-sided FrQFT of the function f itself.

Theorem 3.5 Suppose that f ∈ S(R2;H). Then we have

∂Fθ1,θ2{f }(w)
∂ws

=

⎧
⎨

⎩

e1[ws cot θsFθ1,θ2{f }(w) – csc θsFθ1,θ2{xsf }(w)], s = 1;

[ws cot θsFθ1,θ2{f }(w) – csc θsFθ1,θ2{xsf }(w)]e2, s = 2,

or

Fθ1,θ2

{
xsf (x)

}
(w) =

⎧
⎨

⎩

(–e1
∂

∂w1
sin θ1 + w1 cos θ1)Fθ1,θ2{f (x)}(w), s = 1;

(– ∂
∂w2

sin θ2e2 + ws cos θ2)Fθ1,θ2{f (x)}(w), s = 2.

Proof The proof is similar to that of Theorem 3.4, so the proof is not given here. �

Theorem 3.5 describes the relationship between the derivative of the two-sided FrQFT
of a function f and the two-sided FrQFT of the function f itself.

Some important differential properties of kernel functions Kθ1 (x1, w1) and Kθ2 (x2, w2)
are stated in the following theorems.

Theorem 3.6 Suppose that f ∈ S(R2;H),

�x1 =
∂

∂x1
– e1x1 cot θ1,

�x2 =
∂

∂x2
– x2 cot θ2e2.

Then

�m
x1 Kθ1 (x1, w1) = em

1 (–w1 csc θ1)mKθ1 (x1, w1),

�m
x2 Kθ2 (x2, w2) = (–w2 csc θ2)mKθ2 (x2, w2)em

2 .

Proof By simple calculation, we have

�x1 Kθ1 (x1, w1)

= (e1x1 cot θ1 – e1w1 csc θ1 – e1x1 cot θ1)Kθ1 (x1, w1)

= –e1w1 csc θ1Kθ1 (x1, w1).
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Then, by induction, assuming

�m–1
x1 Kθ1 (x1, w1) = (–e1w1 csc θ1)m–1Kθ1 (x1, w1)

is true, then

�m
x1 Kθ1 (x1, w1)

= �x1

(�m–1
x1 Kθ1 (x1, w1)

)

= �x1

(
(–e1w1 csc θ1)m–1Kθ1 (x1, w1)

)

= (–e1w1 csc θ1)m–1�x1 Kθ1 (x1, w1)

= (–e1w1 csc θ1)mKθ1 (x1, w1)

= em
1 (–w1 csc θ1)mKθ1 (x1, w1).

Using a similar calculation, we can prove that the other equation is valid. �

Theorem 3.7 Let f ∈ L1(R2;H), for any m1, m2 ∈ Z+, we have

�m1
x1 �m2

x2

(
Kθ1 (x1, w1)Kθ2 (x2, w2)

)

= (–w1 csc θ1)m1 em1
1 Kθ1 (x1, w1)Kθ2 (x2, w2)(–w2 csc θ2)m2 em2

2 .

Theorem 3.8 Let f ∈ L1(R2;H),

�x1 =
∂

∂x1
+ e1x1 cot θ1,

�x2 =
∂

∂x2
+ x2 cot θ2e2.

Then

Fθ1,θ2

{�m
x1 f

}
(w) = em

1 (w1 csc θ1)mFθ1,θ1{f }(w),

Fθ1,θ2

{�m
x2 f

}
(w) = (w2 csc θ2)mFθ1,θ2{f }(w)em

2 .

Proof Using integration by parts we get

Fθ1,θ2

{�x1 f (x)
}

(w)

=
∫

R2
Kθ1 (x1, w1)

∂f (x)
∂x1

Kθ2 (x2, w2) dx

+
∫

R2
e1x1 cot θ1Kθ1 (x1, w1)f (x)Kθ2 (x2, w2) dx

=
∫

R

(

Kθ1 (x1, w1)f (x)|x1→∞
x1→–∞ –

∂Kθ1 (x1, w1)
∂x1

f (x) dx1

)

Kθ2 (x2, w2) dx2

+ e1x1 cot θ1Fθ1,θ2{f }(w)
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= (e1w1 csc θ1 – e1x1 cot θ1)Fθ1,θ2{f }(w) + e1x1 cot θ1Fθ1,θ2{f }(w)

= e1w1 csc θ1Fθ1,θ2{f }(w).

Then, by induction, assuming

Fθ1,θ2

{�(m–1)
x1 f

}
(w) = (e1w1 csc θ1)m–1Fθ1,θ2{f }(w)

is true, then

Fθ1,θ2

{�m
x1 f

}
(w) = Fθ1,θ2

{�(m–1)
x1 (�x1 )f

}
(w)

= (e1w1 csc θ1)m–1Fθ1,θ2{�x1 f }(w)

= (e1w1 csc θ1)mFθ1,θ2{f }(w).

Using a similar calculation, we can prove that the other equation is valid. �

Lemma 3.1 Suppose that f ∈ S(R2;H), �m1,m2
x = �m1

x1 �m2
x2 . Then, for any positive integers

m1, m2, we have

Fθ1,θ2

{�m1,m2
x f

}
(w) = (w1 csc θ1)m1 (w2 csc θ2)m2 em1

1 Fθ1,θ2{f }(w)em2
2 . (3.6)

Lemma 3.1 describes the relationship between the two-sided FrQFT of the derivative of
a function f and the two-sided FrQFT of the function itself.

Lemma 3.2 describes the relationship between the derivative of the two-sided FrQFT of
a function f and the two-sided FrQFT of (–e1x1 csc θ1)m1 f and (–x1 csc θ1)m2 fem2

2 .

Lemma 3.2 Suppose that f ∈ S(R2;H),

�w1 =
∂

∂w1
– e1w1 cot θ1,

�w2 =
∂

∂w2
– w2 cot θ2e2.

Then, for any positive integers m1, m2, we have

�wiFθ1,θ2{f }(w) =

⎧
⎨

⎩

Fθ1,θ2{(–e1x1 csc θ1)m1 f }(w), i = 1;

Fθ1,θ2{(–x2 csc θ2)m2 fem2
2 }(w), i = 2.

Lemma 3.3 Suppose that f ∈ S(R2;H) and �m1,m2
w = �m1

w1 �m2
w2 . Then, for any positive inte-

gers m1, m2, we have

�m1,m2
w Fθ1,θ2{f }(w) = Fθ1,θ2

{
(–x1 csc θ1)m1 (–x2 csc θ2)m2 em1

1 fem2
2

}
(w).

We will give the properties of inner and scalar products.

Theorem 3.9 Suppose that f1, f2 ∈ L2(R2;H), f1+f2– + f1–f2+ = 0. Then we have

(
Fθ1,θ2{f1},Fθ1,θ2{f2}

)
= (f1, f2).
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Proof By the definition of the inner product and the definition of the two-sided FrQFT,
we get

(
Fθ1,θ2{f1}(w),Fθ1,θ2{f2}(w)

)

=
∫

R2

(
Fθ1,θ2{f1}(w)Fθ1,θ2{f2}(w)

)
dw

=
∫

R2

(∫

R2
Kθ1 (x1, w1)f (x)Kθ2 (x2, w2) dx

×
∫

R2
Kθ1 (x1, w1)f (y)Kθ2 (x2, w2) dy

)

dw

=
∫

R2

(∫

R2
Cθ1 ee1

x2
1+w2

1
2 cot θ1–e1x1w1 csc θ1 f1(x)ee2

x2
2+w2

2
2 cot θ2 Cθ2 ee2

w2
2

2 cot θ2 dx

×
∫

R2
Cθ1 ee1

x2
1+w2

1
2 cot θ1–e1x1w1 csc θ1 f1(x)ee2

x2
2+w2

2
2 cot θ2Cθ2 ee2

w2
2

2 cot θ2 dy
)

dw

=
∫

R2

∫

R2

∫

R2
Cθ1 ee1

x2
1+w2

1
2 cot θ1–e1x1w1 csc θ1 f1(x)

× Cθ2 C–θ2 ee2
x2

2+w2
2

2 cot θ2–e2x2w2 csc θ2 e–e2
y2
2+w2

2
2 cot θ2+e2y2w2 csc θ2

× f2(y)C–θ1 e–e1
y2
1+w2

1
2 cot θ1+e1y1w1 csc θ1 dx dy dw;

note that Cθ2 C–θ2 = csc θ2
2π

,

∫

R

Cθ2 C–θ2 ee2(y2–x2)w2 csc θ2 dw2 = δ(y2 – x2),

then using the properties of δ, we have

∫

R

Cθ2 C–θ2δ(y2 – x2)ee2
x2

2–y2
2

2 f2(y) dy2 = f2(y1, x2).

So

(
Fθ1,θ2{f1}(w),Fθ1,θ2{f2}(w)

)

=
∫

R2

∫

R

∫

R

Cθ1 ee1
x2

1+w2
1

2 cot θ1–e1x1w1 csc θ1 f1(x)f2(y1, x2)

× C–θ1 e–e1
y2
1+w2

1
2 cot θ1+e1y1w1 csc θ1 dx dy1dw1.

Now, let us write f1f2 = f1+f2+ + f1–f2– + f1+f2– + f1–f2+.
Using the definition and properties of the function δ and the well-known conditions

f1+f2– + f1–f2+ = 0, then, by Theorem 2.2, we get

(
Fθ1,θ2 f1(w),Fθ1,θ2{f2}(w)

)
=

∫

R2
f1(y)f2(y) dy

= (f1, f2). �



Li et al. Journal of Inequalities and Applications        (2021) 2021:121 Page 13 of 15

In particular, when f1 = f2 = f , by Theorem 3.9, we immediately arrive at the following
conclusion. Of course, the following equality can also be proved to be true by the definition
of the norm.

Theorem 3.10 (Parseval identity) Suppose that f ∈ L2(R2;H). Then we have

‖f ‖2
L2(R2;H) =

∥
∥Fθ1,θ2{f }

∥
∥2

L2(R2;H). (3.7)

Proof Using the definition of the norm

∥
∥Fθ1,θ2{f }

∥
∥2

L2(R2;H)

=
∫

R2

∣
∣Kθ1 (x1, w1)f (x)Kθ2 (x2, w2)

∣
∣2 dx

=
∫

R2

∣
∣f (x)

∣
∣2 dx

= ‖f ‖2
L2(R2;H). �

From this conclusion, we can see that the two-sided FrQFT has norm-preserving prop-
erties.

4 The application of the two-sided fractional QFT
Next, we give an application of differential properties of the two-sided FrQFT in solving
partial differential equations.

Example. Find solutions to the following partial differential equations.

(
∂

∂x1
+ e1x1 cot θ1

)4

y(x)
(

∂

∂x2
+ e2x2 cot θ2

)5

e2
5 – y(x) = f (x), (4.1)

where f (x) is a known quaternion-valued function and y(x) is an unknown quaternion-
valued function.

Solution. Using differential properties of the two-sided FrQFT, we take the two-sided
FrQFT at both sides of differential equation (4.1). Then, by Theorem 3.4, we have

(e1w1 csc θ1)4Fθ1,θ2

{
y(x)

}
(w)(e2w2 csc θ2)5e2

5 – Fθ1,θ2

{
y(x)

}
(w)

= Fθ1,θ2

{
f (x)

}
(w).

Then

[
(w1 csc θ1)4(w2 csc θ2)5 – 1

]
Fθ1,θ2

{
y(x)

}
(w) = Fθ1,θ2

{
f (x)

}
(w).

That is,

Fθ1,θ2

{
y(x)

}
(w) =

Fθ1θ2{f (x)}(w)
(w1 csc θ1)4(w2 csc θ2)5 – 1

.
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According to the Fourier inverse transform of the two-sided FrQFT, we can get

y(x)

= F–1
θ1,θ2

{ Fθ1,θ2{y(x)}(w)
(w1 csc θ1)4(w2 csc θ2)5 – 1

}

=
∫

R2
K–θ1 (x1, w1)

Fθ1,θ2{y(x)}(w)
(w1 csc θ1)4(w2 csc θ2)5 – 1

K–θ2 (x2, w2) dx

=
∫

R2
A(w)Fθ1,θ2

{
y(x)

}
(w)K–θ2 (x2, w2) dx,

where A(w) = K–θ1 (x1,w1)
(w1 csc θ1)4(w2 csc θ2)5–1 .

5 Conclusion
Using the basic concepts of quaternion algebra we introduced a two-sided FrQFT. Im-
portant properties of the two-sided FrQFT such as shift, differential properties, Parseval
identities were demonstrated.

But so far there are still some problems to be studied. Firstly, we mention the relation-
ship between the integral expression of the two-sided FrQFT of f when θi = nπ and that
when θi 
= nπ . Secondly, we mention that applications of the two-sided FrQFT in signal
processing, non-marginal color image processing and electromagnetism etc. are not given.
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