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1 Introduction
During the last several decades, the p-adic analysis has cemented its role in the field of
mathematical physics (see, for example, 1, 22, 32, 33]). That stimulates researchers to pay
attention to harmonic analysis on p-adic fields [18-21, 24, 30, 31, 35], which has direct
implications in the stochastic process [2, 3], theoretical biology [6], and p-adic pseudo-
differential equations [23, 34]. In continuation of the ongoing research, the present paper
considers an extension of the investigation of p-adic Hardy-type operators discussed in
[19-21, 25, 36, 37].

For every non-zero rational number x there isa unique y = y (x) € Z such thatx = p” m/n,
where p > 2 is a fixed prime number which is coprime to m, n € Z. We define a mapping

|1, : Q — R, as follows:

p? ifx#0,
|x|p = (1-1)
0 ifx=0.
The p-adic absolute value | - |, has many properties of the usual real norm | - | with an

additional non-Archimedean property,

%+ y1, < max{|xl,, |yl,}-

The field of p-adic numbers, denoted by Q,, is the completion of rational numbers with
respect to the p-adic absolute value | - |,. A p-adic number x € Q, can be written in the
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formal power series as [34]:

x=p"(Bo+Pip+pop’ +--), (1.2)

where y € Z and 8; € {0,1,...,p—1},i=0,1,2,.... The p-adic absolute value ensures the
convergence of series (1.2) in Q,, because the inequality [p” Bir' lp < p~77* holds for all
y €ZandieN.

The n-dimensional vector space Q”, n > 1, consists of the vectors x = (x1,%2,...,%,),
where x; € Q, and j = 1,2,..., n, with the following absolute value:

x|, = max. k|- (1.3)
For y € Zand a=(ay,ay,...,a,) € Q%, we denote by
By(a) = {x e Q): [x~al, <p"}
the closed ball with the center a and radius p? and by
Sy(a)={xeQy: [x-al,=p"}

the corresponding sphere. For a = 0, we write B, (0) = B,, and S,,(0) = §,. It is easy to see
that the equalities

ao+B, =B,(ap) and ag+S, =S,(ag) =B, (ag) \ B,_1(ag)

hold for all ag € Qj and y € Z.
Since Q) is a locally compact commutative group under addition, there exists a unique
Haar measure dx on Q, such that

dx = |Boln =1,
By

where |B|; denotes the Haar measure of measurable subset B of QZ. Furthermore, a simple
calculation shows that

|By (a)|h =p" and |Sy (a)|h =p"”(1-p™)

hold for alla € Q) and y € Z.
The one-dimensional Hardy operator

M) = / Fo)dy, x>0,

where f: R* — R* is a measurable functions, was introduced by Hardy in [13]. This op-
erator satisfies the inequality:
q

1 Hf lawey < ﬁl[fHLq(Rm l<g<oo, (1.4)
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where the constant ¢/(g — 1) is sharp. In [7], Faris proposed an extension of the operator
‘H on higher dimensional Euclidean space R” which is given by

Hf (x) fy)dy, (1.5)

Ix1" Jyy <

for x = (x1,...,%,). In addition, Christ and Grafakos [4] obtained the exact value of the
norm of operator H defined by (1.5). For boundedness results for these operators on func-
tion spaces we refer to some recent publications including [8, 10, 16, 17, 28, 29, 38].

On the other hand, the n-dimensional fractional p-adic Hardy operator

HEF(x) = — /| s
Yip=Xlp

= n-o
Ix

was defined and studied for f € LIIOC(QZ) and 0 < « < 7 in [36]. When « = 0, the operator
HY transfers to the p-adic Hardy-type operator (see [10] for more details). Fu et al. in
[9], fixed the optimal bounds of p-adic Hardy operator on L7(Qy). On the central Morrey
space the p-adic Hardy-type operators and their commutators were discussed in [37]. In
this connection see also [19, 21, 25].

There is still zero attention towards the rough Hardy operators on the p-adic linear
spaces. Motivated by papers cited above and results of Fu et al. in [8], we define the special
kind of p-adic rough fractional Hardy operator Hfm and its commutators as follows.

Definition 1.1 Let f: Q) — R, b: Q) — R be measurable mappings and let 0 <& < n.
Then, for x € Q; \ {0}, we define the rough p-adic fractional Hardy operator Hg,, by

HE, f(0) = — / Q(1ylpy)f (y) dy, (L6)
lylp<Ixlp

- n-o
Ix:

and its commutator Hg’i by

Higof () = i_a / (bx) - b(y)) 2(lyl,y)f (v) dy, (1.7)
X157 Jiyl,<ixi,
whenever
/| . 12(Iyl,y)f ()| dy < 00 (1.8)
Yip=IXlp
and
/| N [by)Iyl,y)f(y)] dy < 00, (1.9)
Yip=Ixlp

where © € L5(50(0)), 1 < s < 00.

Remark 1.2 Obviously

{lyl,: ye Q) ={p": v eZ} U {0}
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holds for every integer n > 1 and prime p > 2. Since the inclusion
{Oyu{p":yeZ}CQ,

holds and Q) is a linear space over field Q, the product |y|,y is well defined. Moreover, if
anon-zero y € Q) has the formy = (y1,...,7,) and

yi=p" (Boj+Brp+Poup” +-++), i=1..,n (1.10)
(see (1.2)), then there is ig € {1,...,n} such that
Yiolp =70 = p7" = |yl (1.11)

whenever y; # 0. Using (1.3) we obtain |y|, = p". Now from (1.10) and (1.11) it follows
that

_ YivYig| - Yio=Yi — pVio~Yip —
[lylyl, lrgg!p p = max p 2 L.

¥i#0 7i#0

Thus, for every non-zero y € Q7, the vector |y|,y belongs to the sphere

S0(0) = {y € Q}: lyl, =1}.

From (1.8) it directly follows that Hg,a € R for every non-zero x € QZ and using (1.8), (1.9)

we have
b
[HELf ()| < | (")' [2(lyl,y)f(y)| dy
X157 Jiyl,<ix)y
1
+ H/ |b(y)(lylpy)f ()| dy < o0
X157 Jiyl,<ixiy

for every x € Q) \ {0}. Consequently, the operators Hg,, and HSZ are well defined.

The aim of the current paper is to study the boundedness of Hg'i on p-adic Herz-type
spaces by considering the symbol function b belonging to the p-adic CMO and Lipschitz
spaces. In Euclidean space R”, Herz spaces and Morrey—Herz spaces were firstly intro-
duced in [14] and [26], respectively. For more recent developments in the said spaces we
mention the articles [15, 27, 39] and the references therein. Also, some operators with
rough kernels defined on Euclidian space were recently studied on function spaces; see
for example [11, 12]. Before turning to our main results, let us recall the definitions of
p-adic function spaces first.

Definition 1.3 ([9]) Suppose 1 < g < co. The p-adic central bounded mean oscillation
(CBMO) space CM Oq(Q;) is the set of all measurable functions f: Q) — R which satisfy

1/q
Il caronap) = SUIZ( [f(x) - f3, ’qu) <00, (1.12)
ve

1B, 11 Js,

where f3, = ﬁ f 5, (X)dx, |By |y is the Haar measure of B, .
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Definition 1.4 ([9]) Suppose 0 < r < 00,0 < g < oo and 8 € R. The homogeneous p-adic
Herz space f(,f ’V(QZ) is defined by

K3 (@) = {f € LUQ)) < Ifll g gy < o0},

where

00 1/r
k
”f”f(f”((@;) = (Z 4 ﬁr”kaHZq(Qg)) ,
k=—00

and xy is the characteristic function of S.
Obviously, the equalities K;(Q7) = L%(Q}) and Kf"™(Q2) = L9(x[}) hold.

Definition 1.5 ([5]) Suppose 0 <r<oo,0<g< o0, B €Rand A > 0. The homogeneous
p-adic Morrey—Herz space is defined by

MEKPHQ) = {f € Lo (@ \ {0}) - VW przcpi o < oo},

where
ko 1/r
W1y oy = Sup p™0* PP oy |-
MK (Qp) P k;{) L1(Qp)

It is evident that MK/ (Q)) = K" (Q) and MKp,™(Qz) = LI(x[2).

Definition 1.6 ([5]) Suppose § is a positive real number. The Lipschitz space As(Q}) is

defined to be the space of all measurable function f on Q) such that

f(x+h) - f(x)]
Iflas@y = sup BTN TR
xheQlLh0 th()

2 CBMO estimates for commutators of p-adic rough fractional Hardy operator
The present section discusses the boundedness of p-adic rough fractional Hardy operator

on p-adic Herz-type spaces. We begin this section with the following useful lemma.

Lemma 2.1 ([36]) Suppose b is a CMOI(QZ)function and suppose i,j € Z. Then the in-
equality

|b(y) - bg,| < |b(y) - b,

+p"li | ||b||CMol(Qg):
holds.

Remark 2.2 From now on the letter C indicates a positive constant which may vary from

line to line.
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Theorem 2.3 Let0<r; <ry<00,1=<qq,q < 00. Also,let—l—qiz—%,q/1<s<oo,qi,—

If B < %, then the inequality
pb
holds for all € L*(S9(0)), b € CMO™>{a2 “(Q”) and f € LIOC(Q”)

Proof of Theorem 2.3 For the sake of brevity, we write

Y X =Y £
Jj=—00 j=—00

Since

)
dx

B2 0 | 2 = / x|y 2 /| 26 - b)dy
Ylp=Xlp

<C —qu n-a)

Iyl y) ) (00 - b(y))|dy> ix

IYlp <p*

Z/V(Y)Q(ﬂy ) (bx) - by))|dy> dx

_ —qu

A/
L
_quna/( v )2(Py) (b(x ka)}dy)qzdx

q2
+ Cptann-a / (Z / FmQ(py) (bly) - ka)|dy) dx

=I+1I. (2.1)

For j, k € Z with j < k, we get

/|9(P’Y)\sd3'=/ Q@) P dz < Cp*™. (2.2)
5i |zlp=1

Note that qil + qiz =~ and qil + % + % =1, where % = é - % Applying Hoélder’s inequality
we have

1< Cpet | |b(x) - by, "
By

" {12120 (fs, sl dy) " </5, lQ@y)[ dY> 1/Sp’ln(l/qi—l/s) }q2 dx

k 92
k —ki § : n(1/q;-1/s) k /
= CHbHCMoqz Q” rokal i A1) phn s”f”L‘ﬂ (@p) }

k q2
i—k)n(1/q;-1/.
:cnbngm@;)[E pl-onia S)|[ﬁ'||Lq1(@;;)} . (2.3)

j=—o00

Page 6 of 13
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Lemma 2.1 will be helpful for estimating /. Thus

q2
1 < Cp i) / (Z / FnQ(py) (b(y) - bB)|d‘/> dx
Sk j=—

k ' 2
+ ClIBIE 1 Qn)pfqu(nfm /S k(Z(k_ J) fs | [f(y)g(p/y)|dy) dx
:11 +1]2. (24)

We use Holder’s inequality to estimate I;. We have

L < Cp—qu(n o /

£
(/IQ 7y dy)ls(/sjlf(y)vl dv)l/ql} dx

k

i . 1 . 1t 72
e 1 R V) A i s / 6 = bg| ) Ifllenap
» |B]|H B;

j=—00
k

q2
= CIIE o1y { D PG £y g } : (2.5)
=

In a similar fashion we can estimate II,. Using Holder’s inequality we have

1Ly < ClIBIG, on gy "™
1/q1 1/s 92
x / {Z(k—f)( / v<y>|‘“dy> ( / |sz(ﬂy)|‘dy> ﬂ"”} dx
Sk {j—oo S; S
q2
= ClIbIZ 0 QM(Z(k jpt-oria =1 ufnm@p> : (2.6)
=

From (2.3), (2.5) and (2.6) together with the Jensen inequality, we have

”Hgif H 1'(52"2@;)
1/ry
( > P (HEL) e L) >
1/rp
(Z e @n)

00 k ri\ 1/r1
< C|Ibllcarodn @ ( Z pkﬂrl <Z p(ik)n/tMHLm(Q;)) )

k=—00
0 k ri\ 1/mn
¥ canCMOz(Q,n,)( > P (Z P f <@;«,>) )

J

k=-00 ==
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00 k 1\ 1n
+ Clblcuor gy ( 27" (Z (k=™ 1 o (Q5’> )
k=—00 jj=—00

:]'

For brevity, we may choose [|b]| - omaxigs.0 @ = 1. Consequently,

k=—00

ri\ 1/r
J< C( Z pkﬁrl (Z (k- ])p(l k)n/t”f”qu(Qp ) ) .
=

Case 1: When 0 < r; <1, we have

o]

r
J1=C Z pkﬁrl (Z(k p(] k)n/t ”f”qu @) )

k=-00

o0 k "
¢ Z ( Z P’ I1fi 1l zan (Q;;)(k —j)p(/—k)(n/t—ﬂ)>

<C Z Z P W5l e Q" k — j)r1 pU=Rmle=p)n

k=—00 j=—
[09)
=C Z PPIAI @ Z (k — j)1 pi-Rle=pin
k=-00 k=j

=CIIfII’!

Kﬂ 1 Qn)
Case 2: When r; > 1, applying Holder’s inequality we get

ﬂ—CE:(

==

ZP’ Wfill 2o ¢ Qp —j)pI o ﬂ)

<C Z Zp/ﬂrluf”yn inﬂ(] Klnlt=plrf2

k=—00 j=—00

k r /r’1
x ( > (k-jy p(/—k)(n/t—ﬁ)r;n)
Y

o0
-C Z plﬂm”f”m @ Z (i—k)(nlt-B)r1/2
=j

k=—o00 k
= CIf I
The proof of Theorem 2.3 is thus completed. g
Theorem 2.4 LetO<r; <r; <00,1<qi,q2 <00. Also,let—l—qi2 = %,q’l <s<oo,é—% =

o Yand »>0.Ifp < - 7+ A, then the inequality
pb
||HQ,JHM;<£2';2<@;> = C”f”Mkfl'ﬁh @y

holds for all © € L*(S5(0)), b € CMO™ 4/(Q) and f € LY (Q).
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Proof of Theorem 2.4 From the proof of Theorem 2.3 and

k

” (ngf)Xk”qu(Qn =C Z ])P l ”.f”qu (@)

together with the definition of a Morrey—Herz space, the Jensen inequality, 8 < n/t + X,
A >0and 1< r < oo, it follows that

Hngf”MKg);m
1/ry
= supp ( 2 P (He ) xel i oy )
1/r
< sup p ( 2 PP (HEL) el oo )
koeZ

ri\ 1/r
<Csupp* <Z prfn (Z(k ])P a "f”qu(Qp ) )
j=

ko €7 k=—00

ko k o
<C supP_kOA< 2. (Zpkﬂ(k—j)zov *p

ko€ k=—00 \j=—00

1/r1\ r\ l/n
(Zplﬂ’wvnm@) ))

ri\ 1/r1
= Csupp (Z pkkrl (Z(k ])p(] —k)(n/t—B+2.) £l il ) )
J=

ko €7 k=—00

3 Lipschitz estimates for commutators of p-adic rough fractional Hardy
operator

The current section deals with the boundedness for the commutators of p-adic rough

fractional Hardy operator on homogeneous p-adic Herz-type spaces by considering the

symbol function from Lipschitz space. We open the discussion for this section from the

following lemma.

Lemma 3.1 Suppose f € AS(Q;) and 0 <8 < 1, then
[f0) —f()| < x=YIp I Il s

Proof Proof immediately follows from Definition 1.6. g

Theorem 3.2 Let 1 < g1, g2 <00, 0 <1y <ry < 00. Also,let—l—qiz=5+“,q1<s<oo,
1

q——— = ,and0<5<1 Ifﬁ<n(———) then the inequality
1

”Hgifu1'<52’2(@g) = C”f”kfl"l (@)

holds for all @ € L*(S6(0)), b € A5(Q), and f € LL(Q%).
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Proof of Theorem 3.2 By Holder’s inequality along with Lemma 3.1, we have

| 1) e oo g

q2
|x|-q2<"-“>/ Q(Iyl,y)f (1) (b0 - bly)) dy| dx
Sk lylp=Ixlp
q2
< ot / ( f |sz(|y|py)f<y)(b(x>—b(y))|dv> dx
Sk \Jlylp=<pk

a@
§Cp’kq2” a) ”b|A,s @ /( /|Q(p’yf(y ||x vyl dy) dx
Sk ji=—00

< Cpraina=d) “b”Aa @ / <Z / |Q p’yf(y)|dy> dx

k 1/s
< C||b||A (Qn)p—k‘h n—o— 5)+kn<2 (v/s |Q(pjy)|sdy>
j=—00 J

1/q 1-1/g-1/s\ 12
q1
(fora) " (fa)")

=1 (3.1)

By virtue of (2.2), inequality (3.1) takes the following form:

k Lp)
—kqo (n—a—8)+k kn/s+jn(1/q) -
I< C”b”izg((@;;)p g2 (n-a—8)+ n(zp n/s+jn(1/q} US)M”“UQZ))
Jj=—00
k

q2
j—k)n(1/q' -1/
EC“b”?\zB(Q;)(ZP(] il s)”ﬁ”Lﬂ(Q]’;)) .
J

For the sake of brevity, we take ||19||‘1’2 = 1. Now, by definition of Herz spaces and the
Jensen inequality, it follows that
00 ril/ry
pb
L = 32 P10 0
k=—00

o0
= Z P (A ”( )Xk”mz @

j=—00

k r1
pkﬂrl (Z p(/ k)n( l/ql 1/s) ”_f”qu Qp )
k rn
(Zﬂ PO (@;>> |
V=

Page 10 0of 13
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Case 1: If 0 < r; <1, then

H af”rlﬂrz - <C Z Zplﬁm (i—k)(n/qy —nls—p ”“f”qu @

k=—00 j=—00

o0
Ol s
=C Z plﬁm Hf"qu @ Zp(l )(nlq—nis—p)r1
=

j=—

r
CIf I,

i@

Case 2: When r; > 1, applying Holder’s inequality, we have

) r
—k)(n/qy—nl
|| llf”Kﬂ’ZQn S Z Zplﬂ U= nqlnSﬂHf”quQn
k=—00 \j=—
00 k
—K)(nlq, —nls—
Z Zplﬁn ”f”qu(Qn)P(/ K)(nlqy—nls—B)r1/2
k r/rj
Zp(/ —k)(nlqy—nls—B)r; /2
—00
oo
Rl s
Zplﬂm ”f”qu @ ZP(J )(niq)—nls—B)r1/2
j== k=j
r
S -
Theorem 3.3 Let 1 < gy, gy < 00,0 <11 <1y < 00. Also, let—l—qi2 =4 s> q), i,—% 5

A>0and0<8<1. Ifn(— - —) + X > B, then the inequality

”Hgaf”MKf »

<
@y = Wi,

holds for all Q € L°(S¢(0)), b € A(;(Q ), and f € LIOC(Q;).

Proof of Theorem 3.3 The proof follows from standard analysis performed in our previous
theorems. So, we omit the details. O
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