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1 Introduction
The classical Brunn–Minkowski theory, also known as the theory of mixed volumes, is
the core theory in convex geometric analysis. It originated with Minkowski when he com-
bined his concept of mixed volume with the Brunn–Minkowski inequality. The Brunn–
Minkowski theory has been extended to the Lp Brunn–Minkowski theory, which com-
bines volume with a generalized vector addition of compact convex sets introduced by
Fiery in the early 1996s (see [3]) and now called Lp addition. Thirty years after Fiery in-
troduced his new Lp addition, the new Lp Brunn–Minkowski theory was born in Lutwak’s
papers (see [8, 9]).

Lutwak’s dual Brunn–Minkowski theory, introduced in the 1970s, helped achieving a
major breakthrough in the solution of the Busemann–Petty problem in the 1990s. In con-
trast to the Brunn–Minkowski theory, in the dual theory, convex bodies are replaced with
star-shaped sets, and projections onto subspaces are replaced with intersections with sub-
spaces.

The Orlicz–Brunn–Minkowski theory originated with the work of Lutwak, Yang, and
Zhang [10, 11]. By introducing the Orlicz–Minkowski addition, Gardner, Hug, and Weil
[5], and Xi, Jin, and Leng [15] proved the Orlicz–Brunn–Minkowski inequality and
Orlicz–Minkowski inequality. It is a natural extension of the Lp-Brunn–Minkowski theory
for p ≥ 1. For dual Orlicz–Brunn–Minkowski theory, see [6, 16].

The well-known classic Minkowski problem is: given a finite Borel measure μ on Sn–1,
what are the necessary and sufficient conditions on μ such that μ is the surface area
measure S(K , ·) of a convex body K on R

n? The Minkowski problem was first studied by
Minkowski, who demonstrated both existence and uniqueness of solutions for the prob-
lem when given measure is either discrete or has a continuous density. Aleksandrov and
Fenchel–Jensen independently solved the problem in 1938 for arbitrary measure. The Lp

Minkowski problem, posed by Lutwak in 1993, has developed quickly. Recently, the dual
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Minkowski problem was introduced by Huang et al. [7]. In [7] new links were established
between the Brunn–Minkowski theory and the dual Brunn–Minkowski theory by making
critical use of the radial Gauss image.

In [2], Boroczky et al. introduced the Gauss image problem: Suppose that λ is a submea-
sure defined on the Lebesgue measurable subsets of Sn–1, and μ is a Borel submeasure on
Sn–1. What are the necessary and sufficient conditions on λ and μ, so that there exists a
convex body K ∈Kn

o such that

λ(K , ·) = μ

on the Borel subsets of Sn–1? And if such a body exists, to what extent is it unique?
Let μ be a Borel measure on Sn–1. The log-volume μ(K) of a star body K ∈ Sn

0 with
respect to μ is defined by

μ(K) = exp

(
1

|μ|
∫

Sn–1
logρK (v) dμ

)
.

The log-volume μ(K) of a convex body K with respect to μ plays a very important role
in solving the Gauss image problem.

In this paper, we establish the Brunn–Minkowski theory of the log-volume. Concretely,
we prove the dual Brunn–Minkowski inequality for the log-volume μ(K) of the star body
K , and the equivalent Minkowski inequality for mixed log-volume.

2 Preliminaries
In this section, some notations and some basic facts for convex bodies and star bodies are
listed. More detailed references to the theory of these bodies can be found in [13].
R

n denotes the usual n-dimensional Euclidean space with the usual inner product 〈·, ·〉.
Sn–1 denotes the unit sphere of Rn. A compact convex subset of Rn with nonempty interior
is called a convex body. The set of convex bodies in R

n is denoted by Kn, and the set of
convex bodies in R

n containing the origin in their interiors is denoted by Kn
0 .

If K is a compact convex subset of Rn, then its support function hK : Rn →R is defined
by

hK (x) := max{x · y : y ∈ K}, x ∈R
n.

The support function is positively homogeneous of degree 1 and convex. Note that a com-
pact convex subset of Rn is uniquely determined by its support function.

Suppose that K ⊂R
n is a compact star-shaped set with respect to the origin, that is, the

line segment joining each point of K to the origin is contained completely in K . The radial
function ρK : Rn \ {0} → R of K is given by

ρK (x) = max{λ ≥ 0 : λx ∈ K}, x ∈R
n \ {0}.

The radial function is positively homogeneous of degree –1, and a compact star-shaped set
(with respect to the origin) is uniquely determined by its radial function. If ρK is positive
and continuous, then K is called a star body (with respect to the origin). Write Sn

o for the
set of star bodies with respect to the origin in R

n.
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Two star bodies K and L are dilates (of one other) if ρK (u) \ ρL(u) is independent of
u ∈ Sn–1.

If s > 0, we have

ρ(sK , u) = sρ(K , u) for all x ∈R
n \ {0}.

More generally, from the definition of the radial function, it follows immediately that for
A ∈ GL(n) the radial function of the image AK = {Ay : y ∈ K} of K is given by

ρ(AK , u) = ρ
(
K , A–1u

)
for allx ∈R

n}.

If K and L are star bodies, and α,β ≥ 0 (not both zero), then for p �= 0, the radial p-
combination α · K +̃pβ · L is a star body and is defined by (see [4])

ρ(α · K +̃pβ · L, u)p = αρ(K , u)p + βρ(L, u)p, u ∈ Sn–1.

The set Kn
0 can be endowed with the Hausdorff metric, which means the distance be-

tween K , L ∈Kn is defined by

‖hK – hL‖ = max
u∈Sn–1

∣∣hK (u) – hL(u)
∣∣.

The set Sn
0 can be endowed with the radial metric, which means the distance between

K , L ∈ Sn
0 is defined by

‖ρK – ρL‖ = max
u∈Sn–1

∣∣ρK (u) – ρL(u)
∣∣.

For each K ∈Kn
0 , its polar body K∗ is given by

K∗ =
{

x ∈R
n : x · y ≤ 1 for all y ∈ K

}
.

It follows that K∗ ∈ Kn
0 and K = (K∗)∗. By the definition, there exists an important fact

between K and K∗ as follows:

hK =
1

ρK∗
and ρK =

1
hK∗

.

3 Properties of μ(K)
Lemma 3.1 Let μ be the spherical Lebesgue measure of Sn–1. If K ∈ Sn

o , then for A ∈ O(n),
we have μ(AK) = μ(K).

Proof By the definition of μ0(K), we have

μ(AK) = exp

(
1

|μ|
∫

Sn–1
logρAK (u) dμ(u)

)

= exp

(
1

|μ|
∫

Sn–1
logρK

(
A–1u

)
dμ

(
A–1u

))

= μ(K). �
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Theorem 3.2 If K ∈Kn
o , then

μ(K)μ
(
K∗) ≤ μ(B)μ

(
B∗).

When μ is a spherical Lebesgue measure of Sn–1, the equality holds if and only if K is an
Euclidean ball.

Proof By the definition of K∗ and the fact that ρK (u)
hK (u) ≤ 1, for all u ∈ Sn–1, we obtain

μ(K)μ
(
K∗) = exp

(
1

|μ|
∫

Sn–1
logρK (u) dμ(u)

)
· exp

(
1

|μ|
∫

Sn–1
logρK∗ (u) dμ(u)

)

= exp

(
1

|μ|
∫

Sn–1
log

(
ρK (u)ρK∗ (u)

)
dμ(u)

)

= exp

(
1

|μ|
∫

Sn–1
log

(
ρK (u)
hK (u)

)
dμ(u)

)

≤ 1 = μ(B)μ
(
B∗).

When μ is a spherical Lebesgue measure of Sn–1, then ρK (u)
hK (u) = 1 for all u ∈ Sn–1 if and only

if K is an Euclidean ball. �

4 Lp-Brunn–Minkowski inequality for μ(K) in the case p �= 0
In this section, we establish the Lp-Minkowski inequality and Lp-Brunn–Minkowski in-
equality as follows.

Definition 4.1 ([4]) For arbitrary p ∈ R \ {0}, α,β ≥ 0 (not both zero), the radial p-
combination of K , L ∈ Sn

o is defined by

ρ(α · K +̃pβ · L, ·)p = αρ(K , ·)p + βρ(L, ·)p.

Lemma 4.1 Suppose K , L ∈ Sn
o and α,β ≥ 0 (not both zero). Then, for A ∈ GL(n),

A(α · K +̃pβ · L) = α · AK +̃pβ · AL.

Proof For u ∈ Sn–1, by Definition 4.1, we have

ρ
p
α·AK +̃pβ·AL(u) = aρ

p
AK (u) + bρ

p
AL(u)

= αρ
p
K
(
A–1u

)
+ βρ

p
L
(
A–1u

)
= ρ

p
α·K +̃pβ·L

(
A–1u

)

= ρ
p
A(α·K +̃pβ·L)(u).

Thus, we obtain A(α · K +̃pβ · L) = α · AK +̃pβ · AL. �

Definition 4.2 For p �= 0, we define the Lp-dual mixed log-volume μp(K , L) of K , L ∈ Sn
o

by

μp(K , L) =
μ(K)
|μ|

∫
Sn–1

(
ρL(u)
ρK (u)

)p

dμ(u).



Lai and Jin Journal of Inequalities and Applications        (2021) 2021:112 Page 5 of 15

We are ready to derive the variational formula of μ(K) for the radial p-sum.

Theorem 4.1 Let p �= 0. If K , L ∈ Sn
o , then

lim
ε→0+

μ(K +̃pε · L) – μ(K)
ε

=
μp(K , L)

p
.

Proof Suppose ε > 0, K , L ∈ Sn
o , and u ∈ Sn–1. It follows that

lim
ε→0+

logρ
p
K +̃pε·L(u) – logρ

p
K (u)

ε
= ρ

–p
K +̃pε·L(u)|ε=0+ · lim

ε→0+

ρ
p
K +̃pε·L(u) – ρ

p
K (u)

ε

=
(

ρL(u)
ρK (u)

)p

,

uniformly on Sn–1.
Hence

lim
ε→0+

μ(K +̃pε · L) – μ(K)
ε

=
μ(K)

p
lim

ε→0+

1
|μ|

∫
Sn–1 (logρ

p
K +̃pε·L(u) – logρ

p
K (u)) dμ(u)

ε

=
μ(K)

p
1

|μ|
∫

Sn–1
lim

ε→0+

logρ
p
K +̃pε·L(u) – logρ

p
K (u)

ε
dμ(u)

=
μ(K)

p
1

|μ|
∫

Sn–1

(
ρL(u)
ρK (u)

)p

dμ(u).

We complete the proof of Theorem 4.1. �

Lemma 4.2 Suppose that μ is a spherical Lebesgue measure of Sn–1. Let p �= 0 and K , L ∈
Sn

o . Then, for A ∈ O(n),

μp(AK , AL) = μp(K , L).

Proof From Theorem 4.1 and Lemma 3.1, we have

μp(AK , AL) = p lim
ε→0+

μ(AK +̃pε · AL) – μ(AK)
ε

= p lim
ε→0+

μ(A(K +̃pε · L)) – μ(K)
ε

= p lim
ε→0+

μ(K +̃pε · L) – μ(K)
ε

= μp(K , L). �

The following is the Lp-Minkowski inequality for dual mixed log-volume.

Theorem 4.2 Let p �= 0 and K , L ∈ Sn
o . Then

μp(K , L) ≥ μ(L)pμ(K)1–p.
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When μ is a spherical Lebesgue measure of Sn–1, the equality holds if and only if K and L
are dilates of each other.

Proof By the definitions of μp(K , L), μ(K), and μ(L), we have

(
μp(K , L)

μ(K)

) 1
p

=
(∫

Sn–1

1
|μ|

(
ρL(u)
ρK (u)

)p

dμ(u)
) 1

p

and

μ(L)
μ(K)

= exp

(
1

|μ|
∫

Sn–1
log

ρL(u)
ρK (u)

dμ(u)
)

.

(1) If p > 0, then we have

(∫
Sn–1

1
|μ|

(
ρL(u)
ρK (u)

)p

dμ(u)
) 1

p
≥ exp

(
1

|μ|
∫

Sn–1
log

ρL(u)
ρK (u)

dμ(u)
)

,

which implies that μp(K , L) ≥ μ(L)pμ(K)1–p.
(2) If p < 0, then we have

(∫
Sn–1

1
|μ|

(
ρL(u)
ρK (u)

)p

dμ(u)
) 1

p
≤ exp

(
1

|μ|
∫

Sn–1
log

ρL(u)
ρK (u)

dμ(u)
)

,

which also implies that μp(K , L) ≥ μ(L)pμ(K)1–p.
When μ is a spherical Lebesgue measure of Sn–1, the equality holds if and only if K and

L are dilates of each other. �

Remark 4.1 When p = 1, the L1-dual mixed log-volume μ1(K , L) is written as μ(K , L), so
we have

μ(K , L) ≥ μ(L).

When μ is a spherical Lebesgue measure of Sn–1, the equality holds if and only if K and L
are dilates of each other.

Lemma 4.3 Suppose p �= 0 and M ∈ Sn
o such that K , L ∈M. If μp(M, K) = μp(M, L) for all

M ∈M, then K = L.

Proof Set M = K , then we have

μ(K) = μp(K , K) = μp(K , L) ≥ μ(L)pμ(K)1–p,

so, 1 ≥ μ(L)p

μ(K )p . Set M = L, we have

μ(L) = μp(L, L) = μp(L, K) ≥ μ(K)pμ(L)1–p,

so, 1 ≥ μ(K )p

μ(L)p . Hence μ(K) = μ(L), which implies that the inequalities above are all equali-
ties. By the equality condition of Lp-dual mixed log-volume, we have K and L are dilates.
Since μ(K) = μ(L), we get K = L. �
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By the Lp-Minkowski inequality for dual mixed log-volume, we have the following Lp-
Brunn–Minkowski inequality for log-volume.

Theorem 4.3 Suppose p �= 0, α,β > 0. If K , L ∈ Sn
o , then

μ(α · K +̃pβ · L)p ≥ αμ(K)p + βμ(L)p.

When μ is a spherical Lebesgue measure of Sn–1, the equality holds if and only if K and L
are dilates of each other.

Proof From the Lp-Minkowski inequality of μp(K , L), it follows that

μp(Q,α · K +̃pβ · L) =
μ(Q)
|μ|

∫
Sn–1

(
ρα·K +̃pβ·L(u)

ρQ(u)

)p

dμ(u)

=
μ(Q)
|μ|

∫
Sn–1

αρ
p
K (u) + βρ

p
L(u)

ρ
p
Q(u)

dμ(u))

= α
μ(Q)
|μ|

∫
Sn–1

ρ
p
K (u)

ρ
p
Q(u)

dμ(u)) + β
μ(Q)
|μ|

∫
Sn–1

ρ
p
L(u)

ρ
p
Q(u)

dμ(u))

= αμp(Q, K) + βμp(Q, L)

≥ αμ(K)pμ(Q)1–p + βμ(L)pμ(Q)1–p

=
(
αμ(K)p + βμ(L)p)μ(Q)1–p.

Let Q = α · K +̃pβ · L, we have μp(α · K +̃pβ · L,α · K +̃pβ · L) = μ(α · K +̃pβ · L), so

μ(α · K +̃pβ · L)p ≥ αμ(K)p + βμ(L)p.

When μ is a spherical Lebesgue measure of Sn–1, by the equality condition of Lp-
Minkowski inequality, we have that the equality holds if and only if K and L are dilates
of each other. �

Theorem 4.4 The Lp-Brunn–Minkowski inequality is equivalent to the Lp-Minkowski in-
equality.

Proof Since we have proved the Lp-Brunn–Minkowski inequality by the Lp-Minkowski in-
equality, we only need to prove the Lp-Minkowski inequality by the Lp-Brunn–Minkowski
inequality.

We first consider the case p > 0. From the variational formula of μ(K) and the Lp-Brunn–
Minkowski inequality, for ε > 0, we have

1
p
μp(K , L) = lim

ε→0+

μ(K +̃pε · L) – μ(K)
ε

≥ lim
ε→0+

(μ(K)p + εμ(L)p)
1
p – μ(K)

ε

= μ(K) lim
ε→0+

(1 + ε( μ(L)
μ(K ) )p)

1
p – 1

ε
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=
μ(K)

p

(
μ(L)
μ(K)

)p

=
1
p
μ(L)pμ(K)1–p.

Thus, we obtain μp(K , L) ≥ μ(L)pμ(K)1–p.
Now we consider the case p < 0. From the variational formula of μ(K) and the Lp-

Brunn–Minkowski inequality, for ε > 0, we have

1
p
μp(K , L) = lim

ε→0+

μ(K +̃pε · L) – μ(K)
ε

≤ lim
ε→0+

(μ(K)p + εμ(L)p)
1
p ) – μ(K)

ε

= μ(K) lim
ε→0+

(1 + ε( μ(L)
μ(K ) )p)

1
p ) – 1

ε

=
μ(K)

p

(
μ(L)
μ(K)

)p

=
1
p
μ(L)pμ(K)1–p.

Thus, we obtain μp(K , L) ≥ μ(L)pμ(K)1–p. �

5 The log-Brunn–Minkowski inequality for μ(K)
In the Lp-Brunn–Minkowski theory, Lp-Brunn–Minkowski inequality plays a core role.
Among LP-Brunn–Minkowski inequality for p ≥ 0, the L0-Brunn–Minkowski inequality,
also called the log-Brunn–Minkowski inequality, is stronger than any others (see [1]).

The main purpose of this section is to establish the dual forms of the log-Minkowski
inequality and the log-Brunn–Minkowski inequality as follows. In fact, we found that these
inequalities are all equalities.

We first give the log radial combination of two star bodies. It was introduced in [14].

Definition 5.1 ([14]) Let K and L be two star bodies in R
n and 0 ≤ λ ≤ 1, then the log

radial combination (1 – λ) · K +̃0λ · L of K , L is defined by

ρ(1–λ)·K +̃0λ·L(u) = ρK (u)1–λρL(u)λ, ∀u ∈ Sn–1.

In particular, if λ = 0, then (1 – λ) · K +̃0λ · L = K . If λ = 1, then (1 – λ) · K +̃0λ · L = L.
From the definition of the log radial combination, we have the following two lemmas.

Lemma 5.1 Let 0 ≤ λ ≤ 1. If K , L ∈ Sn
o , then (1 – λ) · K +̃0λ · L ∈ Sn

o .

Lemma 5.2 Let 0 ≤ λ ≤ 1. If K , L ∈ Sn
o , then for A ∈ GL(n),

A
(
(1 – λ) · K +̃0λ · L

)
= (1 – λ) · AK +̃0λ · AL.

Now we give the definition of dual log mixed log-volume μ0(K , L) of K , L ∈ Sn
o .
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Definition 5.2 Let K , L ∈ Sn
o , the dual log mixed log-volume μ0(K , L) of K , L is defined

by

μ0(K , L) = μ(K) exp

(
1

|μ|
∫

Sn–1
log

ρL(u)
ρK (u)

dμ(u)
)

.

The following is the variational formula of μ(K) for the log radial combination.

Theorem 5.1 Let K , L ∈ Sn
o . Then

lim
ε→0+

μ((1 – ε) · K +̃0ε · L) – μ(K)
ε

= μ(K) log
μ0(K , L)
μ(K)

.

Proof Suppose ε > 0, K , L ∈ Sn
o , and u ∈ Sn–1. It follows that

lim
ε→0+

logρ(1–λ)·K +̃0λ·L(u) – logρK (u)
ε

= lim
ε→0+

ε log ρL(u)
ρK (u)

ε
= log

ρL(u)
ρK (u)

,

uniformly on Sn–1.
Therefore, we have

lim
ε→0+

μ((1 – ε) · K +̃0ε · L) – μ(K)
ε

= μ(K) lim
ε→0+

exp( 1
|μ|

∫
Sn–1 (logρ(1–λ)·K +̃0λ·L(u) – logρK (u))) dμ(u)) – 1

ε

= lim
ε→0+

∫
Sn–1

logρ(1–λ)·K +̃0λ·L(u) – logρK (u)
ε

dμ(u)

=
μ(K)
|μ|

∫
Sn–1

log
ρL(u)
ρK (u)

dμ(u)

= μ(K) log
μ0(K , L)
μ(K)

. �

Lemma 5.3 Suppose that μ is a spherical Lebesgue measure of Sn–1. If K , L ∈ Sn
o and A ∈

O(n), then

μ0(AK , AL) = μ0(K , L).

Proof From Theorem 5.1, Lemma 5.2, and Lemma 3.1, we have

log
μ0(AK , AL)

μ(K)
=

1
μ(K)

lim
ε→0+

μ((1 – ε) · AK +̃0ε · AL) – μ(AK)
ε

=
1

μ(K)
lim

ε→0+

μ(A(K +̃0ε · L)) – μ(K)
ε

=
1

μ(K)
lim

ε→0+

μ(K +̃0ε · L) – μ(K)
ε

= log
μ0(K , L)
μ(K)

.

So, μ0(AK , AL) = μ0(K , L). �
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Theorem 5.2 If K , L ∈ Sn
o , then μ0(K , L) = μ(L).

Proof By the definitions of μ(K) and μ0(K , L), we have

μ(L)
μ(K)

= exp

(
1

|μ|
∫

Sn–1
log

ρL(u)
ρK (u)

dμ(u)
)

=
μ0(K , L)
μ(K)

.

Therefore, we have μ0(K , L) = μ(L). �

Theorem 5.3 Let 0 ≤ λ ≤ 1. If K , L ∈ Sn
o , then

μ
(
(1 – λ) · K +̃0λ · L

)
= μ(K)1–λμ(L)λ.

Proof For 0 ≤ λ ≤ 1, we obtain

logμ
(
(1 – λ) · K +̃0λ · L

)

=
1

|μ|
∫

Sn–1
log

(
ρK (u)1–λρL(u)λ

)
dμ(u)

= (1 – λ)
1

|μ|
∫

Sn–1
logρK (u) dμ(u) + λ

1
|μ|

∫
Sn–1

logρL(u) dμ(u)

= (1 – λ) logμ(K) + λ logμ(L)

= log
(
μ(K)1–λμ(L)λ

)
.

Therefore, we have μ((1 – λ) · K +̃0λ · L) = μ(K)1–λμ(L)λ. �

6 Dual Orlicz–Brunn–Minkowski inequality for μ(K)
Let � be the set of strictly increasing functions φ : (0,∞) → (0,∞) which are contin-
uously differentiable on (0,∞) with positive derivative and satisfy that φ(∞) = ∞ and
that log◦φ–1 is concave. Notice that whenever φ ∈ � is convex, the composite function
log◦φ–1 is concave. The collection of convex functions from � shall be denoted by C .
There are many fundamental examples of the functions φ ∈ �. Convex examples in � in-
clude the power function φ(t) = tp with p ≥ 1; the logistic function φ(t) = t + 2 log(1 + e–t);
the Laplace function φ(t) = e–t , and so on. Nonconvex examples of � include φ(t) = tp with
0 < p < 1 and φ(t) = 1

q log(1 + t) with 0 < q < 1 (see [12]).
Let 	 be the set of strictly decreasing functions ψ : (0,∞) → (0,∞) which are con-

tinuously differentiable on (0,∞) with negative derivative and satisfy that ψ(0+) = ∞,
ψ(∞) = 0 and that log◦ψ–1 is convex. Notice that ψ(t) = tp with p < 0 belong to 	 .

Definition 6.1 Let φ ∈ �∪	 and α,β ≥ 0 (not both zero), the Orlicz radial combination
α · K +̃φβ · L of K , L ∈ Sn

o is defined by

αφ

(
ρ(K , u)

ρ(α · K +̃φβ · L, u)

)
+ βφ

(
ρ(L, u)

ρ(α · K +̃φβ · L, u)

)
= φ(1).

From Definition 6.1, we have the following lemma.
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Lemma 6.1 Suppose φ ∈ �∪	 and α,β ≥ 0 (not both zero). If K , L ∈ Sn
o , A ∈ GL(n), then

A(α · K +̃φβ · L) = α · AK +̃φβ · AL.

Lemma 6.2 Suppose φ ∈ � ∪ 	 . If K , L ∈ Sn
o , then

lim
ε→0+

ρK +̃φε·L(u) – ρK (u)
ε

=
ρK (u)
φ′

r(1)
φ

(
ρL(u)
ρK (u)

)
,

uniformly for all u ∈ Sn–1.

Proof Let ρKε (u) = ρK +̃φε·L(u). Then ρKε (u) → ρK (u) uniformly on Sn–1 as ε → 0+. By the
definition of K +̃φε · L, we have

ρK (u)
ρKε (u)

= φ–1(φ(1) – εφ

(
ρL(u)
ρKε (u)

)
.

Let s = φ–1(φ(1) – εφ( ρL(u)
ρKε (u) ). Then we have ρKε (u)–ρK (u)

ρKε (u) = 1 – s. Note that s → 1 as ε → 0+.
Hence, we have

lim
ε→0+

ρKε (u) – ρK (u)
ε

= lim
ε→0+

ρKε (u) · ρKε (u) – ρK (u)
ερKε (u)

= lim
ε→0+

ρKε (u) · φ
(

ρL(u)
ρKε (u)

)
·

ρKε (u)–ρK (u)
ρKε (u)

φ(1) – (φ(1) – εφ( ρL(u)
ρKε (u) ))

= ρK (u) · φ
(

ρL(u)
ρK (u)

)
· lim

ε→0+

1 – s
φ(1) – φ(s)

=
ρK (u)
φ′

r(1)
φ

(
ρL(u)
ρK (u)

)
.

Since ρKε (u) → ρK (u) uniformly on Sn–1 as ε → 0+, we have

lim
ε→0+

ρK +̃φε·L(u) – ρK (u)
ε

=
ρK (u)
φ′

r(1)
φ

(
ρL(u)
ρK (u)

)
,

uniformly for all u ∈ Sn–1. �

Remark 6.1 The ideal of the proof of Theorem 6.2 is introduced by [16].

Definition 6.2 Suppose φ ∈ �∪	 . The Orlicz dual mixed log-volume μφ(K , L) of K , L ∈
Sn

o is defined by

μφ(K , L) =
μ(K)
|μ|

∫
Sn–1

φ

(
ρL(u)
ρK (u)

)
dμ(u).

The following is the variational formula of μ(K) for the Orlicz radial sum.

Theorem 6.1 Suppose φ ∈ � ∪ 	 . If K , L ∈ Sn
o , then

lim
ε→0+

μ(K +̃φε · L) – μ(K)
ε

=
μφ(K , L)

φ′
r(1)

.
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Proof Suppose ε > 0, K , L ∈ Sn
o , and u ∈ Sn–1. By Lemma 6.2, it follows that

lim
ε→0+

logρK +̃φε·L(u) – logρK (u)
ε

= ρ–1
K +̃φε·L(u)|ε=0+ · lim

ε→0+

ρK +̃φε·L(u) – ρK (u)
ε

=
1

φ′
r(1)

φ

(
ρL(u)
ρK (u)

)
,

uniformly on Sn–1.
Hence

lim
ε→0+

μ(K +̃φε · L) – μ(K)
ε

= μ(K)
1

|μ|
∫

Sn–1
lim

ε→0+

logρK +̃φε·L(u) – logρK (u)
ε

dμ(u)

=
μ(K)
φ′

r(1)
1

|μ|
∫

Sn–1
φ

(
ρL(u)
ρK (u)

)
dμ(u). �

Lemma 6.3 Suppose μ is a spherical Lebesgue measure of Sn–1. If φ ∈ � ∪ 	 , A ∈ O(n),
and K , L ∈ Sn

o , then μφ(AK , AL) = μφ(K , L).

Proof From Theorem 6.1, we have

μφ(AK , AL) = φ′
r(1) lim

ε→0+

μ(AK +̃φε · AL) – μ(AK)
ε

= φ′
r(1) lim

ε→0+

μ(A(K +̃φε · L)) – μ(K)
ε

= φ′
r(1) lim

ε→0+

μ(K +̃φε · L) – μ(K)
ε

= μφ(K , L).

Thus, we obtain μφ(AK , AL) = μφ(K , L). �

The following is the dual Orlicz–Minkowski inequality for the mixed log-volume.

Theorem 6.2 Let φ ∈ � ∪ 	 and K , L ∈ Sn
o . Then

μφ(K , L) ≥ μ(K)φ
(

μ(L)
μ(K)

)
.

When μ is a spherical Lebesgue measure of Sn–1, the equality holds if and only if K and L
are dilates.

Proof If φ ∈ �, then φ and φ–1 are increasing. Since φ–1 is log-concave, by Jensen’s in-
equality, we have

log◦φ–1
(

μφ(K , L)
μ(K)

)
= log◦φ–1

(
1

|μ|
∫

Sn–1
φ

(
ρL(u)
ρK (u)

)
dμ(u)

)

≥
(

1
|μ|

∫
Sn–1

log
ρL(u)
ρK (u)

dμ(u)
)

= log
μ(L)
μ(K)

.

Thus, by φ–1 is increasing, we have μφ(K , L) ≥ μ(K)φ( μ(L)
μ(K ) ).
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If φ ∈ 	 , then φ and φ–1 are decreasing. Since φ–1 is log-convex, we have

log◦φ–1
(

μφ(K , L)
μ(K)

)
= log◦φ–1

(
1

|μ|
∫

Sn–1
φ

(
ρL(u)
ρK (u)

)
dμ(u)

)

≤
(

1
|μ|

∫
Sn–1

log
ρL(u)
ρK (u)

dμ(u)
)

= log
μ(L)
μ(K)

.

Thus, by φ–1 is decreasing, we have μφ(K , L) ≥ μ(K)φ( μ(L)
μ(K ) ).

When μ is a spherical Lebesgue measure of Sn–1, by the equality condition of Jensen’s
inequality, if the equality holds, then there is λ > 0 such that ρL(u) = λρK (u) for all u ∈ Sn–1,
that means K and L are dilates. Conversely, if K and L are dilates, it is easy to check that
the equality holds. �

By the dual Orlicz–Minkowski inequality for mixed log-volume, we get the following
dual Orlicz–Brunn–Minkowski inequality for log-volume.

Theorem 6.3 Suppose α,β > 0 and K , L ∈ Sn
o . If φ ∈ � ∪ 	 , then

αφ

(
μ(K)

μ(α · K +̃φβ · L

)
+ βφ

(
μ(L)

μ(α · K +̃φβ · L)

)
≤ φ(1).

When μ is the spherical Lebesgue measure of Sn–1, the equality holds if and only if K and
L are dilates.

Proof Let Kφ = α · K +̃φβ · L. From Definition 6.1 and Theorem 6.2, it follows that

φ(1) =
1

|μ|
∫

Sn–1
φ(1) dμ(u)

=
1

|μ|
∫

Sn–1

[
αφ

(
ρK (u)
ρKφ

(u)

)
+ βφ

(
ρL(u)
ρKφ

(u)

)]
dμ(u)

= α
1

|μ|
∫

Sn–1
φ

(
ρK (u)
ρKφ

(u)

)
dμ + β

1
|μ|

∫
Sn–1

φ

(
ρL(u)
ρKφ

(u)

)
dμ(u)

= α
μφ(Kφ , K)

μ(Kφ)
+ β

μφ(Kφ , L)
μ(Kφ)

≥ αφ

(
μ(K)
μ(Kφ)

)
+ βφ

(
μ(L)
μ(Kφ)

)
.

When μ is a spherical Lebesgue measure of Sn–1, by the equality condition of Theorem 6.2,
we get that the equality holds if and only if K and L are dilates. �

Now we show that the dual Orlicz–Minkowski inequality for the mixed log-volume and
the dual Orlicz–Brunn–Minkowski inequality are equivalent.

Theorem 6.4 The dual Orlicz–Minkowski inequality for the mixed log-volume is equiva-
lent to the dual Orlicz–Brunn–Minkowski inequality for the log-volume.
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Proof We have proved the dual Orlicz–Brunn–Minkowski inequality by the dual Orlicz–
Minkowski inequality. Thus, we only need to prove the dual Orlicz–Minkowski inequality
by the dual Orlicz–Brunn–Minkowski inequality.

For ε ≥ 0, let Kε = K +̃φε · L, by the Orlicz–Brunn–Minkowski inequality, the following
function

G(ε) = φ

(
μ(K)
μ(Kε)

)
+ εφ

(
μ(L)
μ(Kε)

)
– φ(1)

is nonpositive. Then

lim
ε→0+

G(ε) – G(0)
ε

= lim
ε→0+

φ( μ(K )
μ(Kε) ) + εφ( μ(L)

μ(Kε) ) – φ(1)
ε

= lim
ε→0+

φ( μ(K )
μ(Kε) ) – φ(1)

ε
+ φ

(
μ(L)
μ(Kε)

)

= lim
ε→0+

φ( μ(K )
μ(Kϕ ) ) – φ(1)

μ(K )
μ(Kϕ ) – 1

· lim
ε→0+

μ(K )
μ(Kε) – 1

ε
+ φ

(
μ(L)
μ(Kε)

)
.

Let s = μ(K )
μ(Kε ) and note that s → 1+ as ε → 0+. Consequently,

lim
ε→0+

φ( μ(K )
μ(Kε) ) – φ(1)
μ(K )
μ(Kε) – 1

= lim
ε→0+

φ(s) – φ(1)
s – 1

= φ′
r(1),

and

lim
ε→0+

μ(K )
μ(Kε) – 1

ε
= – lim

ε→0+

1
μ(Kε)

· lim
ε→0+

μ(Kε) – μ(K)
ε

= –
1

μ(K)
· 1
φ′

r(1)
· μφ(K , L).

From G(ε) is nonpositive, we have

lim
ε→0+

G(ε) – G(0)
ε

= –
μφ(K , L)

μ(K)
+ φ

(
μ(L)
μ(K)

)
≤ 0.

Hence, we have μφ(K , L) ≥ μ(K)φ( μ(L)
μ(K ) ). �
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