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1 Introduction
Let w be the set of all sequences of complex numbers. A Banach sequence space X is
BK if the map pn : X → C defined by pn(x) = xn is continuous for all n ≥ 0. A BK-
space X is said to have the AK property if φ ⊂ X and (e(v)) is a basis for X, where
e(v) = {0, 0, 0, . . . , 1vth term, 0, 0, . . .} and φ = span{e(v)}. If φ is dense in X, then it is called
an AD-space, so AK implies AD.

Let �∞ be the space of all bounded sequences. A sequence (xn) ∈ �∞ is said to be almost
convergent to γ if all of its Banach limits [1] coincide to γ . Lorentz [8] (see [10] for dou-
ble sequences) characterized almost convergence by saying that a sequence (xn) is almost
convergent to γ if and only if

1
r + 1

r∑

v=0

xn+v → γ as r → ∞ (uniformly in n). (1.1)

This notion plays an important role in summability theory and was investigated by sev-
eral authors. For example, it was later used to define and study some concepts such as
conservative and regular matrices, some sequence spaces, and matrix transformations (see
[2, 6, 7, 9, 11, 12, 15]).

Absolute almost convergence emerges naturally as an absolute analogue of almost con-
vergence. To introduce this concept, let sn = �n

v=1av be a partial sum of �av. The series
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�av is said to be absolutely almost convergent series if (see [3])

∞∑

m=0

|ψm,n|k < ∞, k > 0,

uniformly in n, where

ψm,n =

⎧
⎨

⎩
an, m = 0,

1
m(m+1)

∑m
v=1 van+v, m ≥ 1.

The space of all absolutely almost convergent series

�̂k =

{
a = (an)n∈N :

∞∑

m=0

|ψm,n|k < ∞, uniformly in n, k > 0

}

was first defined and studied in [4]. We note an important relation between �̂k and absolute
Cesaro summability |C, 1| in Flett’s notation [5], �̂k ⊂ |C, 1| (see [4]).

The purpose of the present paper is to define an absolute almost weighted summabil-
ity using some factors and weighted means and to study its topological structures. This
new method of summability extends the well-known concept of absolute almost con-
vergence of Das et al. [4], and space �̂k of Das et al. [4] becomes a special case of our
space |f (Nu

p)|k . We investigate relations between classical sequence spaces and show that
the space |f (Nu

p)|k is not separable for k > 1. Also, we characterize the matrix classes
(c, |f (Np)|k) and (c, |f (Np)|k), 1 ≤ k < ∞.

2 Main results
For any sequence (sn), we define Tm,n by

T–1,n(s) = sn–1, Tm,n(s) =
1

Pm

m∑

v=0

pvsn+v, m ≥ 0,

where (pn) is a sequence of positive real numbers with

Pn = p0 + p1 + · · · + pn → ∞ as n → ∞, P–1 = p–1 = 0.

A straightforward calculation then shows that

Fm,n(a) = Tm,n(s) – Tm–1,n(s) =

⎧
⎨

⎩
an, m = 0,

pm
PmPm–1

∑m
v=1 Pv–1an+v, m ≥ 1.

So, we can give the following definition.

Definition 2.1 Let �av be an infinite series with partial summations (sn). Let (pn) and
(un) be sequences of positive real numbers. The series �av is said to be absolute almost
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weighted summable |f (Np), um|k , k ≥ 1, if

∞∑

m=0

uk–1
m

∣∣Fm,n(a)
∣∣k < ∞

uniformly in n.

For |f (Nu
p)|k , k ≥ 1, we write the set of all series summable by the method |f (Np), um|k .

Then �av is summable |f (Np), um|k iff the series �av ∈ |f (Nu
p)|k . Note that, in the case

um = pm = 1 for m ≥ 0, it reduces to the set of absolutely almost convergent series �̂k given
by Das, Kuttner, and Nanda [3]. Further, it is clear that the space |Nu

p|k is derived from
|f (Nu

p)|k by putting n = 0 [9, 13, 14], and also |f (Nu
p)|k ⊂ |Nu

p|k , but the converse is not
true.

First we give some relations between the new method and classical sequence spaces such
as bs and �∞, which are the sets of all bounded series and bounded sequences, respectively.

Theorem 2.2 Let (pm) and (um) be sequences of positive numbers.
(i) If

(
1

um

)
∈ �∞, (2.1)

then |f (Nu
p)|k ⊂ �∞, k ≥ 1.

(ii) If

∞∑

m=0

uk–1
m

(
pm

Pm

)k

< ∞, (2.2)

then bs ⊂ |f (Nu
p)|k , k > 1.

Proof (i) Let a = (av) ∈ |f (Nu
p)|k . Then, by the definition, there exists an integer M such

that

∞∑

m=M

uk–1
m

∣∣Fm,n(a)
∣∣k ≤ 1 (2.3)

holds for all n. So, it is sufficient to show that the sequence (|Fm,n(a))|) is bounded for a
fixed number m. By (2.1) and (2.3), we have |Fm,n(a)| ≤ u–1+1/k

m for m ≥ M and all n. On
the other hand, for m ≥ 1,

am+n =
Pm

pm
Fm,n(a) –

Pm–2

pm–1
Fm–1,n(a). (2.4)

It follows by applying (2.4) for any m ≥ M + 1 that a = (av) ∈ �∞, which completes the
proof.

(ii) Let a = (av) ∈ bs. Denote M = supv |∑v
j=0 aj|. Then we have

∣∣∣∣∣

m∑

v=1

Pv–1an+v

∣∣∣∣∣ =

∣∣∣∣∣

m–1∑

v=1

(–pv)
v∑

j=1

an+j + Pm–1

m∑

j=1

an+j

∣∣∣∣∣
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≤
m–1∑

v=1

pv

∣∣∣∣∣

n+v∑

j=n+1

aj

∣∣∣∣∣ + Pm–1

∣∣∣∣∣

n+m∑

j=n+1

an+j

∣∣∣∣∣

≤
m–1∑

v=1

pv

∣∣∣∣∣

n+v∑

j=0

aj –
n∑

j=0

aj

∣∣∣∣∣ + Pm–1

∣∣∣∣∣

n+m∑

j=0

an+j –
n∑

j=0

aj

∣∣∣∣∣

≤ 4MPm–1,

which implies that

∞∑

m=0

uk–1
m

∣∣Fm,n(a)
∣∣k = uk–1

0 |an|k +
∞∑

m=1

uk–1
m

∣∣∣∣∣
pm

PmPm–1

m∑

v=1

Pv–1an+v

∣∣∣∣∣

k

≤ (4M)k
∞∑

m=0

uk–1
m

(
pm

Pm

)k

< ∞.

This completes the proof. �

For the special case um = pm = 1 for all m ≥ 0, |f (Nu
p)|k = �̂k and (2.2) reduces to∑∞

m=0(m + 1)–k < ∞. So we have the following result in [3].

Corollary 2.3 For k > 1, bs ⊂ �̂k .

Theorem 2.4 Let (um) be a sequence of positive numbers such that (2.4) holds. Then
|f (Nu

p)|k , k ≥ 1, is a BK space with respect to the norm

‖a‖|f (Nu
p )|k : = sup

{ ∞∑

m=0

uk–1
m

∣∣Fm,n(a)
∣∣k : n ∈N

}1/k

. (2.5)

Proof It is routine to prove that the norm conditions are satisfied by (2.5). We only note
that (2.5) is well defined. In fact, if a ∈ |f (Nu

p)|k , then, as in the proof of part (ii) of Theo-
rem 2.2, there exists an integer M such that, for all n,

∞∑

m=M

uk–1
m

∣∣Fm,n(a)
∣∣k ≤ 1,

and (u1–1/k
m |Fm,n(a)|) is bounded for all m, n ≥ 0. This gives

sup

{ ∞∑

m=0

uk–1
m

∣∣Fm,n(a)
∣∣k : n ∈N

}
≤ 1 + sup

{ M∑

m=0

uk–1
m

∣∣Fm,n(a)
∣∣k : n, m ∈ N

}
< ∞.

To show that it is a Banach space, let us take an arbitrary Cauchy sequence (am) = (am
v ) =

(a1
v , a2

v , . . .) = ((a1
1, a1

2, . . .), . . . , (am
1 , am

2 , am
3 , . . .), . . .), where am = (am

v ) ∈ |f (Nu
p)|k for m ≥ 0.

Given ε > 0. Then there exists an integer m0 such that ‖am1 – am2‖|f (Nu
p )|k < ε for m1, m2 >

m0 and all v, or, equivalently,

{
uk–1

0
∣∣am1

n – am2
n

∣∣k +
∞∑

m=1

uk–1
m

∣∣∣∣∣
pm

PmPm–1

m∑

v=1

Pv–1
(
am1

n+v – am2
n+v

)
∣∣∣∣∣

k}1/k

< ε. (2.6)
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This also gives that |am1
v – am2

v |k < ε/u1–1/k
0 holds for all m1, m2 > m0, i.e., the sequence

(am
v ) is a Cauchy sequence in the set of complex numbers C. So, it converges to a number

av (v = 0, 1, . . .), i.e., limm→∞ am
v = av. Now, letting m2 → ∞, by (2.6) we have for ‖am1 –

a‖|f (Nu
p )|k < ε for m1 > m0. This means limm→∞ am = a. Further, since

‖a‖|f (Nu
p )|k ≤ ∥∥am1 – a

∥∥|f (Nu
p )|k +

∥∥am1
∥∥|f (Nu

p )|k < ∞,

then a ∈ |f (Nu
p)|k . So, |f (Nu

p)|k is a Banach space. This completes the proof. �

We note that if E is a BK-space such that bs ⊂ E ⊂ �∞, then E is not separable (and hence
not reflexive) (see [4]). Hence the following result at once follows from Theorem 2.2.

Corollary 2.5 If (pm) and (um) are sequences of positive numbers satisfying (2.1) and (2.2),
then |f (Nu

p)|k is not separable for k > 1.

3 Matrix transformations on space |f (Np)|k

In this section we characterize certain matrix transformations on the space |f (Np)|k . First
we recall some notations. Let X, Y be any subsets of ω and A = (anv) be an infinite matrix
of complex numbers. By A(x): = (An(x)), we indicate the A-transform of a sequence x = (xv)
if the series

An(x): =
∞∑

v=0

anvxv

are convergent for n ≥ 0. If Ax ∈ Y , whenever x ∈ X, then we say that A defines a matrix
mapping from X into Y and denotes the class of all infinite matrices A such that A : X → Y
by (X, Y ). Also, we denote the set of all k-absolutely convergent series by �k , 1 ≤ k < ∞,
i.e.,

�k =

{
x = (xv) ∈ w :

∞∑

v=0

|xv|k < ∞
}

,

which is a BK-space with respect to the norm

‖x‖�k =

( ∞∑

v=0

|xv|k
)1/k

.

Also we make use of the following lemma in [15].

Lemma 3.1 Suppose that A = (anv) is an infinite matrix with complex numbers and p =
(pv) is a bounded sequence of positive numbers such that H = supv pv and C = max{1, 2H–1}.
Then

(
4C2)–1Up(A) ≤ Lp(A) ≤ Up(A)

provided that

Up(A) =
∞∑

v=0

( ∞∑

n=0

|anv|
)pv

< ∞
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and

Lp(A) = sup

{ ∞∑

v=0

∣∣∣∣
∑

n∈N

anv

∣∣∣∣
pv

: N ⊂ N0 is finite

}
< ∞.

Now we begin with the first theorem given the characterization of the class (�1, |f (Np)|k).

Theorem 3.2 Let u = (un) be a sequence of positive numbers, and let A = (avj) be an infinite
matrix. Then A ∈ (�1, |f (Np)|k), 1 ≤ k < ∞, if and only if

(avj) ∈ ∣∣f (Np)
∣∣
k for each j (3.1)

and

L: = sup
n,j

∞∑

m=0

uk–1
m

∣∣b(m, n, j)
∣∣k < ∞, (3.2)

where

b(m, n, j) =

⎧
⎨

⎩
anj, m = 0,

pm
PmPm–1

∑m
v=1 Pv–1an+v,,j, m ≥ 1.

Proof Necessity. Suppose A ∈ (�1, |f (Np)|k). Then A(x) ∈ |f (Np)|k for all x ∈ �1, i.e.,

∞∑

m=0

uk–1
m

∣∣Fm,n
(
A(x)

)∣∣k

= uk–1
0

∣∣An(x)
∣∣k +

∞∑

m=1

uk–1
m

∣∣∣∣∣

m∑

v=1

pmPv–1

PmPm–1
An+v(x)

∣∣∣∣∣

k

= uk–1
0

∣∣∣∣∣

∞∑

j=0

an,jxj

∣∣∣∣∣

k

+
∞∑

m=1

uk–1
m

∣∣∣∣∣

∞∑

j=0

( m∑

v=1

pmPv–1

PmPm–1
an+v,j

)
xj

∣∣∣∣∣

k

=
∞∑

m=0

uk–1
m

∣∣∣∣∣

∞∑

j=0

b(m, n, j)xj

∣∣∣∣∣

k

converges uniformly in n.
If we put x = (ej) = (ej

r) ∈ �1 such that ej
r = 1 for r = j and zero otherwise, A(ej) ∈ |f (Np)|k ,

which gives that (3.1) holds. Further, since �1 is a Banach space, by the Banach–Steinhaus
theorem, A : �1 →C is a continuous linear map. So, for fixed n and s,

qsn(x) =

( s∑

m=0

uk–1
m

∣∣Fm,n
(
A(x)

)∣∣k
)1/k

is a continuous seminorm on �1, which implies that lims→∞ qsn(x) = qn(x) is a continuous
seminorm, or, equivalently, there exists a constant K such that

qn(x) =

( ∞∑

m=0

uk–1
m

∣∣Fm,n
(
A(x)

)∣∣k
)1/k

≤ K‖x‖�1 (3.3)
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for every x ∈ �1. Applying (3.3) with x = (ej
v) ∈ �1 we have, for all j, n ≥ 0,

( ∞∑

m=0

uk–1
m

∣∣b(m, n, j)
∣∣k

)1/k

≤ K ,

which gives (3.2).
Sufficiency. Suppose that (3.1) and (3.2) hold. Take x ∈ �1. Then we should show A(x) ∈

|f (Np)|k . For this, it is enough to prove that

∞∑

m=l

uk–1
m

∣∣Fm,n
(
A(x)

)
)
∣∣k → 0 as l → ∞,

uniformly in n. By applying generalized Minkowski’s inequality, we get

( ∞∑

m=l

uk–1
m

∣∣Fm,n
(
A(x)

)∣∣k
)1/k

=

( ∞∑

m=l

uk–1
m

∣∣∣∣∣

∞∑

j=0

b(m, n, j)xj

∣∣∣∣∣

k)1/k

≤
∞∑

j=0

|xj|
( ∞∑

m=l

uk–1
m

∣∣b(m, n, j)
∣∣k

)1/k

(3.4)

=
∞∑

j=0

|xj|R(l, n, j),

where

R(l, n, j) =

( ∞∑

m=l

uk–1
m

∣∣b(m, n, j)
∣∣k

)1/k

.

On the other hand, it follows from (3.2) that, for all l, n, j ≥ 0,

R(l, n, j)|xj| ≤ L1/k|xj|,

which gives

∞∑

j=0

|xj|R(l, n, j) ≤ L1/k
∞∑

j=0

|xj| < ∞.

Now, let ε > 0. Then there exists an integer j0 such that, for all l and n,

∞∑

j=j0

|xj|R(l, n, j) <
ε

2
.

Also, by (3.1), for each j,

R(l, n, j) → 0 as l → ∞ uniformly in n,
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there exists an integer l0 so that, for l ≥ l0 and all n,

j0–1∑

j=0

|xj|R(l, n, j) <
ε

2
.

So, we have, for l ≥ l0 and all n,

∞∑

j=0

|xj|R(l, n, j) < ε,

which implies, by (3.4),

( ∞∑

m=l

uk–1
m

∣∣Fm,n
(
A(x)

)∣∣k
)1/k

< ε.

This states that
∞∑

m=l

uk–1
m

∣∣Fm,n
(
A(x)

)∣∣k → 0 as l → ∞ uniformly in n. �

This completes the proof.
In the special case pm = um = 1 for all m ≥ 0, we have |f (Np)| = �̂k , and so the following

result follows from Theorem 3.2.

Corollary 3.3 A ∈ (�1, �̂k), 1 ≤ k < ∞, if and only if

(avj) ∈ �̂k for each j

and

sup
n,j

∞∑

m=0

∣∣b′(m, n, j)
∣∣k < ∞,

where

b′(m, n, j) =

⎧
⎨

⎩
anj, m = 0,

1
m(m+1)

∑m
v=1 van+v,,j, m ≥ 1.

(3.5)

Theorem 3.4 Let u = (un) be a sequence of positive numbers, and let A = (avj) be an infinite
matrix. Then A ∈ (c, |f (Np)|k), 1 ≤ k < ∞, if and only if conditions (3.1),

B = sup
n

∞∑

m=0

uk–1
m

( ∞∑

j=0

∣∣b(m, n, j)
∣∣
)k

< ∞, (3.6)

and

∞∑

m=0

uk–1
m

∣∣∣∣∣

∞∑

j=0

b(m, n, j)

∣∣∣∣∣

k

converges uniformly in n (3.7)

hold.
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Proof Necessity. Let A ∈ (c, |f (Np)|k). Then A(x) ∈ |f (Np)|k for every x ∈ c. Now, take x =
e(j) and x = e = (1, 1, . . .). Then (3.1) and (3.7) hold, respectively. Also, it follows as in the
proof of Theorem 3.2 that

( ∞∑

m=0

uk–1
m

∣∣Fm,n
(
A(x)

)∣∣k
)1/k

≤ K‖x‖∞. (3.8)

Let N be an arbitrary finite set of natural numbers, and define a sequence x by

xj =

⎧
⎨

⎩
1, j ∈ N ,

0, j /∈ N ,
(3.9)

then x ∈ c and ‖x‖ = 1. Applying (3.8) with this sequence (3.9), we have

{ ∞∑

m=0

uk–1
m

(∣∣∣∣
∑

j∈N

b(m, n, j)
∣∣∣∣

)k
}1/k

≤ K . (3.10)

Hence, it is seen from Lemma 3.1 together with pv = 1 for all v that (3.10) is equivalent to
(3.6).

Sufficiency. Suppose that (3.1), (3.6), and (3.7) hold. Given x ∈ c and say limj xj = β . Then,
by (3.7), as in Theorem 3.2,

∞∑

m=0

uk–1
m

∣∣Fmn
(
A(x)

)∣∣k =
∞∑

m=0

uk–1
m

∣∣∣∣∣

∞∑

j=0

b(m, n, j)xj

∣∣∣∣∣

k

< ∞.

Now it is enough to show that the tail of this series tends to zero uniformly in n. To see
that, we write

∞∑

m=M

uk–1
m

∣∣Fmn
(
A(x)

)∣∣k

=
∞∑

m=M

uk–1
m

∣∣∣∣∣

∞∑

j=0

βb(m, n, j) +
∞∑

j=0

b(m, n, j)(xj – β)

∣∣∣∣∣

k

≤ 2k

{ ∞∑

m=M

uk–1
m

∣∣∣∣∣

∞∑

j=0

βb(m, n, j)

∣∣∣∣∣

k

+
∞∑

m=M

uk–1
m

∣∣∣∣∣

∞∑

j=0

b(m, n, j)(xj – β)

∣∣∣∣∣

k}

= 2k{F1
M,n + F2

M,n
(
x′)}, say.

It is clear from (3.7) that F1
M,n → 0 as M → ∞ uniformly in n. On the other hand, since

xj → β , for any ε > 0, there exists an integer j0 such that

|xj – β| <
1
2

(
ε

B

)1/k

for j ≥ j0,
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which gives us, by (3.6), for all n ≥ 0,

F2
M,n

(
x′) =

∞∑

m=M

uk–1
m

∣∣∣∣∣

∞∑

j=0

b(m, n, j)(xj – β)

∣∣∣∣∣

k

≤ 2k
∞∑

m=M

uk–1
m

{∣∣∣∣∣

j0–1∑

j=0

b(m, n, j)(xj – β)

∣∣∣∣∣

k

+

∣∣∣∣∣

∞∑

j=j0

b(m, n, j)(xj – β)

∣∣∣∣∣

k}

= 2k sup
j

|xj – β|
∞∑

m=M

uk–1
m

(j0–1∑

j=0

∣∣b(m, n, j)
∣∣
)k

+
ε

2
.

By (3.1), the first term of the equality is smaller than ε/2 for sufficiently large M and all n.
This means F2

M,n → 0 as M → ∞ uniformly in n. Hence, the theorem is established.
For pm = um = 1, Theorem 3.4 also gives the characterization of the class (c, �̂k) as fol-

lows. �

Corollary 3.5 Let A = (avj) be an infinite matrix and (b′(m, n, j)) be as in (3.5). Then A ∈
(c, �̂k), 1 ≤ k < ∞, if and only if conditions (3.1),

sup
n

∞∑

m=0

( ∞∑

j=0

∣∣b′(m, n, j)
∣∣
)k

< ∞,

and

∞∑

m=0

∣∣∣∣∣

∞∑

j=0

b′(m, n, j)

∣∣∣∣∣

k

converges uniformly in n

hold.
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