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Abstract
The objective of this article is to solve pseudomonotone variational inequality
problems in a real Hilbert space. We introduce an inertial algorithm with a new
self-adaptive step size rule, which is based on the projection and contraction method.
Only one step projection is used to design the proposed algorithm, and the strong
convergence of the iterative sequence is obtained under some appropriate
conditions. The main advantage of the algorithm is that the proof of convergence of
the algorithm is implemented without the prior knowledge of the Lipschitz constant
of cost operator. Numerical experiments are also put forward to support the analysis
of the theorem and provide comparisons with related algorithms.
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1 Introduction
Let H be a real Hilbert space with the scalar product 〈·, ·〉 and the induced norm ‖ · ‖. Let
� be a nonempty, closed, and convex subset of H and A : H → H be a nonlinear operator.
Let N and R be the sets of positive integers and real numbers, respectively.

The variational inequality problem (VIP) for A on � is to find a point x∗ ∈ � such that

〈
Ax∗, x – x∗〉 ≥ 0, ∀x ∈ �. (1.1)

Problem (VIP) is an important problem of nonlinear analysis and captures multiple appli-
cations arising in diverse areas such as signal processing, transportation, machine learn-
ing, and medical imaging; see, e.g., [1–4]. From now on, the set of solutions of the varia-
tional inequality problem is denoted by VI(�, A).

Numerous methods have been developed in the literature for solving the variational
problem. For all we know, the regularized method and the projection method can be used
to solve the problem under suitable conditions. Next, we primarily research the projection
method. Particularly, a point x ∈ � is a solution of VI(�, A), the VIP is equivalent to the
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following fixed point problem:

x∗ = P�(I – λA)x∗, (1.2)

where P� : H → � is called the metric projection and λ > 0. Thus, we consider the se-
quence {xn} generated by the following iteration formula:

xn+1 = P�(I – λA)xn, (1.3)

where the operator A : H → H is η-strongly monotone, L-Lipschitz continuous, and
λ ∈ (0, 2η/L2). Then the iteration formula has strong convergence results under appropri-
ate conditions of parameters, and VI(�, A) has a unique solution. Besides, if A is inverse
strongly monotone, it has weak convergence results under certain conditions, see, e.g., [5].

To avoid this strong assumption, Korpelevich [6] proposed the extragradient method in
1976:

⎧
⎨

⎩
yn = P�(xn – λAxn),

xn+1 = P�(xn – λAyn), n ≥ 1,
(1.4)

where λ ∈ (0, 1/L) and the operator A is monotone and L-Lipschitz continuous in a Hilbert
space.

Observe that the conditions of the extragradient method are weakened, but the algo-
rithm still needs to calculate two step projections from H onto the closed convex set �. If
the feasible set � is a general closed and convex set with complicated structures, a major
expenditure of computation time and effort might be needed. In the circumstances, it is
much easier to influence the efficiency of the extragradient method.

One of the methods which mitigates this obstacle is the modified forward-backward
splitting method introduced by Tseng [7] in 2000, which officially contains one step pro-
jection per iteration onto the feasible �. Given the current iteration xn, calculate the next
iteration xn+1 via

⎧
⎨

⎩
yn = P�(xn – λAxn),

xn+1 = yn – λAyn + λAxn, n ≥ 1,
(1.5)

where λ ∈ (0, 1/L) and the operator A is monotone, L-Lipschitz continuous. The weak
convergence of the iterative sequence {xn} generated by this algorithm was proved.

The second method which conquers this hindrance is the projection and contraction
method (PCM) of He [8] and Sun [9]:

⎧
⎪⎪⎨

⎪⎪⎩

yn = P�(xn – λnAxn),

d(xn, yn) = xn – yn – λn(Axn – Ayn),

xn+1 = xn – αηnd(xn, yn), n ≥ 1,

(1.6)

where α ∈ (0, 2), λn ∈ (0, 1/L) (or λn is updated by some self-adaptive rule),

ηn =

⎧
⎨

⎩
ϕ(xn, yn)/‖d(xn, yn)‖2, if d(xn, yn) 
= 0,

0, if d(xn, yn) = 0,
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and

ϕ(xn, yn) =
〈
xn – yn, d(xn, yn)

〉
.

The method (PCM) also requires only one step projection onto the feasible set � in each
iteration, and the sequence {xn} generated by the PCM converges weakly to a point in
VI(�, A) under suitable conditions.

Next, let us mention an algorithm of the inertial form which is based upon a discrete
version of a second order dissipative dynamical system in time. In [10], Alvarez and At-
touch introduced the inertial proximal method (IPM) to find zero of a maximal monotone
operator. The method is of the form:

Find xn+1 ∈ H such that 0 ∈ λnA(xn+1) + xn+1 – xn – θn(xn – xn–1), where xn–1, xn ∈ H ,
θn ∈ [0, 1) and λn > 0. It also can be expressed in the following form:

xn+1 = JA
λn

(
xn + θn(xn – xn–1)

)
,

where JA
λn is the resolvent of A with parameter λn and the inertia is produced by the term

θn(xn – xn–1). It is worth emphasizing the advantage of the inertial method, which can
speed up the convergence properties of the original algorithm.

In 2017, Thong and Hieu [11] proposed a self-adaptive algorithm which was based on
Tseng’s extragradient method [7], the algorithm is described as follows.

Algorithm 2 (Tseng’s extragradient method)
Step 1: Choose x0 ∈ H , γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Step 2: Given the current iteration xn, compute

yn = P�(xn – λnAxn),

where λn is chosen to be the largest λ ∈ {γ ,γ l,γ l2, . . .} satisfying

λ‖Axn – Ayn‖ ≤ μ‖xn – yn‖.

If yn = xn, then stop and xn is the solution of the variational inequality problem.
Otherwise:

Step 3: Compute the new iteration xn+1 via the following iterate formula:

xn+1 = yn – λn(Ayn – Axn).

Set n := n + 1 and return to Step 2.

The advantage of this iterative algorithm is that it does not need the knowledge of the
Lipschitz constant of the operator A. It is a new self-adaptive method.

Under adequate conditions, the sequence {xn} generated by Tseng’s extragradient
method, projection and contraction method (PCM), and Algorithm 2 all converge weakly
to an element of VI(�, A). Since the weak convergence is not desirable, efforts have been
made to a lot more varieties of modifications so that the strong convergence is guaranteed.

In 2019, Thong and Hieu [12] proposed a self-adaptive algorithm which was based on
Mann-type Tseng’s extragradient method, the algorithm is as follows.
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Algorithm 3.2
Initialization: Given τ0 > 0, μ ∈ (0, 1). Let x0 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1: Compute

yn = P�(xn – τnAxn). (1.7)

If xn = yn, then stop, and yn is a solution of VI(�, A). Otherwise:
Step 2: Compute

xn+1 = (1 – αn – βn)xn + βnzn, (1.8)

and

τn+1 =

⎧
⎨

⎩
min{ μ‖xn–yn‖

‖Axn–Ayn‖ , τn}, if Axn – Ayn 
= 0,

τn, otherwise,
(1.9)

where zn = yn – τn(Ayn – Axn).
Set n := n + 1 and go to Step 1.

Note that only one step projection is required by the algorithm, and the strong conver-
gence theorem is proved. Besides, this algorithm was studied with a self-adaptive tech-
nique so that the conditions imposed on the cost operator can be relaxed.

In this paper, motivated and inspired by the results in the literature Tseng [7], Thong
and Hieu [11, 12], and by the ongoing research in these directions, we introduce a new
algorithm for solving the (VIP) involving pseudomonotone and Lipschitz continuous op-
erator. The algorithm combines the inertial technique with the projection and contraction
method (PCM), it uses a new step size rule which allows the introduced algorithm to work
without depending on the Lipschitz constant of cost operator, the step size is updated over
each iteration. The rule only needs a simple computation, this may increase the efficiency
of the algorithm, and the strong convergence of the algorithm is established. Under several
appropriate conditions on the parameters, we will prove that the sequence {xn} generated
by the new algorithm converges strongly to a minimum-norm solution.

To this end, several numerical examples are presented to illustrate the performances
and accuracies of our introduced new algorithm and provide comparisons with previously
known algorithms.

This paper is organized as follows: In Sect. 2, some definitions and lemmas are recalled
for further use. In Sect. 3, the convergence of the proposed algorithm is proved. In Sect. 4,
we consider some numerical examples and comparisons.

2 Preliminaries
Assume that H is a real Hilbert space and � is a nonempty closed convex subset of H . In
this paper, we use the following notations:

• → denotes strong convergence.
• ⇀ denotes weak convergence.
• ωw(xn) := {x| there exists {xnj}∞j=0 ⊂ {xn}∞n=0 such that xnj ⇀ x} denotes the weak cluster

point set of {xn}∞n=0.
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Lemma 2.1 ([13]) Let H be a real Hilbert space. For all x, y ∈ H and λ ∈R, we have
(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;

(ii) ‖λx + (1 – λ)y‖2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2;
(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Next, we present some concepts of an operator.

Definition 2.2 ([14]) An operator A : H → H is said to be:
(i) monotone if

〈x – y, Ax – Ay〉 ≥ 0, ∀x, y ∈ H ;

(ii) pseudomonotone if

〈Ay, x – y〉 ≥ 0 ⇒ 〈Ax, x – y〉 ≥ 0, ∀x, y ∈ H ;

(iii) L-Lipschitz continuous with L > 0, if

‖Ax – Ay‖ ≤ L‖x – y‖, ∀x, y ∈ H ;

(iv) sequentially weakly continuous if, for each sequence {xn}, we have that {xn}
converges weakly to x implies {A(xn)} converges weakly to Ax.

From Definition 2.2, we can see that every monotone operator A is pseudomonotone,
but the converse is not true. Next, we present an example of the variational inequality
problem in an infinite dimensional space.

Example 2.3 Let H be a Hilbert space,

H = l2 :=

{

u = (u1, u2, . . . , ui, . . .) :
∞∑

i=1

|ui|2 < ∞
}

.

The inner product and the norm on H are given as follows:

〈u, v〉 =
∞∑

i=1

uivi, ‖u‖ =
√〈u, u〉

for any u = (u1, u2, . . . , ui, . . .), v = (v1, v2, . . . , vi, . . .) ∈ H . Let α,β ∈ R be such that β > α >
β

2 > 0, and let

� =
{

u = (u1, u2, . . . , ui, . . .) ∈ H : |ui| ≤ 1
i

,∀i ≥ 1
}

, Au =
(
β – ‖u‖)u.

Since 0 ∈ VI(�, A), we can see that VI(�, A) 
= ∅.
Besides, we let

�α :=
{

u ∈ H : ‖u‖ ≤ α
}

.
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It is easy to see that A is pseudomonotone, (β + 2α)-Lipschitz continuous on �α and A
fails to be a monotone mapping on H (see [15], Example 4.1).

Next, we show that � ⊂ �α . Let u = (u1, u2, . . . , ui, . . .) ∈ �. From that we can get

‖u‖2 =
∞∑

i=1

|ui|2 ≤
∞∑

i=1

1
i2 = 1 +

∞∑

i=2

1
i2 ≤ 1 +

∞∑

i=2

1
i2 – 1

= 1 +
3
4

=
7
4

,

which implies that ‖u‖ ≤ α, thus u ∈ �α and � ⊂ �α .
Moreover, since � ⊂ �α , we know that A is pseudomonotone and (β + 2α)-Lipschitz

continuous on �. Besides, � is compact and A is continuous on H , thus we have that A is
sequentially weakly continuous on � (see [16], Example 1).

In the following, we gather some characteristic properties of P�.

Lemma 2.4 ([17]) Let � be a closed convex subset in a real Hilbert space H , x ∈ H . Then
(i) ‖P�x – P�y‖2 ≤ 〈x – y, P�x – P�y〉, ∀y ∈ �;

(ii) ‖x – P�x‖2 + ‖y – P�x‖2 ≤ ‖x – y‖2, ∀y ∈ �.

Lemma 2.5 ([17]) Let H be a real Hilbert space and � be a nonempty closed convex subset
of H . Given x ∈ H and z ∈ �, then z = P�x if and only if there holds the inequality 〈x – z, y –
z〉 ≤ 0, ∀y ∈ �.

Lemma 2.6 (Minty [18]) Consider problem VI(�, A) with � a nonempty, closed, convex
subset of a real Hilbert space H and A : � → H pseudomonotone and continuous. Then x∗

is a solution of VI(�, A) if and only if 〈x – x∗, Ax〉 ≥ 0, ∀x ∈ �.

Lemma 2.7 ([19]) Let {an} be sequences of nonnegative real numbers. Suppose that

an+1 ≤ (1 – αn)an + αnδn

for each n > 0, where the sequence {αn} ⊂ (0, 1),
∑∞

n=1 αn = ∞, lim supn→∞ δn ≤ 0.
Then limn→∞ an = 0.

Lemma 2.8 ([20]) Let {an} be a sequence of nonnegative real numbers such that there ex-
ists a subsequence {anj} of {an} such that anj < anj+1 for all j ∈ N. Then there exists a non-
decreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following properties are
satisfied by all (sufficiently large) number k ∈N: amk ≤ amk +1 and ak ≤ amk +1. In fact, mk is
the largest number of n in the set {1, 2, . . . , k} such that an < an+1.

3 Main results
In this section, we propose a strongly convergent algorithm for solving pseudomonotone
variational inequality problems. Under mild assumptions, the sequence generated by the
proposed method converges strongly to p ∈ VI(�, A), where ‖p‖ = min{‖z‖ : z ∈ VI(�, A)}.
Our algorithm is described as follows.
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Algorithm 1 Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1), α ∈ (0, 2), θ ∈ (0, 1). Let x0, x1 ∈ � be arbi-
trarily fixed. Calculate xn+1 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + θn(xn – xn–1),

yn = P�(wn – τnAwn),

dn = wn – yn – τn(Awn – Ayn),

zn = wn – αηndn,

xn+1 = (1 – αn – βn)wn + βnzn,

(3.1)

where the sequences {εn}, {θn}, {τn}, {ηn}, {αn}, and {βn} satisfy the following conditions:
(a) {αn} ⊂ (0, 1), limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(b) εn = ◦(αn), i.e., limn→∞(εn/αn) = 0;
(c) Choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

⎧
⎨

⎩
min{θ , εn

‖xn–xn–1‖ }, if xn 
= xn–1,

θ , otherwise;
(3.2)

(d) τn is chosen to be the largest τ ∈ {γ ,γ l,γ l2, . . .} satisfying

τ‖Awn – Ayn‖ ≤ μ‖wn – yn‖; (3.3)

(e)

ηn =

⎧
⎨

⎩

〈wn–yn ,dn〉
‖dn‖2 , if dn 
= 0,

0, if dn = 0;

(f ) {βn} ⊂ [a, b] ⊂ (0, 1).

The following lemmas are important to prove the convergence of algorithm.

Lemma 3.1 ([11]) The Armijo-like search rule is well defined and

min

{
γ ,

μl
L

}
≤ τn ≤ γ .

Lemma 3.2 Let {zn} be a sequence generated by Algorithm 1. For all p ∈ VI(�, A), we have

‖zn – p‖2 ≤ ‖wn – p‖2 –
2 – α

α
‖wn – zn‖2. (3.4)

Proof If dn0 = 0, then zn0 = wn0 and inequality (3.4) holds.
Next, we consider dn 
= 0 for each n ≥ 1. Let p ∈ VI(�, A), we have

‖zn – p‖2 = ‖wn – αηndn – p‖2

= ‖wn – p‖2 – 2αηn〈wn – p, dn〉 + α2η2
n‖dn‖2. (3.5)
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By the definition of dn, we get

〈wn – p, dn〉 = 〈wn – yn, dn〉 + 〈yn – p, dn〉
= 〈wn – yn, dn〉 +

〈
yn – p, wn – yn – τn(Awn – Ayn)

〉
. (3.6)

Since yn = PC(wn – τnAwn), we obtain

〈wn – yn – τnAwn, yn – p〉 ≥ 0. (3.7)

Besides, p ∈ VI(�, A), yn ∈ �, we have

〈Ap, yn – p〉 ≥ 0.

Then, by the pseudomonotonicity of A, we get

〈Ayn, yn – p〉 ≥ 0. (3.8)

By (3.6), (3.7), and (3.8), we have

〈wn – p, dn〉 ≥ 〈wn – yn, dn〉. (3.9)

Combining (3.5) and (3.9), we obtain

‖zn – p‖2 ≤ ‖wn – p‖2 – 2αηn〈wn – yn, dn〉 + α2η2
n‖dn‖2. (3.10)

Since dn 
= 0, we have ηn = 〈wn–yn ,dn〉
‖dn‖2 , which implies that ηn‖dn‖2 = 〈wn – yn, dn〉.

Thus, we obtain

‖zn – p‖2 ≤ ‖wn – p‖2 – 2αηn〈wn – yn, dn〉 + α2ηn〈wn – yn, dn〉
= ‖wn – p‖2 – (2 – α)αηn〈wn – yn, dn〉
= ‖wn – p‖2 – (2 – α)αη2

n‖dn‖2

= ‖wn – p‖2 – (2 – α)α‖ηndn‖2

≤ ‖wn – p‖2 –
2 – α

α
‖wn – zn‖2.

This completes the proof. �

Lemma 3.3 Let {wn} be a sequence generated by Algorithm 1, then there exists n0 ≥ 1 such
that

‖wn – yn‖2 ≤ (1 + μ)2

[(1 – μ)α]2 ‖zn – wn‖2, ∀n ≥ n0. (3.11)

Proof Clearly, from the definition of dn, we have

‖dn‖ =
∥∥wn – yn – τn(Awn – Ayn)

∥∥
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≥ ‖wn – yn‖ – τn‖Awn – Ayn‖
≥ ‖wn – yn‖ – μ‖wn – yn‖
= (1 – μ)‖wn – yn‖.

On the one hand, we can obtain

‖dn‖ ≤ (1 + μ)‖wn – yn‖,

thus, we have

1
‖dn‖2 ≥ 1

(1 + μ)2‖wn – yn‖2 .

Besides,

〈wn – yn, dn〉 =
〈
wn – yn, wn – yn – τn(Awn – Ayn)

〉

= ‖wn – yn‖2 – τn〈wn – yn, Awn – Ayn〉
≥ ‖wn – yn‖2 – τn‖wn – yn‖‖Awn – Ayn‖
≥ ‖wn – yn‖2 – μ‖wn – yn‖‖wn – yn‖
= (1 – μ)‖wn – yn‖2.

Thus, we obtain

ηn =
〈wn – yn, dn〉

‖dn‖2 ≥ 1 – μ

(1 + μ)2 , ∀n ≥ n0. (3.12)

On the other hand, we have

ηn‖dn‖2 = 〈wn – yn, dn〉 ≥ (1 – μ)‖wn – yn‖2, ∀n ≥ n0.

Thus,

‖wn – yn‖2 ≤ 1
1 – μ

ηn‖dn‖2

=
1

1 – μ
‖αηndn‖2 1

α2
1
ηn

=
1

1 – μ
‖zn – wn‖2 1

α2
1
ηn

. (3.13)

Also, from (3.12) and (3.13), we can get

‖wn – yn‖2 ≤ 1
1 – μ

‖zn – wn‖2 1
α2

(1 + μ)2

1 – μ

=
(1 + μ)2

[(1 – μ)α]2 ‖zn – wn‖2,

which leads to the desired conclusion. �
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Theorem 3.4 Let A : � → H be pseudomonotone, L-Lipschitz continuous, and sequen-
tially weakly continuous on a bounded subset of H . Assume that VI(�, A) 
= ∅, then the se-
quence {xn} generated by Algorithm 1 converges strongly to an element p ∈ VI(�, A), where
‖p‖ = min{‖z‖ : z ∈ VI(�, A)}.

Proof We divide the proof into several claims.
Claim 1. Prove that the sequence {xn} is bounded. Let p ∈ VI(�, A), we have

‖xn+1 – p‖ =
∥∥(1 – αn – βn)wn + βnzn – p

∥∥

=
∥∥(1 – αn – βn)(wn – p) + βn(zn – p) – αnp

∥∥

≤ (1 – αn – βn)‖wn – p‖ + βn‖zn – p‖ + αn‖p‖.

Note that, from Lemma 3.2, we have

‖xn+1 – p‖ ≤ (1 – αn – βn)‖wn – p‖ + βn‖wn – p‖ + αn‖p‖
= (1 – αn)‖wn – p‖ + αn‖p‖
= (1 – αn)

∥∥xn – p + θn(xn – xn–1)
∥∥ + αn‖p‖

≤ (1 – αn)‖xn – p‖ + θn(1 – αn)‖xn – xn–1‖ + αn‖p‖
= (1 – αn)‖xn – p‖ + αn

(
σn + ‖p‖), (3.14)

where

σn = (1 – αn)
θn

αn
‖xn – xn–1‖.

From εn = ◦(αn) and the definitions of θn, θ̄n given in (3.2), we have

lim
n→∞σn = 0.

Thus, the sequence {σn} is bounded. Setting M = supn≥1 σn + ‖p‖, by (3.14), we get

‖xn+1 – p‖ ≤ (1 – αn)‖xn – p‖ + αnM ≤ max
{‖xn – p‖, M

}

for each n ≥ n0. By induction, we can obtain that

‖xn – p‖ ≤ max
{‖xn0 – p‖, M

}
.

Therefore, the sequence {xn} is bounded.
Claim 2. For each p ∈ VI(�, A) and n ≥ n0, prove

βn
2 – α

α
‖wn – zn‖2 ≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + θn(1 – αn)

(‖xn – p‖2 – ‖xn–1 – p‖2)

+ 2θn(1 – αn)‖xn – xn–1‖2 + αn‖p‖2.
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From the definition of wn, we have

‖wn – p‖2 =
∥∥(1 + θn)(xn – p) – θn(xn–1 – p)

∥∥2

= (1 + θn)‖xn – p‖2 – θn‖xn–1 – p‖2 + θn(1 + θn)‖xn – xn–1‖2

≤ (1 + θn)‖xn – p‖2 – θn‖xn–1 – p‖2 + 2θn‖xn – xn–1‖2

= ‖xn – p‖2 + θn
(‖xn – p‖2 – ‖xn–1 – p‖2) + 2θn‖xn – xn–1‖2. (3.15)

Combining the convexity of ‖ · ‖2, Lemma 3.2, and (3.15), we obtain

‖xn+1 – p‖2 =
∥∥(1 – αn – βn)(wn – p) + βn(zn – p) + αn(–p)

∥∥2

≤ (1 – αn – βn)‖wn – p‖2 + βn‖zn – p‖2 + αn‖p‖2

≤ (1 – αn – βn)‖wn – p‖2 + αn‖p‖2 + βn

(
‖wn – p‖2 –

2 – α

α
‖wn – zn‖2

)

= (1 – αn)‖wn – p‖2 + αn‖p‖2 – βn
2 – α

α
‖wn – zn‖2

≤ (1 – αn)‖xn – p‖2 + (1 – αn)θn
(‖xn – p‖2 – ‖xn–1 – p‖2)

+ 2θn(1 – αn)‖xn – xn–1‖2 + αn‖p‖2 – βn
2 – α

α
‖wn – zn‖2

≤ ‖xn – p‖2 + θn(1 – αn)
(‖xn – p‖2 – ‖xn–1 – p‖2)

+ 2θn(1 – αn)‖xn – xn–1‖2 + αn‖p‖2 – βn
2 – α

α
‖wn – zn‖2,

which leads to the desired conclusion.
Claim 3. For each p ∈ VI(�, A) and n ≥ n0, prove

‖xn+1 – p‖2 ≤ (1 – αn)‖wn – p‖2 + αn
[
2βn‖wn – zn‖‖xn+1 – p‖ + 2〈p, p – xn+1〉

]
.

Setting un = (1 – βn)wn + βnzn, we have

‖wn – un‖ = βn‖wn – zn‖ (3.16)

and

‖un – p‖ =
∥∥(1 – βn)(wn – p) + βn(zn – p)

∥∥

≤ (1 – βn)‖wn – p‖ + βn‖zn – p‖
≤ ‖wn – p‖. (3.17)

It follows from (3.16) and (3.17) that

‖xn+1 – p‖2 =
∥∥(1 – αn – βn)wn + βnzn – p

∥∥2

=
∥∥(1 – βn)wn + βnzn – αnwn – p

∥∥2

= ‖un – αnwn – p‖2
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=
∥∥(1 – αn)(un – p) – αn(wn – un) – αnp

∥∥2

≤ (1 – αn)2‖un – p‖2 – 2
〈
xn+1 – p,αn(wn – un) + αnp

〉

= (1 – αn)2‖un – p‖2 + 2αn〈wn – un, p – xn+1〉 + 2αn〈p, p – xn+1〉
≤ (1 – αn)‖un – p‖2 + 2αn‖wn – un‖‖xn+1 – p‖ + 2αn〈p, p – xn+1〉
≤ (1 – αn)‖wn – p‖2 + αn

[
2βn‖wn – zn‖‖xn+1 – p‖ + 2〈p, p – xn+1〉

]
,

which leads to the desired conclusion.
Claim 4. The sequence {‖xn – p‖2} converges to zero by considering two possible cases

on the sequence {‖xn – p‖2}.
Case 1: Suppose that there exists N ∈N such that ‖xn+1 – p‖2 ≤ ‖xn – p‖2, ∀n > N .
Then we know that limn→∞ ‖xn – p‖2 exists. From Claim 2, we can obtain

βn
2 – α

α
‖wn – zn‖2 ≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + θn(1 – αn)

(‖xn – p‖2 – ‖xn–1 – p‖2)

+ 2θn(1 – αn)‖xn – xn–1‖2 + αn‖p‖2. (3.18)

From α ∈ (0, 2), {βn} ⊂ [a, b] ⊂ (0, 1), the facts that θn‖xn – xn–1‖ → 0 and limn→∞ αn = 0,
we have

‖wn – zn‖ → 0, n → ∞, (3.19)

and

‖wn – xn‖ → 0, n → ∞. (3.20)

Using Lemma 3.3 and (3.19), we can get

‖wn – yn‖ → 0, n → ∞. (3.21)

By the definition of wn, we obtain

‖wn – p‖2 ≤ (‖xn – p‖ + θn‖xn – xn–1‖
)2

= ‖xn – p‖2 + θ2
n‖xn – xn–1‖2 + 2θn‖xn – p‖‖xn – xn–1‖

≤ ‖xn – p‖2 + θn‖xn – xn–1‖2 + 2θn‖xn – p‖‖xn – xn–1‖
≤ ‖xn – p‖2 + 3Kθn‖xn – xn–1‖, (3.22)

where K = supn≥1{‖xn – xn–1‖,‖xn – p‖}.
Combining limn→∞ αn = 0 and (3.19), we obtain

‖xn+1 – wn‖ ≤ αn‖wn‖ + βn‖zn – wn‖ → 0, n → ∞. (3.23)

By (3.20) and (3.23), we get

‖xn+1 – xn‖ → 0, n → ∞. (3.24)
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From Claim 3 and (3.22), we have

‖xn+1 – p‖2 ≤ (1 – αn)‖xn – p‖2 + αn

[
3K(1 – αn)

θn

αn
‖xn – xn–1‖

+ 2βn‖wn – zn‖‖xn+1 – p‖ + 2〈p, p – xn+1〉
]

,

or

‖xn+1 – p‖2 ≤ (1 – αn)‖xn – p‖2 + αnδn, (3.25)

where

δn = 3K(1 – αn)
θn

αn
‖xn – xn–1‖ + 2βn‖wn – zn‖‖xn+1 – p‖ + 2〈p, p – xn+1〉.

Since {xn} is bounded, ‖xn+1 – xn‖ → 0, n → ∞, there exists a subsequence {xnj} of {xn}
such that xnj ⇀ q and

lim sup
n→∞

〈p, p – xn+1〉 = lim sup
n→∞

〈p, p – xn〉 = lim
j→∞〈p, p – xnj〉 = 〈p, p – q〉,

from (3.20), we get wnj ⇀ q.
Next, we show that q ∈ VI(�, A). By yn = P�(wn – τnAwn), we have

〈wnj – τnj Awnj – ynj , w – ynj〉 ≤ 0, ∀w ∈ �.

From that, we infer that

〈Awnj , w – wnj〉 ≥ 1
τnj

〈wnj – ynj , w – ynj〉 + 〈Awnj , ynj – wnj〉, ∀w ∈ �.

By (3.21) and lim infj→∞ τnj > 0, we take the limit as j → ∞, then we can obtain

lim inf
j→∞ 〈Awnj , w – wnj〉 ≥ 0. (3.26)

Then we opt for a positive real sequence {εj} decreasing and tending to 0. For each εj, we
denote by mj the smallest positive integer such that

〈Awni , w – wni〉 + εj ≥ 0, ∀i ≥ mj, (3.27)

where the existence of mj follows from (3.26). Since {εj} is decreasing, we can get that
sequence {mj} is increasing. For each j, A(wnmj

) 
= 0, set

tnmj
=

A(wnmj
)

‖A(wnmj
)‖2 .

It follows from the pseudomonotonicity of A that

〈
A(w + εjtnmj

), w + εjtnmj
– wnmj

〉 ≥ 0. (3.28)
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Besides, we have that {wnj} converges weakly to q as j → ∞. Since A is sequentially weakly
continuous on �, we have {A(wnj )} converges weakly to A(q). Assume ‖A(q)‖ 
= 0 (other-
wise, q is a solution). Since the norm mapping is sequentially weakly lower semicontinu-
ous, thus we can obtain

lim inf
j→∞

∥∥A(wnj )
∥∥ ≥ ∥∥A(q)

∥∥.

From {wnmj
} ⊂ {wnj} and εj → 0 j → ∞, we have

0 =
0

‖A(q)‖ ≥ lim
j→∞

εj

‖A(wnmj
)‖ = lim

j→∞‖εjtnmj
‖ ≥ 0.

Furthermore, taking the limit as j → ∞, then from (3.28) we have 〈A(w), w – q〉 ≥ 0.
Thus, by Lemma 2.6, we can obtain that q ∈ VI(�, A). Therefore, we have ωw(xn) ⊂

VI(�, A).
From the fact that p = PVI(�,A)0, we obtain

lim sup
n→∞

〈p, p – xn+1〉 ≤ 0.

Thus, from (3.25) and Lemma 2.7, we have limn→∞ ‖xn – p‖2 = 0. This implies that the
sequence {xn} converges strongly to p.

Case 2: There exists a subsequence {‖xnj – p‖2} of {‖xn – p‖2} such that ‖xnj – p‖2 <
‖xnj+1 – p‖2 for all j ∈ N. From Lemma 2.8, there exists a nondecreasing sequence {mk} of
N such that limk→∞ mk = ∞ and the following inequalities hold for all k ∈N:

‖xmk – p‖2 ≤ ‖xmk +1 – p‖2 and ‖xk – p‖2 ≤ ‖xmk +1 – p‖2. (3.29)

It follows from Claim 2 and (3.29) that

βmk

2 – α

α
‖wmk – zmk ‖2

≤ ‖xmk – p‖2 – ‖xmk +1 – p‖2 + θmk (1 – αmk )
(‖xmk – p‖2 – ‖xmk –1 – p‖2)

+ 2θmk (1 – αmk )‖xmk – xmk –1‖2 + αmk ‖p‖2

≤ θmk (1 – αmk )
(‖xmk – p‖2 – ‖xmk –1 – p‖2)

+ 2θmk (1 – αmk )‖xmk – xmk –1‖2 + αmk ‖p‖2.

Besides, we have

‖xmk – p‖2 – ‖xmk –1 – p‖2 =
(‖xmk – p‖ – ‖xmk –1 – p‖)(‖xmk – p‖ + ‖xmk –1 – p‖)

≤ ‖xmk – xmk –1‖
(‖xmk – p‖ + ‖xmk –1 – p‖).

Thus,

βmk

2 – α

α
‖wmk – zmk ‖2 ≤ θmk (1 – αmk )‖xmk – xmk –1‖

(‖xmk – p‖ + ‖xmk –1 – p‖)

+ 2θmk (1 – αmk )‖xmk – xmk –1‖2 + αmk ‖p‖2.
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Since θmk (1 – αmk )‖xmk – xmk –1‖ → 0, limk→∞ αmk = 0, we get

‖wmk – zmk ‖ → 0, k → ∞. (3.30)

By similar arguments as those in Case 1, we have

‖xmk +1 – p‖2 ≤ (1 – αmk )‖xmk – p‖2 + αmk

[
3K(1 – αmk )

θmk

αmk

‖xmk – xmk –1‖

+ 2βmk ‖wmk – zmk ‖‖xmk +1 – p‖ + 2〈p, p – xmk +1〉
]

. (3.31)

Since ‖xmk – p‖2 ≤ ‖xmk +1 – p‖2 and αmk > 0, we get

‖xmk – p‖2 ≤ 3K(1 – αmk )
θmk

αmk

‖xmk – xmk –1‖

+ 2βmk ‖wmk – zmk ‖‖xmk +1 – p‖ + 2〈p, p – xmk +1〉.

As proved in the first case, we obtain

lim sup
k→∞

〈p, p – xmk +1〉 ≤ 0.

Since θmk
αmk

‖xmk – xmk –1‖ → 0, thus by (3.30) and (3.31) we have

lim sup
k→∞

‖xmk – p‖2 ≤ 0.

From (3.31) we get

lim sup
k→∞

‖xmk +1 – p‖2 ≤ 0.

Since ‖xk – p‖2 ≤ ‖xmk +1 – p‖2, thus lim supk→∞ ‖xk – p‖2 ≤ 0, that is, xk → p.
The proof is completed. �

4 Numerical experiments
In this section, we consider some numerical examples to evaluate the efficiency and ad-
vantages of our proposed algorithm in comparison with the well-known Algorithm 2
[11], Algorithm 3.2 [12]. The projections over � are computed effectively by the func-
tion quadprog in Matlab 7.0 Optimization Toolbox. In the following, we give the specific
examples.

The choice of parameters for each algorithm is listed in the following:
• Algo.2 : γ = 1, l = μ = 0.5;
• Algo.3.2 : τ0 = 1, μ = 0.9, αn = 1

(n+1)p (p = 0.7 or 1), βn = 1–αn
2 ;

• Algo.1 : γ = 1, l = μ = 0.3, θ = 0.35, θn = θ̄n, α = 1.8, αn = 1
(n+1)p (p = 0.7 or 1), βn = 1–αn

2 .

Example 4.1 Let � = [–2, 5], H = R. We consider the problem for A : � →R defined by

Ax := x + sin x.
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Table 1 Experiment with αn = 1
(n+1)0.7

for Example 4.1

x1 ε Algo.1 Algo.3.2 Algo.2

Iter. Time [s] Iter. Time [s] Iter. Time [s]

1 10–3 10 0.0012 28 0.0062 25 0.0059
10–5 17 0.0051 68 0.0112 41 0.0072
10–7 23 0.0059 119 0.0109 57 0.0076

2 10–3 10 0.0015 32 0.0066 28 0.0061
10–5 18 0.0048 73 0.0072 44 0.0064
10–7 23 0.0058 126 0.0084 60 0.0063

3 10–3 11 0.0055 35 0.0073 28 0.0058
10–5 18 0.0051 77 0.0104 44 0.0078
10–7 25 0.0053 131 0.0118 60 0.0060

Table 2 Experiment with αn = 1
n+1 for Example 4.1

x1 ε Algo.1 Algo.3.2 Algo.2

Iter. Time [s] Iter. Time [s] Iter. Time [s]

1 10–3 12 0.0060 73 0.0097 25 0.0059
10–5 21 0.0063 156 0.0116 41 0.0072
10–7 32 0.0067 246 0.0120 57 0.0076

2 10–3 9 0.0055 82 0.0118 28 0.0061
10–5 21 0.0066 166 0.0123 44 0.0064
10–7 32 0.0072 257 0.0126 60 0.0063

3 10–3 14 0.0051 88 0.0119 28 0.0058
10–5 22 0.0057 173 0.0129 44 0.0078
10–7 33 0.0085 264 0.0130 60 0.0060

For all x, y ∈ �, we have

‖Ax – Ay‖ = ‖x + sin x – y – sin y‖ ≤ ‖x – y‖ + ‖ sin x – sin y‖ ≤ 2‖x – y‖,

〈Ax – Ay, x – y〉 = (x + sin x – y – sin y)(x – y) = (x – y)2 + (sin x – sin y)(x – y) ≥ 0.

Therefore, the operator A is monotone and 2-Lipschitz continuous, and A meets the needs
of the topic. Besides, VI(�, A) = {0} 
= ∅, the starting point is x0 = x1 = 1, 2, 3 ∈ �, we denote
x∗ = 0, and take ‖xn –x∗‖ ≤ 10–i (i = 3,5,7) to terminate Algorithm 1. The numerical results
for the example are shown in Tables 1, 2.

From Tables 1, 2, we can easily observe that Algorithm 1 converges for a shorter iterate
number than the previously studied Algorithm 2 [11] and Algorithm 3.2 [12].

Example 4.2 We consider the linear operator A : Rm → Rm (m = 10, 20, 30) in the form
A(x) = Mx + q [20, 21], where

M = NNT + S + D,

N is an m × m matrix, S is an m × m skew-symmetric matrix, D is an m × m diagonal
matrix whose diagonal entries are nonnegative, and q ∈ Rm is a vector, therefore M is
positive definite. The feasible set is

� =
{

x = (x1, . . . , xm) ∈ R
m : –2 ≤ xi ≤ 5, i = 1, 2, . . . , m

}
.
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Figure 1 Experiment withm = 10 for Example 4.2

Figure 2 Experiment withm = 20 for Example 4.2

Obviously, the operator A is monotone and Lipschitz continuous. For experiments, q is
equal to zero vector, all the entries of N , S are generated randomly and uniformly in [–2, 2],
and the diagonal entries of D are in (0, 2). We choose x0 = x1 = (1, 1, . . . , 1) ∈ Rm, αn =

1
(n+1)p (p = 0.7). Besides, it is easy to see that VI(�, A) = {(0, 0, . . . , 0)T } 
= ∅, we denote x∗ =
(0, 0, . . . , 0)T and take ‖xn – x∗‖ ≤ 10–4 as the stopping criterion. The results are described
in Figs. 1, 2, 3.

Figures 1, 2, 3 have conformed that the proposed algorithm has the competitive advan-
tage over existing Algorithm 2 [11] and Algorithm 3.2 [12].

Example 4.3 Let H be a functional space L2([0, 1]) with the inner product 〈x, y〉 :=
∫ 1

0 x(t)y(t) dt and the induced norm ‖x‖ := (
∫ 1

0 |x(t)|2 dt) 1
2 . The mapping A is defined by

(Ax)(t) = max
{

0, x(t)
}

=
x(t) + |x(t)|

2
, ∀x ∈ H .
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Figure 3 Experiment withm = 30 for Example 4.2

It is easy to show that the operator A is monotone and 1-Lipschitz continuous:

〈Ax – Ay, x – y〉 =
∫ 1

0

(
Ax(t) – Ay(t)

)(
x(t) – y(t)

)
dt

=
∫ 1

0

x(t) – y(t) + |x(t)| – |y(t)|
2

(
x(t) – y(t)

)
dt

=
∫ 1

0

1
2
[(

x(t) – y(t)
)2 +

(∣∣x(t)
∣∣ –

∣∣y(t)
∣∣)(x(t) – y(t)

)]
dt

≥ 0.

Thus, the operator A is monotone.

‖Ax – Ay‖2 =
∫ 1

0

∣∣Ax(t) – Ay(t)
∣∣2 dt

=
∫ 1

0

∣∣∣∣
x(t) – y(t) + |x(t)| – |y(t)|

2

∣∣∣∣

2

dt

=
1
4

∫ 1

0

∣∣x(t) – y(t)+
∣∣x(t)

∣∣–
∣∣y(t)

∣∣∣∣2 dt

≤
∫ 1

0

∣∣x(t) – y(t)
∣∣2 dt

= ‖x – y‖2.

Therefore, the operator A is 1-Lipschitz continuous.
The feasible set is the unit ball � := {x ∈ H : ‖x‖ ≤ 1}. We choose x1

0 = x1
1 = t2, x2

0 = x2
1 =

2t

16 , x3
0 = x3

1 = e–t , x4
0 = x4

1 = t + 0.5 cos t as initial values, and we use the condition ‖xn – x∗‖ ≤
10–i, (i = 2, 3) as the stopping criterion, where x∗(t) = 0 is the solution founded by the
algorithm. The numerical results are presented in Tables 3, 4. We mainly consider the
iteration step and iteration time to verify its effectiveness.
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Table 3 Experiment with αn = 1
(n+1)0.7

for Example 4.3

x0 x1 ε Algo.1

Iter. Time [s]

t2 t2 10–2 7 0.0029
10–3 12 0.0132

2t
16

2t
16 10–2 3 0.0083

10–3 9 0.0172

e–t e–t 10–2 8 0.0168
10–3 14 0.0181

t + 0.5 cos t t + 0.5 cos t 10–2 9 0.0189
10–3 15 0.0229

Table 4 Experiment with αn = 1
n+1 for Example 4.3

x0 x1 ε Algo.1

Iter. Time [s]

t2 t2 10–2 4 0.0123
10–3 37 0.0321

2t
16

2t
16 10–2 4 0.0140

10–3 13 0.0259

e–t e–t 10–2 7 0.0202
10–3 29 0.0292

t + 0.5 cos t t + 0.5 cos t 10–2 8 0.0212
10–3 27 0.0301

5 Conclusion
In this paper, we first present a new algorithm, which is based on inertial projection
and contraction method for solving pseudomonotone variational inequality problems in
Hilbert space. Under suitable conditions, we have proved the convergence of Algorithm 1,
it is a strong convergence iterative method with self-adaptive technique. More so, it is
worth underlining that Algorithm 1 does not require the information of Lipschitz con-
stant of the operator A. Finally, some numerical experiments are given to illustrate the
advantages of the proposed algorithm compared with previously known algorithms.
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