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1 Introduction
We introduce and study a new class of coupled systems of mixed-order fractional dif-
ferential equations equipped with nonlocal multi-point coupled boundary conditions. In
precise terms, we consider the following fully coupled system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDξ

a+ x(t) = ϕ(t, x(t), y(t)), 1 < ξ ≤ 2, t ∈ [a, b],
CDζ

a+ y(t) = ψ(t, x(t), y(t)), 2 < ζ ≤ 3, t ∈ [a, b],

x(a) = 0, x(b) = p1y(θ3),

y(θ1) = 0, y(θ2) = 0, y(b) = p2x(θ3), a < θ1 < θ2 < θ3 < b,

(1.1)

where CDχ is the Caputo fractional derivative of order χ ∈ {ξ , ζ }, ϕ,ψ : [a, b]×R×R→R

are given functions, and pi,∈R, i = 1, 2, 3.
The tools of fractional calculus are found to be of great help in modeling several real-

world problems appearing in scientific and technical disciplines. For examples and de-
tails, see financial economics [1], ecology [2], immune systems [3], chaotic synchroniza-
tion [4, 5], etc. The widespread interest in this branch of mathematical analysis motivated
many researchers to explore it further. In particular, the area of fractional order boundary
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value problems has been extensively studied. For some recent works on nonlocal nonlin-
ear and integral boundary value problems involving different types of fractional differen-
tial equations, for instance, see [6–17]. On the other hand, fractional differential systems
equipped with a variety of boundary conditions also received great attention in view of
the occurrence of such systems in the mathematical modeling of several physical and en-
gineering processes [18–20]. Concerning the theoretical development of these systems,
one can find the details in the articles [21–31].

Recently, in [32], the authors studied a new class of coupled systems of mixed-order
fractional differential equations equipped with nonlocal multi-point coupled boundary
conditions of the form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dξ x(t) = ϕ(t, x(t), y(t)), t ∈ [a, b], 0 < ξ < 1,

Dζ y(t) = ψ(t, x(t), y(t)), t ∈ [a, b], 1 < ζ < 2,

px(a) + qy(b) = x0,

y(a) = 0, y′(b) =
∑m

i=1 δix(σi), a < σi < b,

(1.2)

where Dχ is the Caputo fractional derivative of order χ ∈ {ξ , ζ }, ϕ,ψ : [a, b] ×R×R →R

are given functions p, q, δi ∈R, i = 1, 2, . . . , m. In [33], the existence and uniqueness of solu-
tions for the following system were investigated by using the Leray–Schauder alternative
and the contraction mapping principle:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDξ

a+ x(t) = ϕ(t, x(t), y(t)), 0 < ξ ≤ 1, t ∈ [a, b],
cDζ

a+ y(t) = ψ(t, x(t), y(t)), 1 < ζ ≤ 2, t ∈ [a, b],

px(a) + qy(b) = y0 + x0
∫ b

a (x(s) + y(s)) ds,

y(a) = 0, y′(b) =
∑m

i=1 δix(σi) + λ
∫ b
τ

x(s) ds,

a < σ1 < σ2 < · · · < σm < τ < b,

(1.3)

where cDχ is the Caputo fractional derivative of order χ ∈ {ξ , ζ }, ϕ,ψ : [a, b]×R×R →R

are given functions, p, q, δi, x0, y0 ∈R, i = 1, 2, . . . , m.
In the present research, inspired by the published articles [32] and [33], we consider

a coupled system (1.1) consisting of fractional differential equations of two different
fractional-orders: (1, 2] and (2, 3] on an arbitrary domain supplemented with a new set of
coupled nonlocal multi-point boundary conditions. We emphasize that the present study
is novel and more general, and contributes significantly to the existing literature on the
topic. Moreover, several new results follow as special cases of the results presented in this
work (see Sect. 5).

The rest of the paper is organized as follows: In Sect. 2 we recall some definitions and
prove a basic lemma helping us to transform system (1.1) into equivalent integral equa-
tions. The main results are established in Sect. 3. An existence result is proved via the
Leray–Schauder alternative, and the existence of a unique solution is established by using
Banach’s contraction mapping principle. Examples illustrating the obtained results are also
constructed in Sect. 4.

2 Preliminaries
Let us begin this section with some definitions related to our study [34].
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Definition 2.1 The Riemann–Liouville fractional integral of order ω ∈ R (ω > 0) for a
locally integrable real-valued function h defined on –∞ ≤ a < t < b ≤ +∞, denoted by
Iω

a+ h, is defined by

Iω
a+ h(t) =

1

(ω)

∫ t

a
(t – s)ω–1h(s) ds,

where 
 denotes the Euler gamma function.

Definition 2.2 Let h, h(m) ∈ L1[a, b] for –∞ ≤ a < t < b ≤ +∞. The Riemann–Liouville
fractional derivative Dω

a+ h of order ω ∈ (m – 1, m], m ∈N, is defined as

Dω
a+ h(t) =

1

(m – ω)

dm

dtm

∫ t

a
(t – s)m–1–ωh(s) ds,

while the Caputo fractional derivative CDω
a+ h of order ω ∈ (m – 1, m], m ∈N, is defined as

CDω
a+ h(t) = Dω

a+

[

h(t) – h(a) – h′(a)
(t – a)

1!
– · · · – h(m–1)(a)

(t – a)m–1

(m – 1)!

]

.

Remark 2.3 The Caputo fractional derivative of order ω ∈ (m – 1, m], m ∈N for a contin-
uous function h : (0,∞) →R such that h ∈ Cm[a, b], existing almost everywhere on [a, b],
is defined by

CDωh(t) =
1


(m – ω)

∫ t

a
(t – s)m–ω–1h(m)(s) ds.

Now we present an important result to analyze problem (1.1).

Lemma 2.4 Let �,� ∈ C([a, b],R) and � �= 0. Then the unique solution of the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDξ

a+ x(t) = �(t)), 1 < ξ ≤ 2, t ∈ [a, b],
CDζ

a+ y(t) = �(t), 2 < ζ ≤ 3, t ∈ [a, b],

x(a) = 0, x(b) = p1y(θ3),

y(θ1) = 0, y(θ2) = 0, y(b) = p2x(θ3), a < θ1 < θ2 < θ3 < b,

(2.1)

is given by a pair of integral equations

x(t) =
∫ t

a

(t – s)ξ–1


(ξ )
�(s) ds +

t – a
�

{

ε3

∫ θ1

a

(θ1 – s)ζ–1


(ζ )
�(s) ds

+ ε4

∫ θ2

a

(θ2 – s)ζ–1


(ζ )
�(s) ds + A2

(

p1

∫ θ3

a

(θ3 – s)ζ–1


(ζ )
�(s) ds

–
∫ b

a

(b – s)ξ–1


(ξ )
�(s) ds

)

– A1

(

p2

∫ θ3

a

(θ3 – s)ξ–1


(ξ )
�(s) ds

–
∫ b

a

(b – s)ζ–1


(ζ )
�(s) ds

)}

, (2.2)

y(t) =
∫ t

a

(t – s)ζ–1


(ζ )
�(s) ds + b1(t)

∫ θ1

a

(θ1 – s)ζ–1


(ζ )
�(s) ds
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+ b2(t)
∫ θ2

a

(θ2 – s)ζ–1


(ζ )
�(s) ds + b3(t)

∫ θ3

a

(θ3 – s)ζ–1


(ζ )
�(s) ds

+ b4(t)
∫ b

a

(b – s)ξ–1


(ξ )
�(s) ds + b5(t)

∫ θ3

a

(θ3 – s)ξ–1


(ξ )
�(s) ds

+ b6(t)
∫ b

a

(b – s)ζ–1


(ζ )
�(s) ds, (2.3)

where

b1(t) = ε5 + ε6(t – a) +
ε1

�
(t – a)2, b2(t) = ε7 + ε8(t – a) +

ε2

�
(t – a)2,

b3(t) =
ε9

θ1 – θ2

(
a2 + a1(t – a) + (θ1 – θ2)(t – a)2),

b4(t) =
ε10

θ1 – θ2

(
a2 + a1(t – a) + (θ1 – θ2)(t – a)2),

b5(t) =
ε11

θ1 – θ2

(
a2 + a1(t – a) + (θ1 – θ2)(t – a)2),

b6(t) =
ε12

θ1 – θ2

(
a2 + a1(t – a) + (θ1 – θ2)(t – a)2),

ε1 =
p1p2(θ3 – a)(θ2 – θ3) – (b – a)(θ2 – b)

θ1 – θ2
,

ε2 =
p1p2(θ3 – a)(θ3 – θ1) + (b – a)(θ1 – b)

θ1 – θ2
,

ε3 =
A2p1(θ2 – θ3) + A1(θ2 – b)

θ1 – θ2
,

ε4 =
A2p1(θ3 – θ1) + A1(b – θ1)

θ1 – θ2
,

ε5 =
θ2 – a + a2ε1

�

θ1 – θ2
, ε6 =

a1ε1
�

– 1
θ1 – θ2

, ε7 =
a – θ1 + a2ε2

�

θ1 – θ2
, ε8 =

a1ε2
�

+ 1
θ1 – θ2

,

ε9 =
p1p2(θ3 – a)

�
, ε10 =

p2(a – θ3)
�

, ε11 =
p2(b – a)

�
, ε12 =

a – b
�

,

a1 = (θ2 – a)2 – (θ1 – a)2, a2 = (θ2 – a)(θ1 – a)(θ1 – θ2),

A1 =
–p1a2 – p1a1(θ3 – a)

θ1 – θ2
– p1(θ3 – a)2,

A2 =
a2 + (b – a)a1

θ1 – θ2
+ (b – a)2,

� = A1p2(θ3 – a) + A2(b – a). (2.4)

Proof The solution of system (2.1) can be written as

x(t) = Iξ

a+�(t) + c1 + c2(t – a), (2.5)

y(t) = Iζ

a+�(t) + c3 + c4(t – a) + c5(t – a)2, (2.6)

where ci ∈ R (i = 1, 2, . . . , 5) are unknown constants. Using the condition x(a) = 0 in (2.5),
we get c1 = 0, while making use of the conditions y(θ1) = 0, y(θ2) = 0 in (2.6) leads to the
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equations

Iζ

a+�(θ1) + c3 + c4(θ1 – a) + c5(θ1 – a)2 = 0, (2.7)

Iζ

a+�(θ2) + c3 + c4(θ2 – a) + c5(θ2 – a)2 = 0. (2.8)

Using the conditions x(b) = p1y(θ3) and y(b) = p2x(θ3) with c1 = 0 yields

Iξ

a+�(b) + c2(b – a) = p1
(
Iζ

a+�(θ3) + c3 + c4(θ3 – a) + c5(θ3 – a)2), (2.9)

Iζ

a+�(b) + c3 + c4(b – a) + c5(b – a)2 = p2
(
Iξ

a+�(θ3) + c2(θ3 – a)
)
. (2.10)

Subtracting (2.8) from (2.7), we get

c4 =
1

θ1 – θ2

(
a1c5 + Iζ

a+�(θ2) – Iζ

a+�(θ1)
)
, (2.11)

where a1 = (θ2 – a)2 – (θ1 – a)2. Inserting the value of c4 in (2.7), we find that

c3 =
1

θ1 – θ2

(
(θ2 – a)Iζ

a+�(θ1) – (θ1 – a)Iζ

a+�(θ2) + a2c5
)
. (2.12)

Substituting the values of c3 and c4 in (2.9) and (2.10), we obtain

(b – a)c2 + A1c5 = p1

{

Iζ

a+�(θ3) +
θ2 – θ3

θ1 – θ2
Iζ

a+�(θ1) +
θ3 – θ1

θ1 – θ2
Iζ

a+�(θ2)
}

– Iξ

a+�(b),

–p2(θ3 – a)c2 + A2c5 = p2Iξ

a+�(θ3) +
b – θ2

θ1 – θ2
Iζ a+�(θ1) +

θ1 – b
θ1 – θ2

Iζ a+�(θ2)

– Iζ

a+�(b).

Solving the above system, we get

c5 =
1
�

(
ε1Iζ

a+�(θ1) + ε2Iζ

a+�(θ2) + p1p2(θ3 – a)Iζ

a+�(θ3) – p2(θ3 – a)Iξ

a+�(b)

+ p2(b – a)Iξ

a+�(θ3) – (b – a)Iζ

a+�(b)
)
,

c2 =
1
�

(
ε3Iζ

a+�(θ1) + ε4Iζ

a+�(θ2) + A2p1Iζ

a+�(θ3) – A2Iξ

a+�(b) – A1p2Iξ

a+�(θ3)

+ A1Iζ

a+�(b)
)
.

Now substituting the value of c5 in (2.11) and (2.12), we find that

c3 =
1

θ1 – θ2

{(

θ2 – a +
a2ε1

�

)

Iζ

a+�(θ1) –
(

θ1 – a –
a2ε2

�

)

Iζ

a+�(θ2)

+
a2

�

(
p1p2(θ3 – a)Iζ

a+�(θ3) – p2(θ3 – a)Iξ

a+�(b) + p2(b – a)Iξ

a+�(θ3)
)

– (b – a)Iζ

a+�(b)
}

,
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c4 =
1

θ1 – θ2

{(
a1ε1

�
– 1

)

Iζ

a+�(θ1) +
(

a1ε2

�
+ 1

)

Iζ

a+�(θ2) +
a1

�

(
p1p2(θ3 – a)Iζ

a+�(θ3)

– p2(θ3 – a)Iξ

a+�(b) + p2(b – a)Iξ

a+�(θ3) – (b – a)Iζ

a+�(b)
)
}

.

Finally, inserting the values of the constants ci, i = 1, 2, . . . , 5, into (2.5) and (2.6) yields
equations (2.2) and (2.3). This completes the proof. We can prove the converse by direct
computation. The proof is finished. �

3 Main results
Let X = C([a, b],R) be a Banach space endowed with the norm ‖x‖ = sup |x(t)|, t ∈ [a, b].

In view of Lemma 2.4, we define an operator T : X × X → X by

T
(
x(t), y(t)

)
=

(
T1

(
x(t), y(t)

)
, T2

(
x(t), y(t)

))
,

where

T1
(
x(t), y(t)

)

=
∫ t

a

(t – s)ξ–1


(ξ )
ϕ
(
s, x(s), y(s)

)
ds +

t – a
�

{

ε3

∫ θ1

a

(θ1 – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds

+ ε4

∫ θ2

a

(θ2 – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds + A2

(

p1

∫ θ3

a

(θ3 – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds

–
∫ b

a

(b – s)ξ–1


(ξ )
ϕ
(
s, x(s), y(s)

)
ds

)

– A1

(

p2

∫ θ3

a

(θ3 – s)ξ–1


(ξ )
ϕ
(
s, x(s), y(s)

)
ds

–
∫ b

a

(b – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds

)}

,

T2
(
x(t), y(t)

)

=
∫ t

a

(t – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds + b1(t)

∫ θ1

a

(θ1 – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds

+ b2(t)
∫ θ2

a

(θ2 – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds + b3(t)

∫ θ3

a

(θ3 – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds

+ b4(t)
∫ b

a

(b – s)ξ–1


(ξ )
ϕ
(
s, x(s), y(s)

)
+ b5(t)

∫ θ3

a

(θ3 – s)ξ–1


(ξ )
ϕ
(
s, x(s), y(s)

)
ds

+ b6(t)
∫ b

a

(b – s)ζ–1


(ζ )
ψ

(
s, x(s), y(s)

)
ds.

Here (X × X,‖(x, y)‖) is a Banach space equipped with the norm ‖(x, y)‖ = ‖x‖ + ‖y‖,
x, y ∈ X.

In our first result, we establish the existence of a solution for system (1.1) by applying
the Leray–Schauder alternative [35].

Lemma 3.1 (Leray–Schauder alternative) : Let J : U −→ U be a completely continuous
operator (i.e., a map restricted to any bounded set in U is compact). Let Q(J) = {x ∈ U : x =
ηJ(x) for some 0 < η < 1}. Then either the set Q(J) is unbounded or J has at least one fixed
point.
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For computational convenience, we set

L1 =
(b – a)ξ


(ξ + 1)
+

b – a
|�|
(ξ + 1)

(|A2|(b – a)ξ + |A1p2|(θ3 – a)ξ
)
,

M1 =
b – a

|�|
(ζ + 1)
(|ε3|(θ1 – a)ζ + |ε4|(θ2 – a)ζ + |A2p1|(θ3 – a)ζ + |A1|(b – a)ζ

)
,

L2 =
1


(ξ + 1)
(
δ4(b – a)ξ + δ5(θ3 – a)ξ

)
,

M2 =
1


(ζ + 1)
(
δ1(θ1 – a)ζ + δ2(θ2 – a)ζ + δ3(θ3 – a)ζ + (δ6 + 1)(b – a)ζ

)
, (3.1)

where

δ1 = |ε5| + |ε6|(b – a) +
|ε1|
|�| (b – a)2,

δ2 = |ε7| + |ε8|(b – a) +
|ε2|
|�| (b – a)2,

δ3 =
|ε9|

|θ1 – θ2|
(|a2| + |a1|(b – a) + |θ1 – θ2|(b – a)2),

δ4 =
|ε10|

|θ1 – θ2|
(|a2| + |a1|(b – a) + |θ1 – θ2|(b – a)2),

δ5 =
|ε11|

|θ1 – θ2|
(|a2| + |a1|(b – a) + |θ1 – θ2|(b – a)2),

δ6 =
|ε12|

|θ1 – θ2|
(|a2| + |a1|(b – a) + |θ1 – θ2|(b – a)2).

Theorem 3.2 Let � �= 0 (� is defined by (2.4)). In addition, we assume that:
(H1) ϕ,ψ : [a, b] × R × R → R are continuous functions and there exist real constants

ki,γi ≥ 0 (i = 1, 2) and k0 > 0, γ0 > 0 such that, for all t ∈ [a, b] and x, y ∈R,

∣
∣ϕ(t, x, y)

∣
∣ ≤ k0 + k1|x| + k2|y|,

∣
∣ψ(t, x, y)

∣
∣ ≤ γ0 + γ1|x| + γ2|y|.

Then system (1.1) has at least one solution on [a, b] provided that

(L1 + L2)k1 + (M1 + M2)γ1 < 1 and (L1 + L2)k2 + (M1 + M2)γ2 < 1, (3.2)

where L1, M1, L2, M2 are given in (3.1).

Proof Observe that the continuity of the operator T : X × X → X × X follows that of the
functions ϕ and ψ . Next, let � ⊂ X × X be bounded such that

∣
∣ϕ

(
t, x(t), y(t)

)∣
∣ ≤ K1,

∣
∣ψ

(
t, x(t), y(t)

)∣
∣ ≤ K2, ∀(x, y) ∈ �,
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for positive constants K1 and K2. Then, for any (x, y) ∈ �, we have

∣
∣T1(x, y)(t)

∣
∣ ≤

∫ t

a

(t – s)ξ–1


(ξ )
∣
∣ϕ

(
s, x(s), y(s)

)∣
∣ds

+
b – a
|�|

(

|ε3|
∫ θ1

a

(θ1 – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

+ |ε4|
∫ θ2

a

(θ2 – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

+ |A2p1|
∫ θ3

a

(θ3 – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

+ |A2|
∫ b

a

(b – s)ξ–1


(ξ )
∣
∣ϕ

(
s, x(s), y(s)

)∣
∣ds

+ |A1p2|
∫ θ3

a

(θ3 – s)ξ–1


(ξ )
∣
∣ϕ

(
s, x(s), y(s)

)∣
∣ds

+ |A1|
∫ b

a

(b – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

)

≤
{

(b – a)ξ


(ξ + 1)
+

b – a
|�|

(

|A2| (b – a)ξ


(ξ + 1)
+ |A1p2| (θ3 – a)ξ


(ξ + 1)

)}

K1

+
{

b – a
|�|

(

|ε3| (θ1 – a)ζ


(ζ + 1)
+ |ε4| (θ2 – a)ζ


(ζ + 1)
+ |A2p1| (θ3 – a)ζ


(ζ + 1)

+ |A1| (b – a)ζ


(ζ + 1)

)}

K2

= L1K1 + M1K2,

which implies that

∥
∥T1(x, y)

∥
∥ ≤ L1K1 + M1K2.

In a similar way, in view of notation (3.1), we have

∣
∣T2(x, y)(t)

∣
∣ ≤

∫ t

a

(t – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

+
∣
∣b1(t)

∣
∣
∫ θ1

a

(θ1 – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

+
∣
∣b2(t)

∣
∣
∫ θ2

a

(θ2 – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

+
∣
∣b3(t)

∣
∣
∫ θ3

a

(θ3 – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds

+
∣
∣b4(t)

∣
∣
∫ b

a

(b – s)ξ–1


(ξ )
∣
∣ϕ

(
s, x(s), y(s)

)∣
∣ds

+
∣
∣b5(t)

∣
∣
∫ θ3

a

(θ3 – s)ξ–1


(ξ )
∣
∣ϕ

(
s, x(s), y(s)

)∣
∣ds

+
∣
∣b6(t)

∣
∣
∫ b

a

(b – s)ζ–1


(ζ )
∣
∣ψ

(
s, x(s), y(s)

)∣
∣ds
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≤
{

δ4
(b – a)ξ


(ξ + 1)
+ δ5

(θ3 – a)ξ


(ξ + 1)

}

K1

+
{

(b – a)ζ


(ζ + 1)
+ δ1

(θ1 – a)ζ


(ζ + 1)
+ δ2

(θ2 – a)ζ


(ζ + 1)
+ δ3

(θ3 – a)ζ


(ζ + 1)

+ δ6
(b – a)ζ


(ζ + 1)

}

K2

= L2K1 + M2K2,

which yields

∥
∥T2(x, y)

∥
∥ ≤ L2K1 + M2K2.

From the above argument, we deduce that the operator T is uniformly bounded, as

∥
∥T(x, y)

∥
∥ ≤ (L1 + L2)K1 + (M1 + M2)K2.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [a, b] with t1 < t2. Then we have

∣
∣T1

(
x(t2), y(t2)

)
– T1

(
x(t1), y(t1)

)∣
∣

≤ K1

∣
∣
∣
∣

1

(ξ )

∫ t1

a

[
(t2 – s)ξ–1 – (t1 – s)ξ–1]ds +

1

(ξ )

∫ t2

t1

(t1 – s)ξ–1 ds
∣
∣
∣
∣

+
{

t2 – t1

|�|
(

|A2| (b – a)ξ


(ξ + 1)
+ |A1p2| (θ3 – a)ξ


(ξ + 1)

)}

K1

+
{

t2 – t1

|�|
(

|ε3| (θ1 – a)ζ


(ζ + 1)
+ |ε4| (θ2 – a)ζ


(ζ + 1)
+ |A2p1| (θ3 – a)ζ


(ζ + 1)
+ |A1| (b – a)ζ


(ζ + 1)

)}

K2

≤ K1


(ξ + 1)
[
2(t2 – t1)ξ +

∣
∣tξ

2 – tξ
1
∣
∣
]

+
{

t2 – t1

|�|
(

|A2| (b – a)ξ


(ξ + 1)
+ |A1p2| (θ3 – a)ξ


(ξ + 1)

)}

K1

+
{

t2 – t1

|�|
(

|ε3| (θ1 – a)ζ


(ζ + 1)
+ |ε4| (θ2 – a)ζ


(ζ + 1)
+ |A2p1| (θ3 – a)ζ


(ζ + 1)

+ |A1| (b – a)ζ


(ζ + 1)

)}

K2. (3.3)

Analogously, we can obtain

∣
∣T2

(
x(t2), y(t2)

)
– T2

(
x(t1), y(t1)

)∣
∣

≤ K2


(ζ + 1)
[
2(t2 – t1)ζ +

∣
∣tζ

2 – tζ
1
∣
∣
]

+
t2 – t1

|θ1 – θ2|
{( |a1p2|

|�| (θ3 – a)
(b – a)ξ


(ξ + 1)
+

|a1p2|
|�| (b – a)

(θ3 – a)ξ


(ξ + 1)

)

K1

+
(∣

∣
∣
∣
a1ε1

�
– 1

∣
∣
∣
∣
(θ1 – a)ξ


(ξ + 1)
+

∣
∣
∣
∣
a1ε2

�
+ 1

∣
∣
∣
∣
(θ2 – a)ζ


(ζ + 1)
+

|a1p1p2|
|�|

(θ3 – a)ζ+1


(ζ + 1)

+
|a1|
|�|

(b – a)ζ+1


(ζ + 1)

)

K2

}

+
|(t2

2 – t2
1) – 2a(t2 – t1)|

|�|
{(

|p2|(θ3 – a)
(b – a)ξ


(ξ + 1)
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+ |p2|(b – a)
(θ3 – a)ξ


(ξ + 1)

)

K1 +
(

|ε1| (θ1 – a)ζ


(ζ + 1)
+ |ε2| (θ2 – a)ζ


(ζ + 1)

+ |p1p2| (θ3 – a)ζ+1


(ζ + 1)
+

(b – a)ζ+1


(ζ + 1)

)

K2

}

. (3.4)

Clearly the right-hand sides of inequalities (3.3) and (3.4) tend to zero independently of x
and y as t1 → t2. This shows that the operator T(x, y) is equicontinuous. In consequence,
we deduce that the operator T(x, y) is completely continuous.

Finally, we consider the set P = {(x, y) ∈ X × X : (x, y) = νT(x, y), 0 ≤ ν ≤ 1} and show
that it is bounded.

Let (x, y) ∈ P with (x, y) = νT(x, y). For any t ∈ [a, b], we have x(t) = νT1(x, y)(t), y(t) =
νT2(x, y)(t). Then, by (H1), we have

∣
∣x(t)

∣
∣ ≤ L1

(
k0 + k1|x| + k2|y|

)
+ M1

(
γ0 + γ1|x| + γ2|y|

)

= L1k0 + M1γ0 + (L1k1 + M1γ1)|x| + (L1k2 + M1γ2)|y|, (3.5)

and

∣
∣y(t)

∣
∣ ≤ L2

(
k0 + k1|x| + k2|y|

)
+ M2

(
γ0 + γ1|x| + γ2|y|

)

= L2k0 + M2γ0 + (L2k1 + M2γ1)|x| + (L2k2 + M2γ2)|y|. (3.6)

In consequence of the above arguments, we deduce that

‖x‖ ≤ L1k0 + M1γ0 + (L1k1 + M1γ1)‖x‖ + (L1k2 + M1γ2)‖y‖

and

‖y‖ ≤ L2k0 + M2γ0 + (L2k1 + M2γ1)‖x‖ + (L2k2 + M2γ2)‖y‖,

which imply that

‖x‖ + ‖y‖ ≤ (L1 + L2)k0 + (M1 + M2)γ0

+
[
(L1 + L2)k1 + (M1 + M2)γ1

]‖x‖
+

[
(L1 + L2)k2 + (M1 + M2)γ2

]‖y‖. (3.7)

Thus

∥
∥(x, y)

∥
∥ ≤ 1

M0

[
(L1 + L2)k0 + (M1 + M2)γ0

]
,

where M0 = min{1 – [(L1 + L2)k1 + (M1 + M2)γ1], 1 – [(L1 + L2)k2 + (M1 + M2)γ2]}. Hence the
set P is bounded. Thus, by the Leray–Schauder alternative, we deduce that the operator
T has at least one fixed point, which corresponds to the fact that problem (1.1) has at least
one solution on [a, b]. The proof is completed. �

In the next theorem we prove the existence of a unique solution of system (1.1) by using
the contraction mapping principle due to Banach.
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Theorem 3.3 Let � �= 0 (� is defined by (2.4)). In addition, we assume that:
(H2) ϕ,ψ : [a, b]×R×R→R are continuous functions and there exist positive constants

l1 and l2 such that, for all t ∈ [a, b] and xi, yi ∈R, i = 1, 2, we have

∣
∣ϕ(t, x1, x2) – ϕ(t, y1, y2)

∣
∣ ≤ l1

(|x1 – y1| + |x2 – y2|
)
,

∣
∣ψ(t, x1, x2) – ψ(t, y1, y2)

∣
∣ ≤ l2

(|x1 – y1| + |x2 – y2|
)
.

If

(L1 + L2)l1 + (M1 + M2)l2 < 1, (3.8)

where L1, M1 and L2, M2 are given by (3.1), then system (1.1) has a unique solution on [a, b].

Proof Define supt∈[a,b] ϕ(t, 0, 0) = N1 < ∞, supt∈[a,b] ψ(t, 0, 0) = N2 < ∞, and r > 0 such that

r >
(L1 + L2)N1 + (M1 + M2)N2

1 – (L1 + L2)l1 – (M1 + M2)l2
.

In the first step, we show that TBr ⊂ Br , where Br = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ r}. By as-
sumption (H2), for (x, y) ∈ Br , t ∈ [a, b], we have

∣
∣ϕ

(
t, x(t), y(t)

)∣
∣ ≤ ∣

∣ϕ
(
t, x(t), y(t)

)
– ϕ(t, 0, 0)

∣
∣

≤ l1
(∣
∣x(t)

∣
∣ +

∣
∣y(t)

∣
∣
)

+ N1

≤ l1
(‖x‖ + ‖y‖) + N1 ≤ l1r + N1.

Similarly, we get

∣
∣ψ

(
t, x(t), y(t)

)∣
∣ ≤ l2

(‖x‖ + ‖y‖) + N2 ≤ l2r + N2.

Then, we obtain

∣
∣T1(x, y)(t)

∣
∣ ≤

{
(b – a)ξ


(ξ + 1)
+

b – a
|�|

(

|A2| (b – a)ξ


(ξ + 1)
+ |A1p2| (θ3 – a)ξ


(ξ + 1)

)}

(l1r + N1)

+
{

b – a
|�|

(

|ε3| (θ1 – a)ζ


(ζ + 1)
+ |ε4| (θ2 – a)ζ


(ζ + 1)
+ |A2p1| (θ3 – a)ζ


(ζ + 1)

+ |A1| (b – a)ζ


(ζ + 1)

)}

(l2r + N2)

= L1(l1r + N1) + M1(l2r + N2)

= (L1l1 + M1l2)r + L1N1 + M1N2.

Taking the norm, we get

∥
∥T1(x, y)

∥
∥ ≤ (L1l1 + M1l2)r + L1N1 + M1N2.
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Likewise, we can find that

∥
∥T2(x, y)

∥
∥ ≤ (L2l1 + M2l2)r + L2N1 + M2N2.

Consequently,

∥
∥T(x, y)

∥
∥ ≤ [

(L1 + L2)l1 + (M1 + M2)l2
]
r + (L1 + L2)N1 + (M1 + M2)N2 ≤ r.

Now, for (x1, y1), (x2, y2) ∈ X × X and for any t ∈ [a, b], we get

∣
∣T1(x2, y2)(t) – T1(x1, y1)(t)

∣
∣

≤
{

(b – a)ξ


(ξ + 1)
+

b – a
|�|

(

|A2| (b – a)ξ


(ξ + 1)
+ |A1p2| (θ3 – a)ξ


(ξ + 1)

)}

l1
(‖x2 – x1‖ + ‖y2 – y1‖

)

+
{

b – a
|�|

(

|ε3| (θ1 – a)ζ


(ζ + 1)
+ |ε4| (θ2 – a)ζ


(ζ + 1)
+ |A2p1| (θ3 – a)ζ


(ζ + 1)

+ |A1| (b – a)ζ


(ζ + 1)

)}

l2
(‖x2 – x1‖ + ‖y2 – y1‖

)

≤ (L1l1 + M1l2)
(‖x2 – x1‖ + ‖y2 – y1‖

)
,

which implies that

∥
∥T1(x2, y2) – T1(x1, y1)

∥
∥ ≤ (L1l1 + M1l2)

(‖x2 – x1‖ + ‖y2 – y1‖
)
. (3.9)

Similarly, we find that

∥
∥T2(x2, y2) – T2(x1, y1)

∥
∥ ≤ (L2l1 + M2l2)

(‖x2 – x1‖ + ‖y2 – y1‖
)
. (3.10)

It follows from (3.9) and (3.10) that

∥
∥T(x2, y2) – T(x1, y1)

∥
∥ ≤ [

(L1 + L2)l1 + (M1 + M2)l2
](‖x2 – x1‖ + ‖y2 – y1‖

)
.

From the above inequality and (3.8), we deduce that T is a contraction. Hence it follows
by Banach’s fixed point theorem that there exists a unique fixed point for the operator
T , which corresponds to a unique solution of problem (1.1) on [a, b]. This completes the
proof. �

4 Examples
Let us consider the following mixed-type coupled fractional differential systems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D3/2
a+ x(t) = ϕ(t, x(t), y(t)), t ∈ [2, 3],

D5/2
a+ y(t) = ψ(t, x(t), y(t)), t ∈ [2, 3],

x(2) = 0, x(3) = 1
100 y( 14

5 ),

y( 11
5 ) = 0, y( 11

4 ) = 0, y(3) = 1
50 x( 14

5 ).

(4.1)
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Here ξ = 3/2, ζ = 5/2, θ1 = 11/5, θ2 = 11/4, θ3 = 14/5, p1 = 1/100, p2 = 1/50. With the given
data, it is found that L1 � 1.5045, L2 � 0.23941, M1 � 1.2806 × 10–3, M2 � 5.3193.

(1) In order to illustrate Theorem 3.2, we take

ϕ(t, x, y) =
√

t3 + 1 +
1

40
x sin y +

1
5e

y cos x,

ψ(t, x, y) =
1√

t2 + 1
+

1
10

e–t/2x +
1

100
y cos y. (4.2)

It is easy to check that condition (H1) is satisfied with k0 =
√

28, k1 = 1/40, k2 = 1/(5e),
γ0 = 1/

√
5, γ1 = 1/(10e), γ2 = 1/100.

Furthermore, (L1 + L2)k1 + (M1 + M2)γ1 � 0.20009 < 1 and (L1 + L2)k2 + (M1 + M2)γ2 �
0.18152 < 1. Clearly, the hypotheses of Theorem 3.2 are satisfied, and hence the conclusion
of Theorem 3.2 applies to problem (4.1) with ϕ and ψ given by (4.2).

(2) In order to illustrate Theorem 3.3, we take

ϕ(t, x, y) =
1

4 + t
(
sin x + |y|) + cos t, ψ(t, x, y) =

1
5e t

2

(
cos x + |y|) + tan t, (4.3)

which clearly satisfy condition (H2) with l1 = 1/6 and l2 = 1/(5e).
Moreover, (L1 + L2)l1 + (M1 + M2)l2 � 0.6811 < 1. Thus the hypotheses of Theorem 3.3

hold true, and consequently there exists a unique solution of problem (4.1) with ϕ and ψ

given by (4.3) on [2, 3].

5 Conclusions
In this paper, we have studied the existence of solution for a boundary value problem con-
sisting of a coupled system of nonlinear fractional differential equations of different orders
and five-point nonlocal coupled boundary conditions on an arbitrary domain. The given
problem is transformed into an equivalent fixed point problem, which is solved by ap-
plying the standard tools of the modern functional analysis to obtain the existence and
uniqueness results for the original problem. Our results are not only new in the given set-
ting, but also reduce to some new results as special cases by fixing the parameters involved
in the boundary conditions. For example, if we take p1 = 0 = p2 in the obtained results, we
get the ones associated with four-point nonlocal boundary conditions: x(a) = 0, x(b) = 0,
y(θ1) = 0, y(θ2) = 0, y(b) = 0.
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