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Abstract
In this paper, we consider the existence of nontrivial solutions for a fractional
p-Laplacian equation in a bounded domain. Under different assumptions of
nonlinearities, we give existence and multiplicity results respectively. Our approach is
based on variational methods and some analytical techniques.
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1 Introduction
In this paper, we are interested in the existence of nontrivial solutions for the following
fractional quasi-linear problem:

⎧
⎨

⎩

(–�)s
pu + |u|p–2u = f (x, u) + λg(x, u) + h(x), x ∈ �,

u = 0, x ∈R
N\�,

(1.1)

where 0 < s < 1 and sp < N , � is a bounded domain in R
N , λ is a positive constant, f , g, h

are continuous functions, p∗
s = pN/(N – sp) is the fractional critical exponent, and (–�)s

p
is the fractional p-Laplace operator defined as

(–�)s
pu(x) = P.V.

∫

RN

|u(x) – u(y)|p–2(u(x) – u(y))
|x – y|N+sp dy, (1.2)

where P.V. refers to the principle value, see [1] for details.
In recent years, there has been growing interest in the study of fractional elliptic equa-

tions. Concerning the existence result for this kind of equations, some well-known results
for classical Laplace operators have been extended to the nonlocal fractional setting, and
there are a lot of works on the quasi-linear problem

⎧
⎨

⎩

(–�)s
pu = f (x, u), x ∈ �,

u = 0, x ∈R
N\�,

(1.3)
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where the nonlinearity f satisfies some general growth conditions, see [2–12]. For in-
stance, in [2, 4] the authors studied the fractional p-eigenvalue problems. In [5] the authors
studied the local behavior of fractional p-minimizers. In [6] the authors studied problem
(1.3) under different growth assumptions on the reaction term and obtained various ex-
istence results by Morse theory, while in [7] the authors studied problem (1.3) in an un-
bounded domain with weight, and symmetry results were given by authors in [8]. More-
over, by the variant fountain theorem the authors in [9] studied problem (1.3) in R

N and
obtained infinitely many solutions, while similar results were obtained by authors in [3],
given f (x, u) = h1(x)|u|q–2u + h2(x)|u|r–2u.

Typically, when f (x, u) = |u|p∗
s –2u + λ|u|p–2u, problem (1.3) turns into the Brezis–

Nirenberg problem
⎧
⎨

⎩

(–�)s
pu = |u|p∗

s –2u + λ|u|p–2u, x ∈ �,

u = 0, x ∈R
N\�,

(1.4)

which has been studied by the authors in [10–12]. In [10], the authors proved multiplicity
results of problem (1.4) by cohomological index and abstract critical theorem, while in
[11], the authors obtained nontrivial solutions of problem (1.4) by an abstract linking the-
orem. In [12], replacing |u|p–2u with a subcritical nonlinearity g(x, u), the authors proved
the existence of one weak solution of problem (1.4) provided λ is sufficiently small, and
multiplicity result was established if the perturbation term g vanishes at the origin. More-
over, Kirchhoff type equations involving fractional p-Laplacian and critical nonlinearities
were studied by authors in [13–15] by using variational methods.

Inspired by the above papers, we tend to investigate the existence and multiplicity result
of problem (1.1). From our analysis, it is clear that under different assumptions of the
growth condition on nonlinearities near infinity and origin, the existence and multiplicity
results are quite different. We consider the Banach space X = W s,p

0 (�), where the fractional
Sobolev space W s,p

0 (�) = {u ∈ W s,p(�)|u = 0 ∈R
N\�} is defined as follows:

W s,p(�) =
{

u ∈ Lp(�) :
∫

�×�

|u(x) – u(y)|p
|x – y|N+sp dx dy < ∞

}

, (1.5)

equipped with the norm

‖u‖p := [u]p
s,p =

∫ ∫

Q

|u(x) – u(y)|p
|x – y|N+sp dx dy, (1.6)

where Q = R
2N\(C� × C�) with C� = R

N \ �. By the results of [1], there is continuous
embedding W s,p

0 (�) ↪→ Lr(�) for r ∈ [1, p∗
s ] and compact when r ∈ [1, p∗

s ). We denote by S
the best Sobolev constant for the embedding of W s,p

0 (�) ↪→ Lp(�).
Our approach to study problem (1.1) is variational, including the mountain pass theo-

rem and the critical point theorems of G. Bonanno and R. Kajikiya. Generally, we check
the geometric structure of the functional and prove the compactness results of the func-
tional to meet the conditions of the critical point theorems. Due to the presence of critical
nonlinearity, the energy functional no longer satisfies global compactness conditions but
on certain ranges, thus we apply different variational theorems for existence results. We
assume that the nonlinearities f , g, h ∈ C(R,R) and satisfy the following assumptions:

(f1) limt→0
f (x,t)
tp–1 = 0 uniformly a.e. x ∈ �;
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(̃f1) limt→0
f (x,t)
tp–1 = ∞ uniformly a.e. x ∈ �;

(f2) limt→∞ f (x,t)
tp∗–1 = 0 uniformly a.e. x ∈ �;

(̃f2) limt→∞ f (x,t)
tp–1 = 0 uniformly a.e. x ∈ �;

(f3) there exists a positive constant B such that

F(x, s) ≥ 2r
|s|p
p

– B, ∀s ∈ R, a.e. x ∈ �,

where r is defined as r := supW s,p(�)
‖u‖p

|u|pp .
(f4) there exists ν ∈ (p, p∗

s ) such that

0 < νF(t) ≤ f (t)t for all |t| > 0, where F(t) :=
∫ t

0
f (s) ds;

(g1) |g(x, s)| ≤ c(1 + |s|r–1), ∀s ∈ R, and 1 ≤ r < p;
(g2) f (x, ·) is odd and g(x, ·) is even for a.e. x ∈ �;
(g3) f (x, ·) is odd and g = |u|p∗–2u;
Our main results read as follows.

Theorem 1.1 Assume that (f1), (f2), (f4), (g1) hold. Then there exists λ∗ > 0, and for any λ ∈
(0,λ∗), there exists � > 0 such that, for any |f |(p–1)/p

σ ∈ (0,�), problem (1.1) has a mountain
pass solution.

Theorem 1.2 Assume that (f1), (̃f2), (f3), (g1), (g2) hold with h = 0. Then, for every b > 0,
there exist an open interval 	 ⊂ [–b, b] and a positive real number σ such that, for every
λ ∈ 	, problem (1.1) admits at least three solutions whose norms are less than σ .

Theorem 1.3 Assume that (̃f1), (f2), (g3) hold with h = 0. Then there exists λ∗ such that for
any λ ∈ (0,λ∗), problem (1.1) has a sequence of nontrivial solutions {un}n∈N ⊂ X such that
un → 0 as n → ∞.

The present paper is organized as follows: in Sect. 2 we prove the existence of mountain
pass solution, in Sect. 3 we prove the existence of three solutions, and in Sect. 4 we give
infinitely many solutions for the critical case.

2 Existence of mountain pass solution
It is well known that the solution of problem (1.1) is a critical point of the functional I :
X →R is defined by

I(u) =
1
p
‖u‖p – λ

∫

�

G dx –
∫

�

F dx –
∫

�

hu dx (2.1)

and satisfies 〈I ′(u),ϕ〉 = 0, i.e.,

∫

Q

|u(x) – u(y)|p–2(u(x) – u(y))
|x – y|N+sp

(
ϕ(x) – ϕ(y)

)
–

∫

�

f (u)ϕ dx

– λ

∫

�

g(u)ϕ dx –
∫

�

hϕ dx = 0

for any ϕ ∈ X.
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We first check the mountain pass geometry of I .

Lemma 2.1 Assume that (f1), (f2), (f4), (g1) hold, the functional I satisfies the mountain
pass geometry:

(i) there exist α,ρ > 0 such that I(u) ≥ α with ‖u‖ = ρ ,
(ii) there exists e ∈ X with ‖e‖ > ρ such that I(e) < 0.

Proof (i) By (f1) and (f2), for fixed ε > 0, there exists Cε > 0 such that

∣
∣F(t)

∣
∣ ≤ ε

p
|t|p +

Cε

p∗ |t|p∗
. (2.2)

Taking into (2.1),

I(u) =
1
p
‖u‖p – λ

∫

�

G dx –
∫

�

F dx –
∫

�

hu dx

≥ 1
p
‖u‖p – λ

∫

�

(

c|u| +
c
r
|u|r

)

dx –
∫

�

(
ε

p
|u|p + Cε|u|p∗

)

dx –
∫

�

hu dx

≥ 1
2p

‖u‖p –
cλ
rλ1

|�| p–r
p ‖u‖r –

λc
λ1

|�| p–1
p ‖u‖ – CεS‖u‖p∗ – C′

ε|h|
p

p–1
σ

= ‖u‖p
[

1
2p

– λC1‖u‖r–p – λC2‖u‖1–p – C3‖u‖p∗–p
]

– C′
ε|h|

p
p–1
σ .

Consider

ζ (t) = λC1tr–p + λC2t1–p + C3tp∗–p.

It is easy to see limt→0 ζ (t) = limt→+∞ ζ (t) = +∞. Let ζ ′(t) = 0, we have

λC1(r – p)tr–p–1 + λC2(1 – p)t–p + C3
(
p∗ – p

)
tp∗–p–1 = 0.

Note that ζ ′(t) = t–pη(t), where

η(t) = λC1(r – p)tr–1 + λC2(1 – p) + C3
(
p∗ – p

)
tp∗–1. (2.3)

Since r < p < p∗, there exists t0 > 0 such that η(t) < 0 on (0, t0) and η(t) > 0 on (t0,∞), i.e.,
ζ (t) has a unique minimum ζ (t0), taking into, we have

ζ (t0) = λC3tr–p + λC4t1–p.

Thus there exists λ∗ > 0 such that, for λ ∈ (0,λ∗), ζ (t0) < 1
4p . Moreover, let

η̃(t1) = λC2(1 – p) + C3
(
p∗ – p

)
tp∗–1
1 = 0, (2.4)

it is easy to see that t0 > t1 = [ λC2(p–1)
C3(p∗–p) ]

1
p∗–1 , thus there exists a constant � > 0 such that

tp
0

[
1

2p
– ζ (t)

]

– C′
ε|h|

p–1
p

σ > 0
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for |h|
p–1

p
σ < �, where � =

[ λC2(p–1)
C3(p∗–p) ]

p
p∗–1

4pC′
ε

. Thus, for 0 < λ < λ∗ and |h|
p–1

p
σ < �, there exist α,ρ >

0 such that I(u) ≥ α with ‖u‖ = ρ .
(ii) From (f4) we have that there exist c1, c2 > 0 such that

F(s) ≥ c1sν – c2 for all s > 0. (2.5)

Thus, for any u0 > 0 fixed, we have

I(tu0) =
tp

p
‖u0‖p – λ

∫

�

G(tu0) dx –
∫

�

F(tu0) dx – t
∫

�

hu0 dx

≤ tp

p
‖u0‖p – c1tν |u0|νν + c2|�| – λ

∫

�

G(tu0) dx – t
∫

�

hu0 dx.

Since ν ∈ (p, p∗), we get I(tu0) → –∞ as t → ∞. Thus there exists e ∈ X with ‖e‖ > ρ such
that I(e) < 0. �

Lemma 2.2 Assume that (f1), (f2), (f4), (g1) hold, then I satisfies the Palais–Smale condition.

Proof Suppose that {un}n∈N is a Palais–Smale sequence of I , i.e., there exists C > 0 such
that

I(un) → C, I ′(un) → 0 as n → ∞, (2.6)

then we have

C
(
1 + ‖un‖

)

≥ I(un) –
1
ν

〈
I ′(un), un

〉

=
1
p
‖un‖p – λ

∫

�

G dx –
∫

�

F dx –
∫

�

hun dx –
1
ν
‖u‖p +

1
ν

∫

�

(f + λg + h)un dx

=
(

1
p

–
1
ν

)

‖un‖p +
∫

�

(
fun

ν
– F

)

dx +
(

1
ν

– 1
)∫

�

hun dx + λ

∫

�

(
gun

ν
– G

)

dx

≥
(

1
p

–
1
ν

)

‖un‖p +
(

1 – ν

νλ1

)

|h|σ ‖un‖ –
c′λ
rλ1

|�| p–r
p ‖un‖r –

λc′

λ1
|�| p–1

p ‖un‖.

Thus {un}n∈N is bounded in X. Up to a subsequence, still denoted by {un}n∈N, there exists
u0 ∈ X satisfying

un ⇀ u0 in W s,p(�), un → u0 in Lp(�), un(x) → u0(x) a.e. on �. (2.7)

From (f1), (f2), (g1),we have by the Lebesgue convergence theorem

∫

�

f (x, un)(un – u0) dx → 0, as n → ∞,
∫

�

g(x, un)(un – u0) dx → 0, as n → ∞.
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Note that

〈
I ′(un), un – u0

〉
=

∫

�

|un(x) – un(y)|p–2(un(x) – un(y))
|x – y|N+sp

(
un(x) – un(y) – u0(x) + u0(y)

)

+ |un|p–2un(un – u0) –
∫

�

f (x, un)(un – u0) dx

– λ

∫

�

g(x, un)(un – u0) –
∫

�

h(x)(un – u0) dx,

and

〈
I ′(un), un – u0

〉 → 0 as n → ∞,

thus we have
∫

�

|un(x) – un(y)|p–2(un(x) – un(y))
|x – y|N+sp

(
un(x) – un(y) – u0(x) + u0(y)

)

+ |un|p–2un(un – u0) → 0. (2.8)

Combined with weak convergence of un ⇀ u0 in W s,p(�), we have

un → u0 inW 1,p(�) as n → ∞,

thus I satisfies the Palais–Smale condition. �

Proof of Theorem 1.1 In view of Lemma 2.1 and Lemma 2.2, Theorem 1.1 follows from
the mountain pass theorem [16]. �

3 Existence of three solutions
In this section we consider multiplicity results of problem (1.1) when h = 0,

⎧
⎨

⎩

(–�)s
pu + |u|p–2u = f (x, u) + λg(x, u) x ∈ �,

u = 0, x ∈R
N\�.

(3.1)

We first recall the following theorem by G. Bonnano.

Lemma 3.1 ([17]) Let X be a separable and reflexive real Banach space, and let φ,ψ : X →
R be two continuously Gâteaux differentiable functionals. Assume that φ is sequentially
weakly lower semicontinuous and even, that ψ is sequentially weakly continuous and odd,
and that, for some b > 0 and for each λ ∈ [–b, b], the functional ψ + λφ satisfies the Palais–
Smale condition and

lim‖x‖→∞
(
ψ(x) + λφ(x)

)
= +∞. (3.2)

Finally, assume that there exists k > 0 such that

inf
x∈X

(
ψ(x)

)
< inf

|φ(x)|<k
ψ(x). (3.3)
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Then, for every b > 0, there exist an open interval 	 ⊆ [–b, b] and a positive real number
σ such that, for each λ ∈ 	, the equation

ψ ′(x) + λφ′(x) = 0

admits at least three solutions in X whose norms are less than σ .

Consider the functional

I(u) =
1
p
‖u‖p – λ

∫

�

G dx –
∫

�

F dx

and denote ψ(u) = 1
p‖u‖p –

∫

�
F dx, φ(u) =

∫

�
–G dx.

Proof of Theorem 1.2 It suffices to check that I satisfies all the assumptions in Lemma 3.1.
By (̃f2), given ε > 0, we have

∣
∣f (x, s)

∣
∣ ≤ Cε + ε|s|p–1 for every s ∈R, (3.4)

∣
∣F(x, s)

∣
∣ ≤ Cε +

ε

p
|s|p for every s ∈R, (3.5)

thus the functional ψ(u) is continuously Gâteaux differentiable and weakly sequentially
continuous. From (g1) we know that φ(u) is weakly sequentially continuous.

By (3.5) and (g1), we derive

ψ(u) + λφ(u) ≥ 1
p
‖u‖p –

∫

�

Cε +
ε

p
|s|p dx – λ

∫

�

(

c|u| +
1
r
|u|r

)

dx

≥ 1
p

(

1 –
ε

λ1

)

‖u‖p – C1‖u‖r – C2‖u‖ – C3|�|.

Since p > r, taking ε sufficiently small, we have

lim‖u‖→+∞ψ(u) + λφ(u) = +∞. (3.6)

Following a similar argument in Lemma 2.2, I satisfies the Palais–Smale condition.
By (f1), we have

∫

�

F(x, u) dx ≤ ε

p

∫

�

|u|p dx ≤ ε

pλ1
‖u‖p. (3.7)

Thus

ψ(u) ≥ 1
p
‖u‖p –

ε

p

∫

�

|u|p dx > 0. (3.8)

Hence there exists k > 0 such that

inf
|φ(u)|<k

ψ(u) = 0.
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Due to (f3), for any u ∈ W s,p(�), let t → ∞, there holds

ψ(tu) =
1
p
‖tu‖p –

∫

�

F(x, tv) dx

<
tp

p
‖u‖p –

2rtp

p

∫

�

|u|p dx + B|�|

< –
tp

p
+ B|�| → –∞.

Then we have

inf
u∈W s,p(�)

ψ(u) < inf
|φ(u)|<k

ψ(u). (3.9)

Thus completes the proof. �

4 Existence of infinitely many solutions
In this section, we consider the critical case for problem (3.1), i.e.,

⎧
⎨

⎩

(–�)s
pu + |u|p–2u = f (x, u) + λ|u|p∗

s –2u, x ∈ �,

u = 0, x ∈R
N\�.

(4.1)

Under assumption (g3) of Theorem 1.3, it is easy to see that the Euler–Lagrange functional
of (4.1) is even, thus we tend to use the symmetric mountain pass theorem of Kajikiya for
existence of infinitely many solutions. Due to the presence of critical term, we first prove
the local compactness result.

Lemma 4.1 Let (f2) hold. Then, for any M > 0, there exists λ∗ such that I satisfies the
Palais–Smale condition on (–∞, M], ∀λ ∈ (0,λ∗).

Proof Let {un}n∈N be a Palais–Smale sequence of I at level d, i.e., there exists d > 0 such
that

I(un) → d, I ′(un) → 0 as n → ∞. (4.2)

By (f2) we have

∣
∣f (x, u)u

∣
∣ ≤ c(ε) + ε|u|p∗

s (4.3)

and

∣
∣F(x, u)

∣
∣ ≤ c′(ε) + ε|u|p∗

s . (4.4)

Then, by (4.2), we have

d + o(1)‖un‖ = I(un) –
1
p
〈
I ′(un), un

〉
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= λ

(
1
p

–
1
p∗

)

|un|p∗
p∗ +

∫

�

1
p

fu – F dx

≥
(

λ

p
–

λ

p∗ – ε

)

|un|p
∗

p∗ – c(ε)|�|.

Taking ε sufficiently small, we obtain

|un|p
∗

p∗ ≤ C + o(1)‖un‖. (4.5)

On the other hand,

d + o(1) =
1
p
‖un‖p –

λ

p∗ |un|p
∗

p∗ –
∫

�

F dx

≥ 1
p
‖un‖p – c′(ε)|�| –

(
λ

p∗ + ε

)

|un|p
∗

p∗ ,

thus {un}n∈N is bounded in X. Up to a subsequence, still denoted by {un}n∈N, there exists
u ∈ X satisfying

un ⇀ u in W s,p(�), un → u in Lp(�), un(x) → u(x) a.e. on �. (4.6)

Applying (f2), we have

∫

�

f (x, un)un dx =
∫

�

f (x, u)u dx + o(1), (4.7)
∫

�

F(x, un)un dx =
∫

�

F(x, u)u dx + o(1). (4.8)

Noting that the sequence { |un(x)–un(y)|p–2(un(x)–un(y))

|x–y|
N+ps

p
}n∈N is bounded in Lp′ (�), by pointwise

convergence un → u, we have

|un(x) – un(y)|p–2(un(x) – un(y))

|x – y| N+ps
p

⇀Lp′ |u(x) – u(y)|p–2(u(x) – u(y))

|x – y| N+ps
p

. (4.9)

From (4.7)–(4.9) we derive I ′(u) = 0, i.e., u is a weak solution of (4.1), and

I(u) =
∫

�

(
1
p

uf – F
)

dx + λ

(
1
p

–
1
p∗

)∫

�

|u|p∗
dx. (4.10)

Thus it suffices to check un → u in X. We consider vn = un – u. By the fractional form of
the Brezis–Lieb lemma and (4.2), we have

〈
I ′(un, un

〉
= ‖vn‖p + ‖u‖p –

∫

�

uf (x, u) dx – λ

∫

�

|vn|p∗
dx – λ

∫

�

|u|p∗
dx + o(1)

= o(1) (4.11)

and

I(un) =
1
p
‖u‖p +

1
p
‖vn‖p –

∫

�

F(x, u) dx –
λ

p∗

∫

|vn|p∗
–

λ

p∗

∫

|u|p∗
+ o(1). (4.12)
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Since I ′(u) = 0, we have

‖vn‖p = λ

∫

�

|vn|p∗
dx + o(1). (4.13)

Without loss of generality, we assume that ‖vn‖p = a + o(1). By the fractional Sobolev in-
equality, we have

a ≥ S(a/λ)p/p∗
. (4.14)

If a = 0, the proof is complete. Otherwise, a ≥ SN/psλ(ps–N)/ps. Combined with (4.2), (4.3),
and (4.4), as n → ∞ we derive

d =
a
p

–
a
p∗ +

∫

�

(
1
p

uf – F
)

dx + λ

(
1
p

–
1
p∗

)∫

�

|u|p∗
dx

≥ s
n

SN/psλ(ps–N)/ps – c′(ε)|�| + λ

(
1
p

–
1
p∗ – ε

)∫

�

|u|p∗
dx

≥ s
n

SN/psλ(ps–N)/ps – c′(s/2Nλ)|�|

provided ε is sufficiently small. Then, given any M > 0, there exists λ∗ such that

d ≥ s
n

SN/psλ(ps–N)/ps – c′(ε) > M (4.15)

for all λ ∈ (0,λ∗), thus completes the proof.
Now we introduce Krasnoselski’s genus. Let E be a real Banach space. A closed subset A

of E is called symmetric if x ∈ A implies –x ∈ A. Denote by � the family of all symmetric
closed sets of E. The genus of A is defined to be the smallest integer n if there is an odd
map ϕ ∈ C(A,Rn\{0}). If n does not exist, then γ (A) = ∞. Typically, γ (φ) = 0. �

Proposition 4.2 Let A, B ∈ �. Then:
(1) If there exists an odd continuous map from A to B, then γ (A) ≤ γ (B).
(2) If there is an odd homeomorphism from A to B, then γ (A) = γ (B).
(3) If γ (B) < ∞, then γ (A\B) ≥ γ (A) – γ (B).
(4) The n-dimensional sphere Sn has a genus of n+1 by the Borsuk–Ulam theorem.
(5) If A is compact, then γ (A) < ∞, and there exist δ > 0 and a closed symmetric

neighborhood Nδ(A) = {x ∈ E : ‖x – A‖ ≤ δ} of A such that γ (Nδ(A)) = γ (A).
We then give the symmetric mountain pass lemma due to Kajikiya [18].

Lemma 4.3 Let E be an infinite dimensional Banach space and I ∈ C1(E,R) be a functional
satisfying the conditions below:

(C1) I(u) is even, bounded from below, I(0) = 0, and I(u) satisfies the local Palais–Smale
condition, i.e., for some d∗ > 0, in the case when every sequence {un}n∈RN in E satis-
fying I(un) → d < d∗ and I ′(un) → 0 in E∗ has a convergent subsequence;

(C2) For each n ∈ N, there exists An ∈ �n such that supu∈An I(u) < 0.
Then either (i) or (ii) below holds.
(i) There exists a sequence {un}n∈RN such that I ′(un) = 0, I(un) = 0, and {un}n∈RN

converges to 0.
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(ii) There exist two sequences {un}n∈RN and {vn}n∈RN such that I ′(un) = 0, I(vn) < 0,
limn→∞ I(vn) = 0, and {vn}n∈RN converges to a nonzero limit.

Since I(u) is not bounded from below, we use the truncation argument in the following
discussion. Setting ε = λ

p∗ in (4.4), it follows that

I(u) =
1
p
‖u‖p –

∫

�

F dx –
λ

p∗

∫

�

|u|p∗
dx

≥ 1
p
‖u‖p – c

(
λ

p∗
)

|�| –
2λ

p∗

∫

�

|u|p∗
dx

≥ 1
p
‖u‖p – c

(
λ

p∗
)

|�| –
2λ

p∗ S–p∗/p‖u‖p∗

= A‖u‖p – B‖u‖p∗
– c

(
λ

p∗
)

|�|,

where A = 1
p , B = 2λ

p∗ S–p∗/p , C = c( λ
p∗ )|�|.

Consider

g(t) := Atp – Btp∗
– C,

it is easy to see that g attains its maximum at t1 = ( Sp∗/p

2λ
)1/(p∗–p), and

M1 = g(t1) =
s
N

(
S
2

)N/ps

λ–n/ps – c
(

λ

p∗
)

|�| > 0, (4.16)

provided λ ∈ (0,λ′∗), where λ′∗ = [
s
N ( S

2 )N/ps

C ]ps/N .
Thus we can find, for any M0 ∈ (0, M1), t0 < t1 such that g(t0) = M0. We then introduce

the auxiliary function

χ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ t ≤ t0,
Atp–C–M1

Btp∗ , t ≥ t1,

C∞,χ (t) ∈ [0, 1], t0 ≤ t ≤ t1.

It is easy to see that χ (t) ∈ [0, 1] and χ (t) ∈ C∞. Let ϕ(u) := χ (‖u‖), and we consider the
truncated functional J : X →R defined as

J(u) =
1
p
‖u‖p – ϕ(u)

∫

�

F dx –
λϕ

p∗

∫

�

|u|p∗
dx. (4.17)

Hence we have

J(u) ≥ A‖u‖p – Bϕ(u)‖u‖p∗ – c
(

λ

p∗
)

|�| := g
(‖u‖), (4.18)

where g(t) = Atp – Bχ (t)tp∗ – C and

g(t) :=

⎧
⎨

⎩

g(t), 0 ≤ t ≤ t0,

M1 t ≥ t1.
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By the above arguments, we have the following result.

Lemma 4.4 Let J(u) be defined as in (4.17), then
(i) J ∈ C1(X,R), J is even and bounded from below.

(ii) If J(u) < M0, then g(‖u‖) < M0, and consequently ‖u‖ < t0 with I(u) = J(u).
(iii) There exists λ∗ such that, for any λ ∈ (0,λ∗), J satisfies a local Palais–Smale

condition for

d < M0 ∈
(

0, min

{

M1,
s
n

SN/psλ(ps–N)/ps – c′(s/2λN)
})

. (4.19)

Proof It is easy to see (i) and (ii). (iii) holds consequently by (ii) and Lemma 4.1. �

Lemma 4.5 Assume that (̃f1) holds. Then, for any k ∈ N, there exists δ(k) > 0 such that
γ ({u ∈ X : J(u) ≤ δ(k)}\{0}) ≥ k.

Proof By (̃f1), we derive

F(x, εu) ≥ G(ε)(εu)p with G(ε) → ∞ as ε → 0. (4.20)

Given k ∈ N and let Ek be a k-dimensional subspace of X. Since all norms in Ek are equiv-
alent, we define

αk = inf‖u‖=1

∫

�

|u|p∗
dx, βk = inf‖u‖=1

∫

�

|u|p dx, (4.21)

then for any u ∈ Ek and ε ∈ (0, t0),

I(εu) = J(εu)

≤ εp

p
–

λεp∗

p∗ αk – G(ε)εpβk

≤ εp
[

1
p

–
λεp∗–p

p∗ αk – G(ε)βk

]

= –δ(k) < 0

provided ε is sufficiently small, since G(ε) → ∞(ε → 0). Thus

{
u ∈ Ek : ‖u‖ = ε

} ⊂ {
u ∈ X : J(u) ≤ –δ(k)

}\{0}. (4.22)

This completes the proof. �

Proof of Theorem 1.3 Consider

�k :=
{

A ∈ X\{0} : A is closed and A = –A,γ (A) ≥ k
}

, (4.23)

and define

ck = inf
A∈�k

sup
u∈A

G(u). (4.24)
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By Lemma 4.4-(i) and Lemma 4.5, it implies –∞ < ck < 0. Thus conditions (C1) and (C2) of
Lemma 4.3 are satisfied. Consequently, there exists a sequence of solutions {un} converg-
ing to 0. Therefore, Theorem 1.3 follows by Lemma 4.4(ii). �
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