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Abstract
In this paper, we present Krasnoselski–Mann-type inertial method for solving split
generalized mixed equilibrium and hierarchical fixed point problems for k-strictly
pseudocontractive nonself-mappings. We establish that the weak convergence of the
proposed accelerated iterative method with inertial terms involves a step size which
does not require any prior knowledge of the operator norm under several suitable
conditions in Hilbert spaces. Finally, the application to a Nash–Cournot oligopolistic
market equilibrium model is discussed, and numerical examples are provided to
demonstrate the effectiveness of our iterative method.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖, and
let C be a nonempty closed and convex subset of H . Let f : C → H be a nonlinear mapping,
and let φ : C →R be a function and F be a bifunction from C × C to R, where R is the set
of real numbers. Then we consider the following generalized mixed equilibrium problem:
Find x∗ ∈ C such that

F
(
x∗, y

)
+
〈
fx∗, y – x∗〉 + φ(y) – φ

(
x∗)≥ 0 for all y ∈ C. (1)

The set of solutions of (1) is denoted by GMEP(F , f ,φ).
If φ = 0, then the generalized mixed equilibrium problem (1) becomes the following

mixed equilibrium problem: Find x∗ ∈ C such that

F
(
x∗, y

)
+
〈
fx∗, y – x∗〉≥ 0 for all y ∈ C. (2)

The set of solutions of (2) is denoted by MEP(F ,φ).
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In particular, if φ = 0 and f = 0, then the generalized mixed equilibrium problem (1)
becomes the following equilibrium problem: Find x∗ ∈ C such that

F
(
x∗, y

)≥ 0 for all y ∈ C. (3)

The set of solutions of (3) is denoted by EP(F).
On the other hand, if F(x∗, y) = 0, ∀x, y ∈ C, then (1) reduces to the following generalized

vector variational inequality problem: Find x∗ ∈ C such that

〈
fx∗, y – x∗〉 + φ(y) – φ

(
x∗)≥ 0 for all y ∈ C. (4)

Problem (4) was discussed in Sun and Chai [45]; it plays a critical role in algorithm design,
can be used to measure how much the approximate solution fails to be in the solution set
and to analyze the convergence rates of various methods. If we set F(x∗, y) = 0 and φ = 0,
∀x, y ∈ C, then (1) reduces to the classical variational inequality problem (in short, VIP):
Find x∗ ∈ C such that

〈
fx∗, y – x∗〉≥ 0 for all y ∈ C, (5)

which was first introduced by Giannessi [23]. Recently, several authors have studied and
proposed many iterative algorithms for approximating the solutions of variational inequal-
ity problem and related optimization problems (see [25, 28, 29]).

The generalized mixed equilibrium problem is very general in the sense that it includes
as a special case minimization problems, variational inequality problems, fixed point
problems, Nash equilibrium problems in noncooperative games, and many others (see
[2, 3, 7, 12, 16, 18, 21, 26, 48–50, 52]).

In 1994, Censor and Elfving [14] introduced the following split feasibility problem for
modeling inverse problems which arise in phase retrievals and medical image reconstruc-
tions. Let H1 and H2 be two real Hilbert spaces with the inner product 〈·, ·〉 and the norm
‖ · ‖. Let C and Q be nonempty closed and convex subsets of H1 and H2, respectively, and
let A : H1 → H2 be a bounded linear operator. The split feasibility problem is formulated
as finding a point

x ∈ C such that Ax ∈ C.

The split feasibility problem has been applied extensively in many areas of science and
engineering such as signal processing, image reconstruction, and intensity modulated ra-
diation therapy. It has received attention of many authors, and various iterative methods
have been proposed for finding its solutions (see [13, 15, 17]).

Next, we consider the split generalized mixed equilibrium problem (for short, SpGMEP):
Find x∗ ∈ C such that

F
(
x∗, x

)
+
〈
fx∗, x∗ – x

〉
+ φ(x) – φ

(
x∗)≥ 0, ∀x ∈ C, (6)

and such that

Ax∗ ∈ Q solves G
(
Ax∗, y

)
+
〈
g
(
Ax∗), Ax∗ – y

〉
+ ϕ(y) – ϕ

(
Ax∗)≥ 0, ∀y ∈ Q, (7)
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where F : C × C → R and G : Q × Q → R are nonlinear bifunctions, f : C → H1 and
g : Q → H2 are nonlinear mappings, φ : C →R∪ {+∞} and ϕ : Q →R∪ {+∞} are proper
lower semicontinuous and convex functions, and A : H1 → H2 is a bounded linear opera-
tor. The set of solutions of the SpGMEP is denoted by

� =
{

x∗ ∈ GMEP(F , f ,φ) : Ax∗ ∈ GMEP(G, g,ϕ)
}

.

Jolaoso et al. [30] presented the following example to show that � �= ∅.

Example 1.1 ([30]) Let H1 = R
2 with the norm ‖x‖ =

√
x2

1 + x2
2 for x = (x1, x2) ∈ R

2, and
let H2 = R. Let C = {x = (x1, x2) ∈ R

2 : x2 – x1 ≥ 1} and Q ⊆ [1,∞). Define F(x, y) = y2 –
y1 – x2 + x1, where x = (x1, x2) and y = (y1, y2) ∈ C. Then F is a bifunction from C × C
to R. Let f (x) = φ(x) = x2 – x1, then GMEP(F , f ,φ) = {q = (q1, q2) : q2 – q1 = 1}. Also define
G(u, v) = v – u for all u, v ∈ Q, so that G is a bifunction from Q × Q to R, and let g(u) = 2u,
ϕ(u) = u. For each x = (x1, x2) ∈ H1, let A(x) = x2 – x1, so that A is a bounded linear operator
from H1 to H2. Clearly, when q ∈ GMEP(F , f ,φ), we have Aq = 1 ∈ GMEP(G, g,ϕ). Thus
� = {q ∈ GMEP(F , f ,φ) : Aq ∈ GMEP(G, g,ϕ)} �= ∅.

A nonself-mapping T : C → H1 is said to be k – strictly pseudocontractive if there exists
a constant k ∈ [0, 1) such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ H1.

If k = 0, then T is a nonexpansive nonself-mapping.
It is known that if Fix(T) = {x∗ ∈ C : Tx∗ = x∗} �= ∅, then Fix(T) is closed and convex (see

[22]).
The hierarchical fixed point problem (in short, HFPP) was introduced by Moudafi and

Mainge [39] for a nonexpansive mapping T with respect to another mapping S, namely:
Find x∗ ∈ Fix(T) such that

〈
x∗ – Sx∗, x∗ – x

〉≤ 0 for all x ∈ Fix(T), (8)

where S : C → C is a nonexpansive mapping. By using the definition of the normal cone
to Fix(T), i.e.,

NFix(T) :=

⎧
⎨

⎩
{u ∈ H1 : 〈y – x, u〉 ≤ 0,∀y ∈ Fix(T)}, if x ∈ Fix(T),

∅, otherwise,

this amounts to saying that x∗ ∈ Fix(T) satisfies a variational inequality depending on a
given criterion S, namely: Find x∗ ∈ C such that

0 ∈ (I – S)x∗ + NFix(T)x∗, (9)

where I is the identity on C. It is not hard to check that (8) is equivalent to the fixed point
problem: Find x∗ ∈ C such that

x∗ ∈ PFix(T)·Sx∗, (10)
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where PFix(T) stands for the metric projection on the closed convex set Fix(T). The solution
set of HFPP (8) is denoted by � = {x∗ ∈ C : x∗ = (PFix(T)·S)x∗}.

At the point, we wish to point out the link with monotone variational inequality on the
fixed point set, minimization problems over equilibrium constraints, hierarchical mini-
mization problems, etc.

By setting S = I – rf where f is η-Lipschitzian and k-strongly monotone with r ∈ (0, 2k
η2 ),

(8) reduces to: Find x∗ ∈ Fix(T) such that

〈
x – x∗, fx∗〉≥ 0 for all x ∈ Fix(T),

which is a variational inequality in Yamada and Oqura [54]. Now, let M be a maximal
monotone operator, by taking T = JM

λ = (I – λM)–1 and S = I – γ∇ψ , where ψ is a convex
function such that ∇ψ is η-Lipschitzian with γ ∈ (0, 2

η
) and using the fact that Fix(JM

λ ) =
M–1(0), then (8) reduces to the following mathematical program with generalized equation
constraint:

min
0∈M(x∗)

ψ
(
x∗), (11)

which was considered by Luo et al. [36]. By taking M = ∂ϕ, where ∂ϕ is the subdifferen-
tial of a lower semicontinuous convex function, problem (12) is reduced to the following
hierarchical minimization problem considered by Cabot [11]:

min
x∗∈arg minϕ

ψ
(
x∗). (12)

We note that based upon relation (10), HFPP (8) has the iterative method xn+1 =
PFix(T)(Sxn). It will converge if a fixed point of the operator PFix(T) · S exists, and if S is
averaged, not just nonexpansive. But calculating PFix(T) · S in this case is usually not easy.
In 2007, Maudafi [39] introduced the following Krasnoselski–Mann iterative method for
solving HFPP (8):

xn+1 = (1 – αn)xn + αn
(
σnSxn + (1 – σnTxn)

)
for all n ≥ 0,

where {αn} and {σn} are two control sequences in (0, 1). The main feature of its corre-
sponding convergence theorems provides a unified frame for analyzing various concrete
algorithms (see for instance [10, 55]). It is well known that problem (8) is often used in the
area of optimization and related fields, such as signal processing and image reconstruc-
tion.

Define a mapping SF
rn : H1 → C and x ∈ H1 as follows:

SF
rn (x) =

{
z ∈ C : F(z, y) +

1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}
,

where F : C × C →R is the bifunction and r > 0.
In 2017, Kazmi et al. [31] proposed a Krasnoselski–Mann-type iterative method to ap-

proximate a common solution set of a hierarchical fixed point problem for nonexpan-
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sive mappings S, T and a split mixed equilibrium problem which was defined as fol-
lows:

x0 ∈ C;

un = (1 – αn)xn + αn
(
βnSxn + (1 – βn)Txn

)
; (13)

xn+1 = SF
rn (I – rnf )

(
un + λA∗(SG

rn (I – rng) – I
)
Aun

)
, ∀n ≥ 0,

where the step size λ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A, and A∗ is the

adjoint of the bounded linear operator A. Under some suitable conditions on {αn}, {βn},
and {rn}, they proved that the sequence {xn} converges weakly to a solution of hierarchical
fixed point and split mixed equilibrium problems.

Recently, Kim and Majee [33] introduced a modified Krasnoselski–Mann iterative
method for a common solution of split mixed equilibrium and hierarchical fixed point
problems of ki-strictly pseudocontractive nonself-mappings {Ti}N

i=1 as follows: For start-
ing point x0 ∈ C, define {xn} by

un = (1 – αn)xn + αn
(
βnSxn + (1 – βn)TN

n · · ·T1
n xn
)
;

xn+1 = SF
rn (I – rnf )

(
un + δnA∗(SG

rn (I – rng) – I
)
Aun

)
, n ≥ 0,

where

Ti
n =
(
1 – γ i

n
)
I + γ i

nPC
(
τ i

nI +
(
1 – τ i

n
)
Ti), 0 ≤ ki ≤ τ i

n < 1,γ i
n ∈ (0, 1)

and the step size

δn =
σn‖(SG

rn (I – rng) – I)Axn‖
‖A∗(SG

rn (I – rng) – I)Axn‖ ,

which does not require any prior knowledge of the operator norm. It is well known that
the computation or an estimate of the spectral radius of a given operator is very difficult
at times. They proved weak convergence to a solution of hierarchical fixed point and split
equilibrium problems.

In general, the convergence rate of Krasnoselski–Mann iterative method and hybrid it-
erative method is slow. In particular, the term θn(xn – xn–1) which is called the inertial
extrapolation term was proposed as a remarkable tool for speeding up the convergence
properties of iterative methods, and the inertial type algorithm has been studied and mod-
ified in various forms by many authors (see [1, 4, 6, 37, 42, 51]). For example, the inertial
forward-backward splitting methods [35], the inertial Douglas–Rachford splitting meth-
ods [8] and the inertial proximal methods [40], the inertial extragradient methods [27], the
inertial subgradient extragradient methods [43], the inertial shrinking projection methods
[41].

Motivated and inspired by the work mentioned above, we propose a Krasnoselski–
Mann-type inertial method for approximating a common solution of a hierarchical fixed
point problem for a finite collection of k-strictly pseudocontractive nonself-mappings
and a split generalized mixed equilibrium problem. Our iterative method combines the
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Krasnoselski–Mann-type iterative method and the inertial term to obtain a new faster
iterative method with a step size which does not require any prior knowledge of the oper-
ator norm and to prove a weak convergence results under some suitable conditions in real
Hilbert spaces. Further, we apply our result to solve a common split mixed equilibrium and
hierarchical fixed point problem. Finally, we apply generalized mixed equilibrium prob-
lems with Nash–Cournot oligopolistic market equilibrium problems and provide numer-
ical experiments to compare the performances of our proposed iterative method with the
method of Kim and Majee [33].

2 Preliminaries
In this section, we present some preliminary results that we will use in our results.

Definition 2.1 A mapping f : H → H is said to be:
(i) monotone, if

〈fx – fy, x – y〉 ≥ 0, ∀x, y ∈ H ;

(ii) α-inverse strongly monotone, if there exists a constant α > 0 such that

〈fx – fy, x – y〉 ≥ α‖fx – fy‖2, ∀x, y ∈ H ;

(iii) β-Lipschitz continuous, if there exists a constant β > 0 such that

‖fx – fy‖ ≤ β‖x – y‖ ∀x, y ∈ H .

The normal cone of a nonempty closed convex subset C of H at a point x ∈ C, denoted
by NC(x), is defined as

NC(x) =
{

u ∈ H : 〈u, y – x〉 ≤ 0 for all y ∈ C
}

.

Let M : H → 2H be a multivalued operator on H . Then the graph G(M) of M is defined by

G(M) =
{

(x, y) ∈ H × H : y ∈ M(x)
}

,

and
(i) the operator M is called a monotone operator if

〈u – v, x – y〉 ≥ 0, whenever u ∈ M(x), v ∈ M(y);

(ii) the operator M is called a maximal monotone operator if M is monotone and the
graph of M is not properly contained in the graph of other monotone mappings.

It is clear that a monotone mapping M is maximal if and only if for any (x, u) ∈ H × H , if
〈u – v, x – y〉 ≥ 0 for all (u, v) ∈ G(M), then u ∈ M(x) (see [9]).

Lemma 2.2 ([9])
(i) Let M be a maximal monotone mapping on H , then the {t–1

n M} graph converges to
NM–1(0) as tn → 0 provided that M–1(0) �= ∅;
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(ii) Let {Mn} be a sequence of maximal monotone mappings on H , the graph converges to
a mapping M defined on H . If B is a Lipschitz maximal monotone mapping on H ,
then the {B + Mn} graph converges to B + M and B + M is maximal monotone.

Definition 2.3 A mapping T : H1 → H1 is said to be an averaged mapping if there ex-
ists some number α ∈ (0, 1) such that T = (1 – α)I + αS, where I : H1 → H1 is the identity
mapping and S : H1 → H1 is a nonexpansive mapping. An averaged mapping is also non-
expansive and Fix(S) = Fix(T).

Lemma 2.4 ([10]) If the mappings {Ti}N
i=1 are averaged and have a common fixed point,

then

N⋂

i=1

Fix(Ti) = Fix(T1T2 · · ·TN ).

In particular, for N = 2, Fix(T1) ∩ Fix(T2) = Fix(T1T2) = Fix(T2T1).

Lemma 2.5 ([56]) Assume that S : C → H1 is a k-strictly pseudocontractive mapping. De-
fine a mapping T by Tx = αx + (1 – α)Sx for all x ∈ H1, where α ∈ [k, 1). Then T is a non-
expansive mapping with Fix(T) = Fix(S).

Lemma 2.6 ([56]) Let T : C → H1 be a k-strictly pseudocontractive mapping with Fix(T) �=
∅. Then Fix(PCT) = Fix(T).

Lemma 2.7 ([20]) Let {ψn}, {δn}, and {αn} be the sequences in [0, +∞) such that ψn+1 ≤
ψn + αn(ψn – ψn–1) + δn for all n ≥ 1,

∑∞
n=1 δn < +∞, and there exists a real number α with

0 ≤ αn ≤ α < 1 for all n ≥ 1. Then the following hold:
(i)
∑

n≥1[ψn – ψn–1]+ < +∞, where [t]+ = max{t, 0};
(ii) There exists ψ∗ ∈ [0, +∞) such that limn→+∞ ψn = ψ∗.

Lemma 2.8 ([5]) Let C be a nonempty subset of a real Hilbert space H and {xn} be a se-
quence in H such that the following two conditions hold:

(i) For any x ∈ C, limn→∞ ‖xn – x‖ exists;
(ii) Every sequential weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

3 Convergence analysis
In this position, we establish the convergence of the Krasnoselski–Mann-type inertial
method and assume that the bifunction F : C × C →R satisfies the following.

Assumption 3.1
L1. F(x, x) = 0 for all x ∈ C;
L2. F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
L3. For each x, y, z ∈ C, lim supt→0 F(tz + (1 – t)x, y) ≤ F(x, y);
L4. For each x ∈ C, y → F(x, y) is convex and lower semicontinuous.

The following properties are associated with a nonempty closed and convex subset C
of H :
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B1. For each x ∈ H and r > 0, there exist a bounded subset D ⊆ C and y ∈ C such that,
for any z ∈ D,

F(z, y) + φ(y) +
1
r
〈y – x, z – x〉 < φ(z);

B2. C is a bounded set.

It is easy to show that, under Assumption 3.1, the solution of GMEP(F , f ,φ) is nonempty,
closed, and convex (see, for instance, [44]). We present the following Krasnoselski–Mann-
type inertial method for solving split generalized mixed equilibrium and hierarchical fixed
point problems for k-strictly pseudocontractive nonself-mappings.

Algorithm 1 Krasnoselski–Mann-type inertial method
Initialization. Select θ ∈ [0, 1) and a positive sequence {εn} ⊂ [0,∞) satisfying
∑∞

n=0 εn < ∞. Choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

⎧
⎨

⎩
min{θ , εn

‖xn–xn–1‖ }, if xn �= xn–1,

θ , otherwise .

Choose initial iterates x0, x1 ∈ C, and set n = 1.
Step 1. Compute

wn = xn + θn(xn – xn–1),

un = (1 – αn)wn + αn
(
βnSwn + (1 – βn)TN

n · · ·T1
n wn

)
,

where Ti
n = (1 – γ i

n)I + γ i
nPC(τ i

nI + (1 – τ i
n)Ti), 0 ≤ ki ≤ τ i

n < 1, γ i
n ∈ (0, 1).

Step 2. Compute

xn+1 = U
(
un + δnA∗(V – I)Aun

)
, n ≥ 1,

where U = TF
rn (I – rnf ), V = TG

rn (I – rng), and δn = σn‖(TG
rn (I–rng)–I)Aun‖2

‖A∗(TG
rn (I–rng)–I)Aun‖2 , 0 < a ≤ σn ≤ b < 1.

Set n = n + 1, and return to Step 1.

Remark 1 From

θ̄n =

⎧
⎨

⎩
min{θ , εn

‖xn–xn–1‖ }, if xn �= xn–1,

θ , otherwise,
,

we have

∞∑

n=1

θn(xn – xn–1) < ∞.
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Now, we prove a weak convergence theorem to approximate a common solution of split
generalized mixed equilibrium and hierarchical fixed point problems for k-strictly pseu-
docontractive nonself-mappings.

Theorem 3.1 Let C and Q be nonempty closed and convex subsets of real Hilbert spaces
H1 and H2, respectively, and let A : H1 → H2 be a bounded linear operator with its adjoint
operator A∗. Assume that F : C × C → R and G : Q × Q → R are bifunctions satisfy-
ing Assumption 3.1. Let f : C → H1 and g : Q → H2 be κ1, κ2-inverse strongly monotone
mappings, φ : C → R ∪ {+∞} and ϕ : Q → R ∪ {+∞} be proper lower semicontinuous
and convex functions. Let S : C → C be a nonexpansive mapping and {Ti}N

i=1 : C → H1

be ki-strictly pseudocontractive nonself-mappings. Assume that either B1 or B2 holds and
� = �∩� �= ∅. Let {xn} be the sequence defined by Algorithm 1 and the following conditions
are satisfied:

(i) lim infn→∞ αn > 0,
∑∞

n=1 βn < +∞;
(ii) limn→∞ ‖un–wn‖

αnβn
= 0;

(iii) lim infn→∞ rn > 0.
Then the sequence {xn} converges weakly to x∗ ∈ � .

Proof We now divide the remaining proof into several steps.
First, we will prove that {xn}, {un}, and {wn} are bounded.
Since f : C → H1 is a κ1-inverse strongly monotone mapping, then for any x, y ∈ C, we

have

∥∥(I – rnf )x – (I – rnf )y
∥∥2 =

∥∥(x – y) – rn(fx – fy)
∥∥2

= ‖x – y‖2 – rn(2κ1 – rn)‖fx – fy‖2 = ‖x – y‖2,

which shows that (I – rnf ) is nonexpansive. Similarly, (I – rng) is nonexpansive. So TF
rn (I –

rnf ), TG
rn (I – rng) are nonexpansive. Let x∗ ∈ � . Then x∗ ∈ � and x∗ ∈ � which imply that

∥
∥wn – x∗∥∥ =

∥
∥xn + θn(xn – xn–1) – x∗∥∥

≤ ∥∥xn – x∗∥∥ + θn‖xn – xn–1‖. (14)

From Lemma 2.4, Lemma 2.5, and Lemma 2.6, we get x∗ = T2
n T1

n x∗. Hence, we have

∥∥un – x∗∥∥ =
∥∥(1 – αn)wn + αn

(
βnSwn + (1 – βn)TN

n · · ·T1
n wn

)
– x∗∥∥

≤ (1 – αn)
∥
∥wn – x∗∥∥ + αn

[
βn
∥
∥Swn – x∗∥∥ + (1 – βn)

∥
∥T2

n T1
n wn – x∗∥∥]

≤ (1 – αn)
∥∥wn – x∗∥∥ + αn

[
βn
∥∥wn – x∗∥∥ + (1 – βn)

∥∥T2
n T1

n wn – x∗∥∥

+ αnβn
∥∥Sx∗ – x∗∥∥]

=
∥
∥wn – x∗∥∥ + αnβn

∥
∥Sx∗ – x∗∥∥. (15)

Also, since x∗ ∈ � , we have Ux∗ = x∗ and VAx∗ = Ax∗. Let yn = un + δnA∗(V – I)Aun. Then
we get

∥
∥yn – x∗∥∥2 =

∥
∥un + δnA∗(V – I)Aun – x∗∥∥2

=
∥∥un – x∗∥∥2 + 2δn

〈
un – x∗, A∗(V – I)Aun

〉
+ λ2‖A‖2‖(V – I)Aun)‖2. (16)
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Observe that

〈
un – x∗, A∗(V – I)Aun

〉

=
〈
Aun – Ax∗, (V – I)Aun

〉

=
〈
Aun – Ax∗ + (V – I)Aun – (V – I)Aun, (V – I)Aun

〉

=
(〈

Aun – Ax∗, (V – I)Aun
〉
–
∥
∥(V – I)Aun

∥
∥2)

=
1
2
(∥∥Aun – Ax∗∥∥2 +

∥∥(V – I)Aun
∥∥2 –

∥∥Aun – Ax∗∥∥2 – 2
∥∥(V – I)Aun

∥∥2)

=
1
2
(∥∥Aun – Ax∗∥∥2 –

∥
∥Aun – Ax∗∥∥2 –

∥
∥(V – I)Aun

∥
∥2)

= –
1
2
∥
∥(V – I)Aun

∥
∥2. (17)

From (16) and (17), we obtain

∥
∥yn – x∗∥∥2 ≤ ∥∥un – x∗∥∥2 – δn

(∥∥(V – I)Aun
∥
∥2 – δn

∥
∥A∗(V – I)Aun

∥
∥2). (18)

It follows that

∥∥xn+1 – x∗∥∥2 =
∥∥U
(
un + δnA∗(V – I)Aun

)
– x∗∥∥2

=
∥∥(un + δnA∗(V – I)Aun

)
– x∗∥∥2

=
∥
∥yn – x∗∥∥2

≤ ∥
∥un – x∗∥∥2 – δn

(∥∥(V – I)Aun
∥
∥2 – δn

∥
∥A∗(V – I)Aun

∥
∥2). (19)

From (14),(15), and (19), we get

∥∥xn+1 – x∗∥∥2 ≤ ∥∥un – x∗∥∥ (20)

≤ ∥∥wn – x∗∥∥ + αnβn
∥∥Sx∗ – x∗∥∥

≤ ∥∥xn – x∗∥∥ + θn‖xn – xn–1‖ + αnβn
∥∥Sx∗ – x∗∥∥.

Since
∑∞

n=1 θn‖xn – xn–1‖ < ∞ and
∑∞

n=1 βn < ∞, we have
∑∞

n=1 αnβn < ∞. By using
Lemma 2.7, we conclude that limn→∞ ‖xn – x∗‖ exists. Hence {xn} is bounded, and so {un}
and {wn}. Now, from (19), we get

δn
(∥∥(V – I)Aun

∥∥2 – δn
∥∥A∗(V – I)Aun

∥∥2)

≤ ∥∥un – x∗∥∥2 –
∥
∥xn+1 – x∗∥∥2

≤ (∥∥wn – x∗∥∥ + αnβn
∥
∥Sx∗ – x∗∥∥)2 –

∥
∥xn+1 – x∗∥∥2

≤ (∥∥xn – x∗∥∥ + θn‖xn – xn–1‖ + αnβn
∥
∥Sx∗ – x∗∥∥)2

–
∥
∥xn+1 – x∗∥∥2

≤ ∥∥xn – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2 + αnβn

[
2
∥∥xn – x∗∥∥
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+ αnβn
∥∥Sx∗ – x∗∥∥] + 2θn‖xn – xn–1‖

[∥∥xn – x∗∥∥

+ αnβn
∥∥Sx∗ – x∗∥∥]. (21)

Since limn→∞ θn‖xn – xn–1‖ = 0, we get

lim
n→∞ δn

(∥∥(V – I)Aun
∥
∥2 – δn

∥
∥A∗(V – I)Aun

∥
∥2) = 0,

which by the definition of δn implies that

lim
n→∞

σn(1 – σn)‖(V – I)Aun‖4

‖A∗(V – I)Aun‖2 = 0.

Since 0 < a ≤ σn ≤ b < 1 and ‖(V – I)Aun‖ is bounded, we get

lim
n→∞

∥∥(V – I)Aun
∥∥ = 0. (22)

Now

lim
n→∞

∥
∥A∗(V – I)Aun

∥
∥ = lim

n→∞‖A‖∥∥(V – I)Aun
∥
∥ = 0. (23)

So

lim
n→∞‖yn – un‖ = lim

n→∞
∥∥A∗(V – I)Aun

∥∥ = 0. (24)

Now, we estimate

‖xn+1 – xn‖2 =
∥
∥(xn+1 – x∗) –

(
xn – x∗)∥∥2

≤ ∥
∥xn+1 – x∗∥∥2 –

∥
∥xn – x∗∥∥2 – 2

〈
xn+1 – xn, xn – x∗〉

≤ ∥
∥xn+1 – x∗∥∥2 –

∥
∥xn – x∗∥∥2 – 2

〈
xn+1 – p, xn – x∗〉

+ 2
〈
xn – p, xn – x∗〉, (25)

where p is a weak cluster point of {xn}. Since limn→∞ ‖xn – x∗‖ exists, then (25) implies
that

lim
n→∞‖xn+1 – xn‖ = 0. (26)

From
∑∞

n=1 θn‖xn – xn–1‖ < ∞, we obtain that

‖wn – xn‖ =
∥∥xn + θn(xn – xn–1) – xn

∥∥ = θn‖xn – xn–1‖

and

lim
n→∞‖wn – xn‖ = 0. (27)
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Since lim infn→∞ rn > 0, there is a number r > 0 such that rn > r, we have

∥∥xn+1 – x∗∥∥2 =
∥∥TF

rn (I – rf )yn – TF
rn (I – rf )x∗∥∥2

=
∥
∥(I – rf )yn – (I – rf )x∗∥∥2

=
∥∥yn – x∗∥∥2 – 2r

〈
yn – x∗, fyn – fx∗〉 + r2∥∥fyn – fx∗∥∥2

≤ ∥∥yn – x∗∥∥2 – 2rκ1
∥∥fyn – fx∗∥∥2 + r2∥∥fyn – fx∗∥∥2

=
∥
∥yn – x∗∥∥2 – r(2κ1 – r)

∥
∥fyn – fx∗∥∥2

≤ ∥∥yn – x∗∥∥2 – r(2κ1 – r)
∥∥fyn – fx∗∥∥2.

Thus

r(2κ1 – r)
∥
∥fyn – fx∗∥∥2 ≤ ∥

∥yn – x∗∥∥2 –
∥
∥xn+1 – x∗∥∥2

≤ ∥∥un – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2

≤ (∥∥wn – x∗∥∥ + αnβn
∥
∥Sx∗ – x∗∥∥)2 –

∥
∥xn+1 – x∗∥∥2

≤ (∥∥xn – x∗∥∥ + θn‖xn – xn–1‖ + αnβn
∥∥Sx∗ – x∗∥∥)2

–
∥
∥xn+1 – x∗∥∥2

≤ ∥∥xn – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2 + αnβn

[
2
∥∥xn – x∗∥∥

+ αnβn
∥∥Sx∗ – x∗∥∥] + 2θn‖xn – xn–1‖

[∥∥xn – x∗∥∥

+ αnβn
∥
∥Sx∗ – x∗∥∥].

Since r(2κ1 –r) > 0, limn→∞ θn‖xn – xn–1‖ = 0,
∑∞

n=1 βn < +∞, and limn→∞ ‖xn – x∗‖ exists,
we have

lim
n→∞

∥∥fyn – fx∗∥∥ = 0. (28)

Since TF
rn is firmly nonexpansive, we get

∥∥xn+1 – x∗∥∥2 =
∥∥TF

rn (I – rnf )yn – TF
rn (I – rnf )x∗∥∥2

≤ 〈
(I – rf )yn – (I – rf )x∗, xn+1 – x∗〉

=
1
2
[∥∥(I – rf )yn – (I – rf )x∗∥∥2 +

∥
∥xn+1 – x∗∥∥2

–
∥
∥yn – xn+1 – r

(
fyn – fx∗)∥∥2]

≤ 1
2
[∥∥yn – x∗∥∥2 +

∥
∥xn+1 – x∗∥∥2

– ‖yn – xn+1‖2 + 2r
〈
yn – xn+1, fyn – fx∗〉

– r2∥∥fyn – fx∗∥∥2]

≤ 1
2
[∥∥yn – x∗∥∥2 +

∥
∥xn+1 – x∗∥∥2

– ‖yn – xn+1‖2 + 2r‖yn – xn+1‖
∥∥fyn – fx∗∥∥],
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which in turn yields

∥∥xn+1 – x∗∥∥2 ≤ ∥∥yn – x∗∥∥2 – ‖yn – xn+1‖2 + 2r‖yn – xn+1‖
∥∥fyn – fx∗∥∥,

and this together with (14), (15), (16), and (18) implies that

‖yn – xn+1‖2 ≤ ∥
∥yn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + 2r‖yn – xn+1‖

∥
∥fyn – fx∗∥∥

≤ ∥∥un – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2 + 2r‖yn – xn+1‖

∥∥fyn – fx∗∥∥

≤ (∥∥wn – x∗∥∥ + αnβn
∥∥Sx∗ – x∗∥∥)2 –

∥∥xn+1 – x∗∥∥2

+ 2r‖yn – xn+1‖
∥∥fyn – fx∗∥∥

≤ (∥∥xn – x∗∥∥ + θn‖xn – xn–1‖ + αnβn
∥
∥Sx∗ – x∗∥∥)2 –

∥
∥xn+1 – x∗∥∥2

+ 2r‖yn – xn+1‖
∥
∥fyn – fx∗∥∥

≤ ∥∥xn – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2 + αnβn

[
2
∥∥xn – x∗∥∥

+ αnβn
∥∥Sx∗ – x∗∥∥] + 2θn‖xn – xn–1‖

[∥∥xn – x∗∥∥

+ αnβn
∥∥Sx∗ – x∗∥∥] + 2r‖yn – xn+1‖

∥∥fyn – fx∗∥∥.

From (28), we get

lim
n→∞‖yn – xn+1‖ = 0. (29)

It follows that

‖xn – yn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – yn‖.

Thus

lim
n→∞‖yn – xn‖ = 0. (30)

Since

‖xn – un‖ ≤ ‖xn – yn‖ + ‖yn – un‖,

from (24) and (30), we have

lim
n→∞‖xn – un‖ = 0. (31)

Furthermore,

‖un – wn‖ ≤ ‖un – xn‖ + ‖xn – wn‖,

from (24) and (27), we have

lim
n→∞‖un – wn‖ = 0. (32)
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Next, we will show that x∗ ∈ � . Since T2
n T1

n is an averaged mapping, it is nonexpansive.
Using the boundedness of {wn} and the nonexpansivity of S, there exists K > 0 such that
‖Swn – T2

n T1
n wn‖ ≤ K for all n ≥ 1. Consider

∥∥un – T2
n T1

n wn
∥∥ =

∥∥(1 – αn)wn + αn
(
βnSwn + (1 – βn)T2

n T1
n wn

)
– T2

n T1
n wn

∥∥

≤ (1 – αn)
∥
∥wn – T2

n T1
n wn

∥
∥ + αnβn

∥
∥Swn – T2

n T1
n wn

∥
∥

≤ (1 – αn)‖un – wn‖ + (1 – αn)
∥∥un – T2

n T1
n wn

∥∥

+ αnβn
∥
∥Swn – T2

n T1
n wn

∥
∥,

which implies that

αn
∥
∥un – T2

n T1
n wn

∥
∥ ≤ (1 – αn)‖un – wn‖ + αnβn

∥
∥Swn – T2

n T1
n wn

∥
∥.

≤ (1 – αn)‖un – wn‖ + αnβnK .

So

∥
∥un – T2

n T1
n wn

∥
∥ ≤ ‖un – wn‖

αn
+ βnK . (33)

It follows from conditions (I)–(II) that

lim
n→∞

∥∥un – T2
n T1

n wn
∥∥ = 0. (34)

Since

∥∥wn – T2
n T1

n wn
∥∥≤ ‖wn – un‖ +

∥∥un – T2
n T1

n wn
∥∥,

from (32) and (34), we get

lim
n→∞

∥∥wn – T2
n T1

n wn
∥∥ = 0. (35)

Since {wn} is bounded, there exists a subsequence {wnk } that weakly converges to x∗. Using
the boundedness of {γ i

n} for i = 1, 2, we can assume that γ i
nk

→ γ i∞ as k → ∞, where 0 <
γ i∞ < 1 for i = 1, 2. Let

Ti
∞ =

(
1 – γ i

∞
)
I + γ i

∞PC
(
τ iI +

(
1 – τ i)Ti), ∀i = 1, 2.

Now, by Lemma 2.5 and Lemma 2.6, Fix(PC(τ iI + (1 – τ i)Ti)) = Fix(Ti). Again, since
PC(τ iI + (1 – τ i)Ti) is a nonexpansive mapping, Ti∞ is averaged and Fix(Ti∞) = Fix(Ti)
for i = 1, 2. Since

Fix
(
T1

∞
)∩ Fix

(
T2

∞
)

= Fix
(
T1)∩ Fix

(
T2) = Fix(�) �= ∅,

by Lemma 2.4, we get

Fix
(
T1

∞T2
∞
)

= Fix
(
T1

∞
)∩ Fix

(
T2

∞
)

= Fix(�).
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Since

∥∥Ti
nk

(t) – Ti
∞(t)

∥∥≤ ∣∣γ i
nk

– γ i
∞
∣∣(‖t‖ +

∥∥PC
(
τ it +

(
1 – τ i)Ti(t)

)∥∥),

we get

lim
k→∞

sup
t∈B

∥∥Ti
nk

(t) – Ti
∞(t)

∥∥ = 0, (36)

where B is an arbitrary bounded subset of H1. Also, we have

∥
∥wnk – T2

∞T1
∞wnk

∥
∥ ≤ ∥

∥wnk – T2
nk

T1
nk

wnk

∥
∥ +

∥
∥T2

nk
T1

nk
wnk – T2

∞T1
nk

wnk

∥
∥

+
∥
∥T2

∞T1
nk

wnk – T2
∞T1

∞wnk

∥
∥

≤ ∥∥wnk – T2
nk

T1
nk

wnk

∥∥ +
∥∥T2

nk
T1

nk
wnk – T2

∞T1
nk

wnk

∥∥

+
∥∥T1

nk
wnk – T1

∞wnk

∥∥

≤ ∥∥wnk – T2
nk

T1
nk

wnk

∥∥ + sup
t∈B1

∥∥T2
nk

t – T2
∞t
∥∥

+ sup
t∈B2

∥
∥T1

nk
t – T1

∞t
∥
∥, (37)

where B1 is a bounded subset of {T1
nk

xnk } and B2 is a bounded subset of {xnk }. It follows
from (35), (36), and (37) that

lim
k→∞

∥∥wnk – T2
∞T1

∞wnk

∥∥ = 0.

Hence, from Lemma 2.4, we get x∗ ∈ Fix(T2∞T1∞) = Fix(T1) ∩ Fix(T2). Again from Algo-
rithm 1, we have

un – wn = αn
(
βn(Swn – wn) – (1 – βn)

(
T2

n T1
n wn – wn

))
,

and hence

1
αnβn

(wn – un) =
(

(I – S) +
(

1 – βn

βn

)
(
I – T2

n T1
n
)
)

wn. (38)

By Lemma 2.2(i) guarantees that the operator sequence {( 1–βn
βn

)(I –T2
n T1

n )} graph converges
to NFix(T1)∩Fix(T2), and hence it follows from Lemma 2.2(ii) that the operator sequence {(I –
S) + ( 1–βn

βn
)(I – T2

n T1
n )} graph converges to (I – S) + NFix(T1)∩Fix(T2). Now, by replacing n with

nk and by passing to the limit in (38) as k → ∞ and by taking into account the fact that
limn→∞ 1

αnβn
‖wn – un‖ = 0 and that the graph of (I – S) + NFix(T1)∩Fix(T2) is weakly-strongly

closed, we obtain that 0 ∈ (I – S)x∗ + NFix(T1)∩Fix(T2)x∗, so x∗ ∈ �.
Finally, we show that x∗ ∈ �. Since xn+1 = U(yn) = TF

rn (I – rnf )(yn), we have

F(xn+1, y) + 〈fyn, y – xn+1〉 + φ(y) – φ(xn+1) +
1
rn

〈y – xn+1, xn+1 – yn〉 ≥ 0, ∀y ∈ C.
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Since F is monotone, the above inequality implies

〈fyn, y – xn+1〉 + φ(y) – φ(xn+1) +
1
rn

〈y – xn+1, xn+1 – yn〉 ≥ F(y, xn+1), ∀y ∈ C,

and hence replacing n with nk in the above inequality, we have

〈fynk , y – xnk +1〉 +
〈
y – xnk +1,

xnk +1 – ynk

rnk

〉

≥ F(y, xnk +1) – φ(y) + φ(xnk + 1), ∀y ∈ C. (39)

Further, for any t ∈ (0, 1] and y ∈ C, let yt = ty + (1 – t)x∗. Since x∗ ∈ C and y ∈ C, then
yt ∈ C. From the monotonicity of F , the above inequality implies

〈yt – xnk +1, fyt〉 ≥ 〈yt – xnk +1, fyt – fxnk +1〉 + 〈yt – xnk +1, fxnk +1 – fynk 〉

–
〈
yt – xnk +1,

xnk +1 – ynk

rnk

〉
+ F(yt , xnk +1) – φ(yt) + φ(xnk +1). (40)

Since the sequences {xn}, {yn}, and {wn} have the same asymptotic behavior and xnk → x∗,
there exists a subsequence {ynk } of {yn} such that ynk → x∗. Since limk→∞ ‖xnk +1 – ynk ‖ = 0
and f is Lipschitz continuous, we have limk→∞ ‖fxnk +1 – fynk ‖ = 0. From the condition of
lim infn→∞ rn > 0, there exists a number r > 0 such that lim infn→∞ rn = r, which implies
that

lim
k→∞

‖xnk +1 – ynk ‖
rnk

≤ limk→∞ ‖xnk +1 – ynk ‖
limk→∞ rnk

=
1
r

lim
k→∞

‖xnk +1 – ynk ‖ = 0.

From the monotonicity of f , we have

〈yt – xnk +1, fyt – fxnk +1〉 ≥ 0.

Therefore, by L4 and the weak lower semicontinuity of φ, taking the limit of (40) as k → ∞,
we get

〈
yt – x∗, fyt

〉≥ F
(
yt , x∗) + φ

(
x∗) – φ(yt). (41)

The convexity of F and (41) imply that

0 = F(yt , yt) + φ(yt) – φ(yt)

≤ tF(yt , y) + (1 – t)F
(
yt , x∗) + tF(y) + (1 – t)φ

(
x∗) – φ(yt)

= t
(
F(yt , y) + φ(y) – φ(yt)

)
+ (1 – t)

(
F
(
yt , x∗) + φ

(
x∗) – φ(yt)

)

≤ t
(
F(yt , y) + φ(y) – φ(yt)

)
+ (1 – t)

〈
yt – x∗, fyt

〉

≤ t
(
F(yt , y) + φ(y) – φ(yt)

)
+ (1 – t)t

〈
y – x∗, fyt

〉
,
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so

F(yt , y) + φ(y) – φ(yt) + (1 – t)
〈
y – x∗, fyt

〉≥ 0.

Letting t → 0, then for each y ∈ C, we have

F
(
x∗, y

)
+ φ(y) – φ

(
x∗) +

〈
y – x∗, fx∗〉≥ 0.

This implies that x∗ ∈ GMEP(F , f ,φ). Since A is a bounded linear operator, then Aunk ⇀

Ax∗. Now, setting snk = Aunk – VAunk , it follows from (22) that limk→∞ snk = 0 and Aunk –
snk = VAunk . Therefore,

G(Aunk – snk , z) +
〈
gAunk , z – (Aunk – snk )

〉
+ ϕ(z) – ϕ(Aunk – snk )

+
1
rn

〈
z – (Aunk – snk ), Aunk – snk – Aunk

〉≥ 0, ∀z ∈ Q.

Since G is upper semicontinuous in the first argument and taking lim sup of the above
inequality as k → ∞, we get

G
(
Ax∗, z

)
+
〈
z – Ax∗, gAx∗〉 + ϕ(z) – ϕ

(
Ax∗)≥ 0 ∀z ∈ Q.

This implies that Ax∗ ∈ GMEP(G, g,φ). Therefore x∗ ∈ �, and we can conclude that
x∗ ∈ � . It follows from the existence of limn→∞ ‖xn – x∗‖ and the Opial condition that
{xn} has only one weak cluster point and hence {xn} converges weakly to x∗ ∈ � . �

The following consequence is a weak convergence theorem for computing a common
solution of a split mixed equilibrium problem (for short SpMEP) and a hierarchical fixed
point problem in Hilbert spaces.

If we set φ = 0 and ϕ = 0 in (6)–(7), then SpGMEP is reduced to the split mixed equilib-
rium problem (in short SpMEP): Find x∗ ∈ C such that

F
(
x∗, u

)
+
〈
fx∗, u – x∗〉≥ 0 ∀u ∈ C, (42)

and such that

Ax∗ ∈ Q solves G
(
Ax∗, v

)
+
〈
g
(
Ax∗), v – Ax∗〉≥ 0, ∀v ∈ Q. (43)

The solution set of the SpMEP is denoted by

�1 =
{

x∗ ∈ Sol
(
MEP (42)

)
: Ax∗ ∈ Sol

(
MEP (43)

)}
.

Corollary 3.2 Let C and Q be nonempty closed and convex subsets of real Hilbert spaces
H1 and H2, respectively, and let A : H1 → H2 be a bounded linear operator with its adjoint
operator A∗. Assume that F : C × C → R and G : Q × Q → R are bifunctions satisfying
Assumption 3.1. Let f : C → H1 and g : Q → H2 be κ1, κ2-inverse strongly monotone map-
pings, and let S : C → C be a nonexpansive mapping and {Ti}N

i=1 : C → H1 be ki-strictly
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pseudocontractive nonself-mappings. Assume that �1 = �1 ∩ � �= ∅. Let {xn} be the se-
quence defined by

⎧
⎪⎪⎨

⎪⎪⎩

wn = xn + θn(xn – xn–1);

un = (1 – αn)wn + αn(βnSwn + (1 – βn)TN
n · · ·T1

n wn);

xn+1 = U(un + δnA∗(V – I)Aun), n ≥ 1,

(44)

where U = SF
rn (I –rnf ), V = SG

rn (I –rng), Ti
n = (1–γ i

n)I +γ i
nPC(τ i

nI +(1–τ i
n)Ti), 0 ≤ ki ≤ τ i

n < 1,

γ i
n ∈ (0, 1), δn = σn‖(TG

rn (I–rng)–I)Axn‖2

‖A∗(TG
rn (I–rng)–I)Axn‖2 , 0 < a ≤ σn ≤ b < 1, and θn satisfies Algorithm 1, and the

following conditions are satisfied:
(i) lim infn→∞ αn > 0,

∑∞
n=1 βn < +∞;

(ii) limn→∞ ‖un–wn‖
αnβn

= 0;
(iii) lim infn→∞ rn > 0.

Then the sequence {xn} converges weakly to x∗ ∈ �1.

4 Nash–Cournot oligopolistic market equilibrium problem
In this section, we apply generalized mixed equilibrium problems with Nash–Cournot
oligopolistic market equilibrium problems which have been introduced by Cournot and
studied by some authors [19, 20, 34]. An oligopolistic market model considers n firms
(producers) that produce a common homogeneous commodity. Each firm has a profit
function which is the difference between the price and the cost. Each firm attempts to
maximize its profit by choosing the corresponding production level on its strategy set.

Consider that there are n-firms which produce a common homogenous commodity and
the price pi of firm i depends on the total quantity σ =

∑n
i=1 xi of the commodity. Let hi(xi)

denote the cost of the firm i when its production level is xi. Suppose that the profit of firm
i is given by

fi(x1, . . . , xn) = xipi

( n∑

i=1

xi

)

– hi(xi), i = 1, . . . , n, (45)

where hi is the cost function of firm i that is assumed to be dependent only on its produc-
tion level.

Let Ui ⊂ R for i = 1, . . . , n denote the strategy set of the firm i. Each firm seeks to maxi-
mize its own profit by choosing the corresponding production level under the hypothesis
that the production of other firms is parametric input. In this context, a Nash equilibrium
is a production pattern in which no firm can increase its profit by changing its controlled
variables. Thus under this equilibrium concept, each firm determines its best response
given other firms’ actions. Mathematically, a point x∗ = (x∗

1, x∗
2, . . . , x∗

n) ∈ U = U1 ×· · ·× Un

is said to be a Nash-equilibrium if

fi
(
x∗

1, . . . , x∗
i–1, yi, . . . , x∗

n
)

= fi
(
x∗

1, . . . , x∗
n
)
, ∀yi ∈ Ui,∀i = 1, . . . , n. (46)

When hi is affine, this market problem can be formulated as a special Nash equilibrium
problem in n-person noncooperative game theory.
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In classical Cournot models [20, 34], the price and the cost functions for each firm are
assumed to be affine of the forms:

pi(σ ) = p(σ ) = α0 – βσ , α0 ≥ 0,β > 0, with σ =
n∑

i=1

xi,

hi(xi) = μixi + ξi, μi ≥ 0, ξi ≥ 0 for i = 1, . . . , n. (47)

In this case, we take

B =

⎡

⎢⎢
⎢
⎣

2β 0 0 . . . 0
0 2β 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 2β

⎤

⎥⎥
⎥
⎦

, B̃ =

⎡

⎢⎢
⎢
⎣

0 β β . . . β

β 0 β . . . β

. . . . . . . . . . . . . . .
β β β . . . 0

⎤

⎥⎥
⎥
⎦

,

α = (α0, . . . ,α0)T , μ = (μ1, . . . ,μn)T .

For (45), (46), (47), it has been shown in [20, 34], that the problem can be formulated
equivalently as the convex quadratic problem

min
x∈U

{
1
2

xT Qx + (μ – α)T x
}

, (48)

where

Q =

⎡

⎢⎢
⎢
⎣

2β β β . . . β

β 2β β . . . β

. . . . . . . . . . . . . . .
β β β . . . 2β

⎤

⎥⎥
⎥
⎦

.

Since β > 0, we have Q is a symmetric and positive definite matrix. Hence problem (48)
has a unique optimal solution which is also the unique equilibrium point of the classical
oligopolistic market equilibrium model.

Let

αT = (α1,α2, . . . , ), F(x, y) =
(
–Bx + (B + B̃)y

)T (y – x),

f (x) = B̃x + α, φ(x) = h(x).

Then the problem of finding a Nash equilibrium point defined by (46) with F(x, y), f (x)
given by (45) becomes the following generalized mixed equilibrium:

⎧
⎨

⎩
find a point x∗ ∈ U such that

�(x∗, y) = F(x∗, y) + 〈fx∗, x∗ – y〉 + φ(y) – φ(x∗) ≥ 0 for all y ∈ C,
(49)

where F is a bifunction, f is affine, and φ is a convex function (see [24]). In the literature
problem (49) is often called the generalized mixed equilibrium which is more general than
the mixed variational inequality (see [20]) because of the appearance of the bifunction F .
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5 Numerical example
Numerical results are presented in this section to show the efficiency of the proposed
method. The MATLAB codes was run in MATLAB version 9.5 (R2018b) on MacBook
Pro 13-inch, 2019 with 2.4 GHz Quad-Core Intel Core i5 processor. RAM 8.00 GB. and
the stopping criteria ‖xn+1–xn‖

max{1,‖xn‖} ≤ 10–5.

Example 5.1 We apply Theorem 3.1 with Nash–Cournot oligopolistic market equilibrium
problem in Sect. 4 when H1 = R

N and H2 = R
M , with the inner product defined by 〈x, y〉 =

xy, ∀x, y ∈ R
N and the induced usual norm | · |, the linear operator A : RN → R

M is given
by an M × N matrix. The bifunction F is given as follows:

Fi(x, y) =
(
–Bx + (B + B̃)y

)T (y – x),

where B and B̃ are symmetric positive semidefinite matrices such that 2B + B̃ is a symmet-
ric negative semidefinite matrix. Since Fi(x, y) + Fi(y, x) = (y – x)T (2B + B̃)(y – x), then Fi is
monotone. Similarly, define the bifunction of Gj by

Gj(u, v) = (Du + D̃v)T (v – u),

where D̃ is a symmetric positive semidefinite matrix such that D̃ – D is a symmetric neg-
ative semidefinite matrix (see [53]).

The feasible sets are

C =
{

(x1, x2, . . . , xN ) ∈R
N : –5 ≤ xi ≤ 5,∀i = 1, . . . , N

}
,

and

Q =
{

(u1, u2, . . . , uM) ∈ R
M : –2 ≤ uj ≤ 2,∀j = 1, . . . , M

}
.

The mappings fi : C → H1 and gj : Q → H2 are defined by fi(x) = B̃x + b, gj(u) = D̃u + d,
φ(x) = bx for all x ∈ C and ϕ(y) = dy for all y ∈ Q. Let S : C → C be a mapping defined to
be Sx = x, and

Tnx =

⎧
⎨

⎩

1
n (1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .), if x �= 0,

0, if x = 0.

We can see that Tn is 1
3 -strictly pseudocontractive with

⋂∞
n=1 F(Tn) = {0}. Further, we ob-

serve that Tn is not nonexpansive (see [32]). Set

βn =
1
n3 , αn =

1
2

, θ = 0.6 for all n ∈N.

We use the starting point x0 = (2, 2, . . . , 2)T ∈R
N and x1 = (–2, –2, . . . , –2)T ∈R

N . The main
subproblems were solved with the MATLAB Optimization Toolbox by using the QUAD-
PROG function for the positive semidefinite quadratic function. The entries of matrices
B, B̃, D, D̃ and vectors b, d are generated randomly in the interval [–1, 5] respectively. De-
fine matrix A = 1

2 G, where Gi,j = 0 when i �= j. The numerical and graphical results of our
algorithm are shown in Figures 1–4 and Table 1.
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Figure 1 The graph of N = 5, M = 5

Figure 2 The graph of N = 5, M = 10

Figure 3 The graph of N = 10, M = 20

Example 5.2 We consider an example in infinite dimensional Hilbert spaces. Assume H1 =
H2 = L2([0, 1]) with the inner product 〈x, y〉 =

∫ 1
0 x(t)y(t) dt and the induced norm ‖x‖ =
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Figure 4 The graph of N = 50, M = 100

Table 1 The results computed on Algorithm 1 and the method in [33]

N M Average iteration Average times

Algorithm 1 Method in [33] Algorithm 1 Method in [33]

5 5 77 215 1.4100 3.7300
5 10 197 227 4.0800 4.2300
10 20 209 269 4.1000 4.3900
50 100 218 290 8.1200 10.6600

√∫ 1
0 |x(t)|2 dt for all x, y ∈ L2([0, 1]). Let

C =
{

x ∈ L2([0, 1]
) ∣∣
∣
∫ 1

0
x(t) dt ≤ 1

}
and Q =

{
u ∈ L2([0, 1]

) ∣∣
∣
∫ 1

0
tu(t) dt ≤ 2

}
.

Therefore C and Q are nonempty closed and convex subsets of real Hilbert spaces H1 and
H2, respectively. Define an operator A : L2([0, 1]) → L2([0, 1]) by (Ax)(t) = 1

2 x(t). Thus A is
a bounded linear operator. We define F : C × C →R by

F(x, y) =
〈
P(x), y – x

〉
, where P

(
x(t)

)
=

x(t)
2

.

For the purpose of our numerical computation, we use the following formula for the pro-
jection onto C (see [5]):

PC(x) =

⎧
⎨

⎩
1 – a + x, if a > 1,

x if a ≤ 1,

where a =
∫ 1

0 x(t) dt. Similarly, define the bifunction G : Q × Q →R by

G(u, v) =
〈
H(u), v – u

〉
, where H

(
u(t)

)
=

u(t)
3

.

It is observed that F and G are monotone satisfying conditions L1–L4. Let S : C → C
be a mapping defined by (Sx)(t) = x(t) and (Tnx)(t) = 3

n+3 x(t). We can see that Tn is 0-
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Figure 5 Numerical behaviour when x0 = t, x1 = 2t

Figure 6 Numerical behaviour when x0 = t, x1 = 2t2

strictly pseudocontractive for all n ≥ 1. Set βn = 1
n3 , αn = 1

2 , σn = 0.8, θ = 0.9 for all n ∈ N.
The mappings f : C → H1 and g : Q → H2 are defined by (fx)(t) = 1

2 x(t), (gu)(s) = 1
n u(s),

(φ(x))(t) = 0 for all x(t) ∈ C and (ϕ(u))(t) = 0 for all u(t) ∈ Q. Numerical results are reported
in Figs. 5 and 6.

6 Conclusion
This paper discussed the modified Krasnoselski–Mann-type iterative method based on
the idea of inertial technique. Weak convergence results have been obtained under some
suitable conditions. Numerical conclusions have been drawn to explain the numerical ef-
ficiency of our algorithm in comparison to another method. Note that our algorithm and
results presented in this paper can summarize and improve some known results in the
area. Our future work will focus on obtaining the results to robust equilibrium problems
by our algorithm in [38, 46, 47].
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