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Abstract
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1 Introduction and preliminaries
Montgomery identity is well known in the literature. It is utilized to obtain a number
of revolutionary inequalities such as trapezoid inequality, Ostrowski-type inequality, Če-
byšev inequality, Grüss inequality, and Mohajani inequality. Mitrinović et al. in [17] proved
that if χ : [b1, b2] → R is differentiable on [b1, b2] and χ ′ : [b1, b2] → R is integrable on
[b1, b2], then the Montgomery identity is

χ (t) =
1

b2 – b1

∫ b2

b1

χ (p) dp +
∫ b2

b1

P(t, p)χ ′(p) dp, (1)

where

P(t, p) =

⎧⎨
⎩

p–b1
b2–b1

, b1 ≤ p ≤ t,
p–b2

b2–b1
, t < p ≤ b2.

(2)

Bohner et al. in [7] proved the Montgomery identity on time scales and discussed it for
discrete, continuous, and quantum cases. In case of T = R, it becomes (1).

Suppose that a probability density function ψ : [b1, b2] → [0,∞), i.e., an integrable func-
tion which satisfies

∫ b2
b1

ψ(p) dp = 1. Also ξ (p) =
∫ p

b1
ψ(t) dt when p ∈ [b1, b2], ξ (p) = 0 when

p < b1 and ξ (p) = 1 when p > b2. Then the weighted generalization [19] of the Montgomery
identity is

χ (t) =
∫ b2

b1

ψ(p)χ (p) dp +
∫ b2

b1

Pψ (t, p)χ ′(p) dp, (3)
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where the weighted Peano kernel is

Pψ (t, p) =

⎧⎨
⎩

ξ (p), b1 ≤ p ≤ t,

ξ (p) – 1, t < p ≤ b2.
(4)

Sarikaya et al. [20] proved the weighted Montgomery identity on time scales.
To obtain our main results, we use the extended Montgomery identities by means of

Taylor’s formula I and II given in [1, 2].

Theorem 1 Let E be an open interval in R and b1, b2 ∈ E, s.t., b1 < b2. Assume that a
function χ : E →R, s.t., χ (n–1) is absolutely continuous for n ∈N, then

χ (t) =
1

b2 – b1

∫ b2

b1

χ (p) dp +
n–2∑
z=0

χ (z+1)(b1)
z!(z + 2)

(t – b1)z+2

b2 – b1

–
n–2∑
z=0

χ (z+1)(b2)
z!(z + 2)

(t – b2)z+2

b2 – b1
+

1
(n – 1)!

∫ b2

b1

Rn(t, s)χ (n)(s) ds, (5)

where

Rn(t, s) =

⎧⎨
⎩

–(t–s)n

n(b2–b1) + t–b1
b2–b1

(t – s)n–1, b1 ≤ s ≤ t,
–(t–s)n

n(b2–b1) + t–b2
b2–b1

(t – s)n–1, t < s ≤ b2.
(6)

Theorem 2 Let E be an open interval in R and b1, b2 ∈ E, s.t., b1 < b2. Assume that a
function χ : E →R, s.t., χ (n–1) is absolutely continuous for n ∈N, then

χ (t) =
1

b2 – b1

∫ b2

b1

χ (t) dt +
n–2∑
z=0

χ (z+1)(t)
(b1 – t)z+2 + (b2 – t)z+2

(z + 2)!(b2 – b1)

+
1

(n – 1)!

∫ b2

b1

R̂n(t, s)χ (n)(s) ds, (7)

where

R̂n(t, s) =

⎧⎨
⎩

–1
n(b2–b1) (b1 – s)n, b1 ≤ s ≤ t,

–1
n(b2–b1) (b2 – s)n, t < s ≤ b2.

(8)

For n = 1,
∑n–2

z=0 · · · is empty, therefore (5) and (7) reduce to Montgomery identity (1).

1.1 On convex functions
Suppose that a function μ: E → R, it is termed convex if ∀y1, y2 ∈ E and γ ∈ [0, 1], the
inequality

μ
(
γ y1 + (1 – γ )y2

) ≤ γμ(y1) + (1 – γ )μ(y2) (9)

holds. If y1 �= y2 and γ ∈ (0, 1) in (9), then μ is strictly convex. Moreover, μ is called concave
function if (9) is reversed and inequality (9) is strictly concave if ∀y1 �= y2 and γ ∈ (0, 1) [19].
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Divided differences are truly assigned to Newton, and Augustus de Morgan in 1842 used
the term divided difference. The divided differences are beneficial if the functions have
different degrees of smoothness. Divided differences are discussed in [13].

Definition 1 Suppose μ: [p, q] → R, n ∈ N and mutually distinct points η0,η1, . . . ,ηn of
[p, q]. Then the nth order divided difference of the function μ is

[ηi;μ] = μ(ηi), i = 0, . . . , n,

[η0, . . . ,ηn;μ] =
[η1, . . . ,ηn;μ] – [η0, . . . ,ηn–1;μ]

ηn – η0
. (10)

n-convex function is defined on the basis of nth-order divided difference [19].
Suppose n ≥ 0, then a function μ : [p, q] → R is termed n-convex iff ∀ (n + 1) distinct

points y0, y1, . . . , yn ∈ [p, q],

[y0, y1, . . . , yn;μ] ≥ 0

holds. The reverse effect of the above inequality implies that μ is n-concave. The strict
effect of the above inequality implies that μ is a strictly n-convex (n-concave) function.
The n convexity of a function μ is examined by the following theorem [19].

Theorem 3 If μn exists, then μ is n-convex if and only if μn ≥ 0.

1.2 On time scales
In 1988, Hilger presented the notion of time scales calculus and proposed the unification
of discrete and continuous time dynamical systems [14]. Gradually, this perspective of
unification has been affixed by the extension and generalization characteristics.

� and ∇ calculus is the initial approach to study time scales calculus. For detailed study
of calculus on time scales, readers are reffered to [6, 8, 9].

An arbitrary and nonempty closed subset of real numbers is called time scales T. The
real numbers R and the integers Z are most familiar examples of time scales.

Suppose p ∈ T, then the mappings σ (t), ρ(t): T → T indicate the forward and backward
jump operators respectively on time scale T and are defined as follows:

σ (t) = inf {e ∈ T : e > t},
ρ(t) = sup{e ∈ T : e < t}.

Take a point t ∈ T, then t is stated as follows:
• right-scattered, provided σ (t) > t;
• left-scattered, provided ρ(t) < t;
• isolated, provided ρ(t) < t < σ (t);
• right-dense, provided σ (t) = t;
• left-dense, provided ρ(t) = t;
• dense, provided ρ(t) = t = σ (t).
• The graininess functions σ ,ν : T → [0, +∞) are stated as

σ (t) := σ (t) – t,

ν(t) := t – ρ(t).
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Assume that a function μ: T →R, then it is termed:
• rd-continuous if it is continuous at all right-dense points in T and its left-sided limits

are finite at all left-dense points in T;
• ld-continuous if it is continuous at all left-dense points in T and its right-sided limits

are finite at all right-dense points in T.
We present the sets Tk , Tk , and T

∗ that originated from the time scale T.
T

k = T – t1, provided T contains a left-scattered maximum t1; unless Tk = T.
Tk = T – t2, provided T contains a right-scattered minimum t2; unless Tk = T.
Lastly T

∗ = T
k ∩Tk .

Suppose that a function μ: T → R and t ∈ T
k , then we describe μ
(t) (in case it exists)

if, for given ε > 0,∃ a neighborhood W of t so that ∀y1 ∈ W

∣∣μ(
σ (t)

)
– μ(y1) – μ�(t)

[
σ (t) – y1

]∣∣ ≤ ε
∣∣σ (t) – y1

∣∣.

Then μ is delta differentiable on T
k provided μ�(t) exists ∀t ∈ T

k .
In the same way, for t ∈ Tk , we say μ∇ (t) (in case it exists) if, for given ε > 0,∃ a neigh-

borhood W of t so that ∀y1 ∈ W

∣∣μ(
ρ(t)

)
– μ(y1) – μ∇ (t)

[
ρ(t) – y1

]∣∣ ≤ ε
∣∣ρ(t) – y1

∣∣.

Then μ is nabla differentiable on Tk provided μ∇ (t) exists ∀t ∈ Tk .
Suppose that μ(t) is differentiable in the � and ∇ sense on the time scales T. Let t ∈ T,

0 ≤ α ≤ 1, then �α-dynamic derivative μ�α (t) is

μ�α (t) = αμ�(t) + (1 – α)μ∇ (t).

Hence, μ is �α-differentiable iff � and ∇ derivatives of μ exist.

Remark 1 The �α-derivative changes to
• � derivative, when α = 1;
• ∇ derivative, when α = 0;
• “weighted dynamic derivative”, when α ∈ (0, 1).

For a complete advancement of the calculus on the �α-derivative and �α-integrals, refer
to [21]. The refinement of �α-derivative on time scales T is known as symmetric derivative
given in [11], which is as follows:

Let t ∈ T
k
k and μ: T → R. Then μ�(t) ∈ R (in case it exists) provided ε > 0, there is a

neighborhood V ⊂ T of t, s.t.,

∣∣[μσ (t) – μ(y) + μ(2t – y) – μρ(t)
]

– μ�(t)
[
σ (t) + 2t – 2y – ρ(t)

]∣∣
≤ ε

∣∣σ (t) + 2t – 2y – ρ(t)
∣∣

holds ∀y ∈ V for which 2t – y ∈ V .
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Remark 2 The symmetric derivative is
• classic symmetric derivative, when T = R.
• symmetric difference operator, when T = hZ, h > 0.
• q-symmetric difference operator, when T = qZ, 0 < q < 1.

A detailed discussion of symmetric derivatives on time scales is given in [11].
Suppose μ: T→R, then U : T→R is interpreted as delta antiderivative of μ if U�(t) =

μ(t) holds ∀t ∈ T
k . The delta integral of μ is

∫ 
2


1

μ(t)�t = U(
2) – U(
1).

Suppose s : T → R, then S : T → R is interpreted as nabla antiderivative of s if S∇(t) =
s(t) holds ∀t ∈ Tk . The nabla integral of s is

∫ 
2


1

s(t)∇t = S(
2) – S(
1).

Suppose 
1, t ∈ T and �: T →R. Then �α-integral is stated as
∫ t


1

�(s)�αs = α

∫ t


1

�(s)�s + (1 – α)
∫ t


1

�(s)∇s,

where 0 ≤ α ≤ 1. Since the diamond-α integral is a mixed form of � and ∇ integrals,
generally there does not exist

(∫ t


1

�(s)�αs

)�α

= �(t), t ∈ T.

In the special case, for each t ∈ T
k
k , if a function is � and ∇ differentiable at the same

time, then μ is symmetric differentiable and

μ�(t) = λ(t)μ�(t) +
(
1 – λ(t)

)
μ∇ (t),

where

λ(t) = lim
t→y

σ (t) – y
σ (t) + 2t – 2y – ρ(t)

(11)

is a real-valued function.

Remark 3 Clearly 0 ≤ λ(t) ≤ 1 and

λ(t) =

⎧⎨
⎩

1
2 t is dense,
σ (t)–t

σ (t)–ρ(t) t is not dense.

Suppose μ: [
1,
2]T → R, 
1 < 
2, and λ(·) is defined in (11). If λμ is � integrable and
(1 – λ)μ is ∇ integrable on [
1,
2]T, then �-integral of μ on [
1,
2]T is stated as

∫ 
1


1

μ(t) � t =
∫ 
1


1

λ(t)μ(t)�t +
∫ 
1


1

(
1 – λ(t)

)
μ(t)∇t.

More details on diamond integrals are given in [12].
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1.3 Jensen’s inequality
Inequality proved by Jensen [15] in 1906 is popular in mathematical analysis. For contin-
uous and discrete analysis, it is used to formulate many classical inequalities. Therefore
the developments in many other inequalities are based on the developments in Jensen’s
inequality. Jensen’s inequality in a discrete version [15] is as follows:

Suppose that an interval E in R and a convex function χ : E →R, v = (v1, . . . , vn) is a real
n-tuple and y = (y1, . . . , yn) is a positive n-tuple (n ∈N). Then

χ

(∑n
j=1 vjyj∑n
j=1 vj

)
≤

∑n
j=1 vjχ (yj)∑n

j=1 vj
. (12)

The strict convexity of χ implies that (12) is strict unless y1 = · · · = yn and χ is concave if
(12) holds in reverse direction.

Jensen’s inequality in an integral form [16] is as follows:
Suppose b1, b2 ∈ R with b1 < b2 and an interval E in R. If ζ ∈ C([b1, b2], E) and a convex

function χ ∈ C(E,R), then

χ

(∫ b2
b1

ζ (p) dp
b2 – b1

)
≤

∫ b2
b1

χ (ζ (p)) dp
b2 – b1

. (13)

Anwar et al. in [4] extended the Jensen’s inequality for �-integrals as follows:
Suppose ζ ∈ Crd([b1, b2]T, E) and a convex function χ ∈ C(E,R) with E ⊂R. Let b1, b2 ∈

T with b1 < b2 and � ∈ Crd(χ : [b1, b2]T,R) satisfying
∫ b2

b1
|�(p)|�p > 0, then

χ

(∫ b2
b1

|�(p)|ζ (p)�p∫ b2
b1

|�(p)|�p

)
≤

∫ b2
b1

|�(p)|χ (ζ (p))�p∫ b2
b1

|�(p)|�p
. (14)

Özkan et al. in [18] showed that if we apply nabla integrals instead of delta integrals, then
(14) also holds. In [21], Sheng et al. presented �α-dynamic derivative and �α-dynamic
integral for providing more balanced approximations with respect to computations.

Jensen’s inequality for �α-integral is given in [3].
Suppose b1, b2 ∈ T with b1 < b2 and α ∈ [0, 1]. Let � ∈ C([b1, b2]T,R) satisfying∫ b2

b1
|�(p)|�αp > 0. If ζ ∈ C(χ : [b1, b2]T, E) and a convex function χ ∈ C(E,R) with an in-

terval E ⊂R, then we have

χ

(∫ b2
b1

|�(p)|ζ (p)�αp∫ b2
b1

|�(p)|�αp

)
≤

∫ b2
b1

|�(p)|χ (ζ (p))�αp∫ b2
b1

|�(p)|�αp
. (15)

Da Cruz et al. in [11] described diamond integral (a generalization of diamond-α integral)
in terms of “approximate symmetric integral” on time scales T. Bibi et al. proved Jensen’s
inequality related to diamond integrals in [5].

Theorem 4 Suppose b1, b2 ∈ T with b1 < b2, and � ∈ C([b1, b2]T,R) which satisfies∫ b2
b1

�(p) � p �= 0. Also assume ζ ∈ C([b1, b2]T, E) and a convex function χ ∈ C(E,R), where
E = [w, W ] with w = minp∈χ :[b1,b2]Tζ (p), W = maxp∈χ :[b1,b2]Tζ (p), then

χ

(∫ b2
b1

|�(p)|ζ (p) � p∫ b2
b1

|�(p)| � p

)
≤

∫ b2
b1

|�(p)|χ (ζ (p)) � p∫ b2
b1

|�(p)| � p
. (16)
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Under the suppositions of Theorem 4, inequality (16) produces the linear functional

J(χ ) =

∫ b2
b1

|�(p)|χ (ζ (p)) � p∫ b2
b1

�(p) � p
– χ

(∫ b2
b1

�(p)ζ (p) � p∫ b2
b1

�(p) � p

)
. (17)

Remark 4 By Theorem 4, we conclude that J(χ ) = 0 if χ is a constant function or an iden-
tity function and J(χ ) ≥ 0 for the group of convex functions.

In the same manner, the linear functionals for (14) and (15) can be obtained.

2 Generalized Jensen-type functional by extended Montgomery identity via
Taylor’s formula I

Theorem 5 Let n ∈ N such that n ≥ 2 and all the suppositions of Theorem 4 be satisfied.
If χ is a convex function defined on [b1, b2] such that χ (n–1) is absolutely continuous, then
∀t ∈ [b1, b2] we have

J(χ ) =
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)J(t – b1)z+2 – χ (z+1)(b2)J(t – b2)z+2)

+
1

(n – 1)!

∫ b2

b1

J
(
Rn(t, s)

)
χn(s) ds, (18)

where Rn(t, s) is defined in (6) and

J
(
Rn(t, s)

)
=

∫ b2
b1

|�(τ )|Rn(χ (τ ), s) � τ∫ b2
b1

|�(τ )| � τ
– Rn

((∫ b2
b1

|�(τ )|χ (τ ) � τ∫ b2
b1

|�(τ )| � τ

)
, s

)
. (19)

Proof Putting (5) in (17), we obtain

J(χ ) = J

(
1

b2 – b1

∫ b2

b1

χ (p) dp +
n–2∑
z=0

χ (z+1)(b1)
z!(z + 2)

(t – b1)z+2

b2 – b1

–
n–2∑
z=0

χ (z+1)(b2)
z!(z + 2)

(t – b2)z+2

b2 – b1
+

1
(n – 1)!

∫ b2

b1

Rn(t, s)χ (n)(s) ds

)
. (20)

The linearity of the functional J(·) gives us

J(χ ) = J
(

1
b2 – b1

∫ b2

b1

χ (p) dp
)

+ J

( n–2∑
z=0

χ (z+1)(b1)
z!(z + 2)

(t – b1)z+2

b2 – b1

)

– J

( n–2∑
z=0

χ (z+1)(b2)
z!(z + 2)

(t – b2)z+2

b2 – b1

)
+ J

(
1

(n – 1)!

∫ b2

b1

Rn(t, s)χ (n)(s) ds
)

=
n–2∑
z=0

1
z!(z + 2)(b2 – b1)

(
χ (z+1)(b1)J(t – b1)z+2 – χ (z+1)(b2)J(t – b2)z+2)

+
1

(n – 1)!

∫ b2

b1

J
(
Rn(t, s)

)
χ (n)(s) ds. �
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Theorem 6 Let all the suppositions of Theorem 5 be satisfied and

J
(
Rn(t, s)

) ≥ 0 (21)

for all s ∈ [b1, b2]. If χ is n-convex such that χ (n–1) is absolutely continuous, then we have
that

J(χ ) ≥ J(U) (22)

holds, where

U(t) =
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)(t – b1)z+2 – χ (z+1)(b2)(t – b2)z+2). (23)

The reverse inequality in (21) gives rise to the reverse inequality in (22).

Proof Since χ (n–1) is absolutely continuous on [b1, b2], therefore χn exists almost every-
where. Now the n-convexity of χ implies that χn(t) ≥ 0, ∀t ∈ [b1, b2]; this fact together
with (21) implies that

J
(
Rn(t, s)

)
χn(s) ≥ 0 (24)

for all s ∈ [b1, b2]. Thus

1
(n – 1)!

∫ b2

b1

J
(
Rn(t, s)

)
χn(s) ds ≥ 0. (25)

Using (25) in (18), we get

J(χ ) –
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)J(t – b1)z+2 – χ (z+1)(b2)J(t – b2)z+2) ≥ 0. (26)

The linearity of J(·) yields

J(χ ) – J

(
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)(t – b1)z+2 – χ (z+1)(b2)(t – b2)z+2)

)

≥ 0, (27)

which is the required result. The reverse inequality in (21) gives rise to the reverse inequal-
ity in (24); therefore, the reverse inequality in (22) is obtained. �

Theorem 7 Let all the suppositions of Theorem 6 be valid, and let U , defined in (23), be
convex on [b1, b2]. Then we have

J
(
χ (t)

) ≥ 0 (28)

for all t ∈ [b1, b2].
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Proof Since U(t) is convex ∀t ∈ [b1, b2], thus by means of Remark 4, we get J(U(t)) ≥ 0.
As a result, (22) implies J(χ (t)) ≥ 0. �

Remark 5 The generalized form of Theorem 4 is Theorem 7.

3 Generalized Jensen-type functional by extended Montgomery identity via
Taylor’s formula II

Theorem 8 Let n ∈ N such that n ≥ 2 and all the suppositions of Theorem 4 be satisfied.
If χ is a convex function defined on [b1, b2] such that χ (n–1) is absolutely continuous, then
∀t ∈ [b1, b2] we have ∀t ∈ [b1, b2]

J(χ ) =
1

b2 – b1

n–2∑
z=0

(
1

(z + 2)!

)(
J
(
χ (z+1)(t)(b1 – t)z+2) – J

(
χ (z+1)(t)(b2 – t)z+2))

+
1

(n – 1)!

∫ q

p
J
(
R̂n(t, s)

)
χn(s) ds, (29)

where R̂n is defined in (8) and

J
(
R̂n(t, s)

)
=

∫ b2
b1

|�(τ )|R̂n(χ (τ ), s) � τ∫ b2
b1

|�(τ )| � τ
– R̂n

((∫ b2
b1

|�(τ )|χ (τ ) � τ∫ b2
b1

|�(τ )| � τ

)
, s

)
. (30)

Proof Putting (7) in (17), we obtain

J(χ ) = J

(
1

b2 – b1

∫ b2

b1

χ (p) dp +
n–2∑
z=0

χ (z+1)(t)
(b1 – t)z+2 – (b2 – t)z+2

(z + 2)!(b2 – b1)

+
1

(n – 1)!

∫ b2

b1

R̂n(t, s)χ (n)(s) ds

)
. (31)

By using the linearity of the functional J(·), we get

J(χ ) = J
(

1
b2 – b1

∫ b2

b1

χ (p) dp
)

+ J

( n–2∑
z=0

χ (z+1)(t)
(b1 – t)z+2 – (b2 – t)z+2

(z + 2)!(b2 – b1)

)

+ J
(

1
(n – 1)!

∫ b2

b1

R̂n(t, s)χ (n)(s) ds
)

=
n–2∑
z=0

1
(z + 2)!(b2 – b1)

× J
((

χ (z+1)(t)(b1 – t)z+2) –
(
χ (z+1)(t)(b2 – t)z+2))

+
1

(n – 1)!

∫ b2

b1

J
(
R̂n(t, s)

)
χ (n)(s) ds. �

Theorem 9 Let all the suppositions of Theorem 8 be satisfied and

J
(
R̂n(t, s)

) ≥ 0 (32)
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for all s ∈ [b1, b2]. If χ is n-convex such that χ (n–1) is absolutely continuous, then we have

J(χ ) ≥ J(U) (33)

holds, where

U(t) =
1

b2 – b1

n–2∑
z=0

(
1

(z + 2)!

)((
χ (z+1)(t)(b1 – t)z+2) –

(
χ (z+1)(t)(b2 – t)z+2)). (34)

Proof Since χ (n–1) is absolutely continuous on [b1, b2], therefore χn exists almost every-
where. Now the n-convexity of χ implies that χn(t) ≥ 0, ∀t ∈ [b1, b2]; this fact together
with (21) implies that

J
(
R̂n(t, s)

)
χn(s) ≥ 0 (35)

for all s ∈ [b1, b2]. Thus

1
(n – 1)!

∫ b2

b1

J
(
R̂n(t, s)

)
χn(s) ds ≥ 0. (36)

Using (36) in (29), we get

J(χ ) –
1

b2 – b1

n–2∑
z=0

(
1

(z + 2)!

)(
J
(
χ (z+1)(t)(b1 – t)z+2) – J

(
χ (z+1)(t)(b2 – t)z+2)) ≥ 0. (37)

By the linearity of J(·), we get

J(χ ) – J

(
1

b2 – b1

n–2∑
z=0

(
1

(z + 2)!

)(
χ (z+1)(t)(b1 – t)z+2 – χ (z+1)(t)(b2 – t)z+2)

)
≥ 0, (38)

which is the required result.
The reverse inequality in (32) gives rise to the reverse inequality in (35); therefore, the

reverse inequality in (33) is obtained. �

Theorem 10 Let all the supposition of Theorem 9 be valid, and let U , defined in (34), be
convex on [b1, b2]. Then we have

J
(
χ (t)

) ≥ 0 (39)

for all t ∈ [b1, b2].

Proof Since U(t) is convex ∀t ∈ [b1, b2], thus by means of Remark 4, we get J(U(t)) ≥ 0.
As a result, (33) implies J(χ (t)) ≥ 0. �

Remark 6 The generalized form of Theorem 4 is Theorem 10.
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4 Bounds for identities associated with generalization of Jensen-type
functional

Assume f,ν : [b1, b2] → R as Lebesgue integrable functions, then the Čebyšev functional
is

�(f,ν) =
1

b2 – b1

∫ b2

b1

f(t)ν(t) dt –
1

b2 – b1

∫ b2

b1

f(t) dt
1

b2 – b1

∫ b2

b1

ν(t) dt. (40)

The following theorems were proved by Cerone and Dragomir in [10].

Theorem 11 Consider a Lebesgue integrable function f : [b1, b2] → R and an absolutely
continuous function ν : [b1, b2] →R with (· – b1)(b2 – ·)[ν ′]2 ∈ L[b1, b2]. Then

∣∣�(f,ν)
∣∣ ≤ 1√

2
[
�(f, f)

] 1
2 1√

b2 – b1

(∫ b2

b1

(y – b1)(b2 – y)
[
ν ′(y)

]2 dy
) 1

2
. (41)

The constant 1√
2 in (41) is the best possible.

Theorem 12 If ν : [b1, b2] →R is monotonic nondecreasing on [b1, b2] and f : [b1, b2] →R

is absolutely continuous with f′ ∈ L∞[b1, b2]. Then we have

∣∣�(f,ν)
∣∣ ≤ 1

2(b2 – b1)
∥∥f′∥∥∞

∫ b2

b1

(y – b1)(b2 – y) dh(y). (42)

The constant 1
2 in (42) is the best possible.

Let us denote

�(s) = J
(
Rn(t, s)

)
, s ∈ [b1, b2], (43)

and

�̂(s) = J
(
R̂n(t, s)

)
, s ∈ [b1, b2]. (44)

Now, the Čebyšev functionals defined as

�(�,�) =
1

b2 – b1

∫ b2

b1

�2(s) ds –
(

1
b2 – b1

∫ b2

b1

�(s) ds
)2

. (45)

�(�̂, �̂) =
1

b2 – b1

∫ b2

b1

�̂2(s) ds –
(

1
b2 – b1

∫ b2

b1

�̂(s) ds
)2

. (46)

Theorem 13 Let n ∈ N such that n ≥ 2 and all the suppositions of Theorem 4 be satisfied.
If χ is a convex function defined on [b1, b2] such that χ (n–1) is absolutely continuous, (· –
b1)(b2 – ·)[χ (n+1)]2 ∈ L[b1, b2], and Rn, R̂n, �, �̂, and � be defined in (6), (8), (43), (44), (45),
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and (46), respectively, then ∀t ∈ [b1, b2] we have

J(χ ) =
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)J(t – b1)z+2 – χ (z+1)(b2)J(t – b2)z+2)

+
χ (z–1)(b2) – χ (z–1)(b1)

(b2 – b1)(n – 1)!

∫ b2

b1

�(s) ds + Hn(χ ; b1, b2), (47)

and

J(χ ) =
1

b2 – b1

n–2∑
z=0

(
1

(z + 2)!

)(
J
(
χ (z+1)(t)(b1 – t)z+2) – J

(
χ (z+1)(t)(b2 – t)z+2))

+
χ (z–1)(b2) – χ (z–1)(b1)

(b2 – b1)(n – 1)!

∫ b2

b1

�̂(s) ds + Ĥn(χ ; b1, b2). (48)

The remainders Hn(χ ; b1, b2) and Ĥn(χ ; b1, b2) satisfy the approximation

∣∣Hn(χ ; b1, b2)
∣∣ ≤ [�(�,�)]

1
2

(n – 1)!

√
b2 – b1

2

∣∣∣∣
∫ b2

b1

(s – b1)(b2 – s)
[
χ (n+1)(s)

]2 ds
∣∣∣∣

1
2

, (49)

∣∣Ĥn(χ ; b1, b2)
∣∣ ≤ [�(�̂, �̂)]

1
2

(n – 1)!

√
b2 – b1

2

∣∣∣∣
∫ b2

b1

(s – b1)(b2 – s)
[
χ (n+1)(s)

]2 ds
∣∣∣∣

1
2

. (50)

Proof Applying Theorem 11 for f→ � and ν → χ (n), we obtain

∣∣∣∣ 1
b2 – b1

∫ b2

b1

�(s)χ (n)(s) ds –
1

b2 – b1

∫ b2

b1

�(s) ds
1

b2 – b1

∫ b2

b1

χ (n)(s) ds
∣∣∣∣

≤ 1√
2
[
�(�,�)

] 1
2 1√

b2 – b1

∣∣∣∣
∫ b2

b1

(s – b1)(b2 – s)
[
χ (n+1)(s)

]2 ds
∣∣∣∣

1
2

. (51)

Now, dividing both sides of (51) by (n – 1)! and multiplying by (b2 – b1), we get

∣∣∣∣ 1
(n – 1)!

∫ b2

b1

�(s)χ (n)(s) ds –
1

(n – 1)!

∫ b2

b1

�(s) ds
χ (n–1)(b2) – χ (n–1)(b1)

(b2 – b1)

∣∣∣∣

≤
√

b2 – b1

2
[�(�,�)]

1
2

(n – 1)!

∣∣∣∣
∫ b2

b1

(s – b1)(b2 – s)
[
χ (n+1)(s)

]2 ds
∣∣∣∣

1
2

. (52)

By denoting

Hn(χ ; b1, b2) =
1

(n – 1)!

∫ b2

b1

�(s)χ (n)(s) ds

–
1

(n – 1)!

∫ b2

b1

�(s) ds
χ (n–1)(b2) – χ (n–1)(b1)

(b2 – b1)
(53)

in (52), we have (49). Hence, we obtain

1
(n – 1)!

∫ b2

b1

�(s)χ (n)(s) ds =
χ (n–1)(b2) – χ (n–1)(b1)

(b2 – b1)(n – 1)!

∫ b2

b1

�(s) ds + Hn(χ ; b1, b2), (54)
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where the remainder Hn(χ ; b1, b2) satisfies approximation (49). Now from (18) we obtain
(47).

Similarly, from identity (29), we get (50). �

Using Theorem 12, the Grüss-type inequality is obtained in the following theorem.

Theorem 14 Let n ∈ N such that n ≥ 2 and all the suppositions of Theorem 4 be satis-
fied. If χ is a convex function defined on [b1, b2] such that χ (n) is absolutely continuous,
χ (n+1) ≥ 0 on [b1, b2], and the functions �, �̂, and � are defined by (43), (44), (45), and (46),
respectively. Then we have (47), and the remainder Hn(χ ; b1, b2) satisfies the bound

∣∣Hn(χ ; b1, b2)
∣∣ ≤ (b2 – b1)

(n – 1)!
∥∥�′∥∥∞

×
{

χ (n–1)(b2) + χ (n–1)(b1)
2

–
χ (n–2)(b2) – χ (n–2)(b1)

b2 – b1

}
, (55)

where as representation (48) and the remainder Ĥn(χ ; b1, b2) satisfies the approximation

∣∣Ĥn(χ ; b1, b2)
∣∣ ≤ (b2 – b1)

(n – 1)!
∥∥�′∥∥∞

×
{

χ (n–1)(b2) + χ (n–1)(b1)
2

–
χ (n–2)(b2) – χ (n–2)(b1)

b2 – b1

}
. (56)

Proof Using Theorem 12 for f → � and ν → χ (n), we get

∣∣∣∣ 1
b2 – b1

∫ b2

b1

�(s)χ (n)(s) ds –
1

b2 – b1

∫ b2

b1

�(s) ds
1

b2 – b1

∫ b2

b1

χ (n)(s) ds
∣∣∣∣

≤ 1
2(b2 – b1)

∥∥�′∥∥∞

∫ b2

b1

(s – b1)(b2 – s)χ (n+1)(s) ds. (57)

Since

∫ b2

b1

(s – b1)(b2 – s)χ (n+1)(s) ds

=
∫ b2

b1

[
2s – (b1 + b2)

]
χ (n)(s) ds

= (b2 – b1)
[
χ (n–1)(b2) + χ (n–1)(b1)

]
– 2

(
χ (n–2)(b2) – χ (n–2)(b1)

)
,

dividing both sides of (57) by (n – 1)! and multiplying by (b2 – b1), we have

∣∣∣∣ 1
(n – 1)!

∫ b2

b1

�(s)χ (n)(s) ds –
∫ b2

b1

�(s) ds
χ (n–1)(b2) – χ (n–1)(b1)

(b2 – b1)(n – 1)!

∣∣∣∣

≤ (b2 – b1)
(n – 1)!

∥∥�′∥∥∞

[
[χ (n–1)(b2) + χ (n–1)(b1)]

2
–

(χ (n–2)(b2) – χ (n–2)(b1))
b2 – b1

]
. (58)
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Using (18), we get

∣∣∣∣∣J(χ ) –
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)J(t – b1)z+2 – χ (z+1)(b2)J(t – b2)z+2)

–
1

(n – 1)!

∫ b2

b1

�(s) ds
χ (n–1)(b2) – χ (n–1)(b1)

b2 – b1

∣∣∣∣∣

≤ (b2 – b1)
(n – 1)!

∥∥�′∥∥∞

[
[χ (n–1)(b2) + χ (n–1)(b1)]

2
–

(χ (n–2)(b2) – χ (n–2)(b1))
b2 – b1

]
. (59)

Now, using (47), we deduce (55)

∣∣Ĥn(χ ; b1, b2)
∣∣ ≤ (b2 – b1)

(n – 1)!
∥∥�′∥∥∞

×
[

[χ (n–1)(b2) + χ (n–1)(b1)]
2

–
[χ (n–2)(b2) – χ (n–2)(b1)]

b2 – b1

]
. (60)

Similarly, using (29) instead of (18), we get (56). �

The Ostrowski-type inequality allied to generalized Jensen’s inequality is specified by
the following theorem.

Theorem 15 Assume that the conditions of Theorems 5 and 8 are satisfied. Consider a
specific pair (r1, r2) of conjugate exponents, i.e., 1 ≤ r1, r2 ≤ ∞, 1

r1
+ 1

r2
= 1. For n ∈ N, assume

that the function |χ (n)|r1 : [b1, b2] →R is Riemann integrable for n ≥ 2. Then

(i)

∣∣∣∣∣J(χ ) –
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)J(t – b1)z+2 – χ (z+1)(b2)J(t – b2)z+2)

∣∣∣∣∣

≤ 1
(n – 1)!

∥∥χ (n)∥∥
r1

(∫ b2

b1

∣∣J(Rn(t, s)
)∣∣r2 ds

) 1
r2

. (61)

The constant on the right-hand side of (61) is sharp for 1 < r1 ≤ ∞ and best possible for
r1 = 1.

(ii)

∣∣∣∣∣J(χ ) –
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
J
(
χ (z+1)(t)(b1 – t)z+2) – J

(
χ (z+1)(t)(b2 – t)z+2))

∣∣∣∣∣

≤ 1
(n – 1)!

∥∥χ (n)∥∥
r1

(∫ b2

b1

∣∣J(R̂n(t, s)
)∣∣r2 ds

) 1
r2

. (62)

The constant on the right-hand side of (62) is sharp for 1 < r1 ≤ ∞ and best possible for
r1 = 1.

Proof (i) Let us take

�(s) =
1

(n – 1)!
J
(
Rn(t, s)

)
.
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Using (18) and Hölder’s inequality, we get

∣∣∣∣∣J(χ ) –
1

b2 – b1

n–2∑
z=0

(
1

z!(z + 2)

)(
χ (z+1)(b1)J(t – b1)z+2 – χ (z+1)(b2)J(t – b2)z+2)

∣∣∣∣∣

=
∣∣∣∣
∫ b2

b1

�(s)χn(s) ds
∣∣∣∣ ≤ ∥∥χ (n)∥∥

r1

(∫ b2

b1

∣∣�(s)
∣∣r2 ds

) 1
r2

. (63)

The sharpness of the constant (
∫ b2

b1
|�(s)|r2 ds)

1
r2 is proved by considering a function χ for

which the inequality in (61) is obtained.
For 1 < r1 < ∞, we take

χ (n)(s) = sgn�(s)
∣∣�(s)

∣∣ 1
r1–1 .

For r1 = ∞, take χ (n)(s) = sgn�(s).
For r1 = 1, we prove that

∣∣∣∣
∫ b2

b1

�(s)χn(s)
∣∣∣∣ ≤ max

s∈[b1,b2]

∣∣�(s)
∣∣
(∫ b2

b1

∣∣χ (n)(s)
∣∣ds

)
(64)

is the best possible inequality. Let |�(s)| attain its maximum at k0 ∈ [b1, b2]. First, we sup-
pose that �(k0) > 0. Taking ε to be small enough, we define χε(s) by

χε(s) :=

⎧⎪⎪⎨
⎪⎪⎩

0, b1 ≤ s ≤ k0,
1

εn! (s – k0)n, k0 ≤ s ≤ k0 + ε,
1
n! (s – k0)n–1, k0 + ε ≤ s ≤ b2.

(65)

Then, for ε small enough,

∣∣∣∣
∫ b2

b1

�(s)χ (n)(s)
∣∣∣∣ =

∣∣∣∣
∫ k0+ε

k0

�(s)
1
ε

ds
∣∣∣∣ =

1
ε

∫ k0+ε

k0

�(s) ds. (66)

By inequality (64), we have

1
ε

∫ k0+ε

k0

�(s) ds ≤ �(k0)
∫ k0+ε

k0

1
ε

ds = �(k0). (67)

Since

lim
ε→0

1
ε

∫ k0+ε

k0

�(s) ds = �(k0), (68)

the statement follows.
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If �(k0) < 0, then χε(s) is

χε(s) :=

⎧⎪⎪⎨
⎪⎪⎩

1
n! (s – k0 – ε)n–1, b1 ≤ s ≤ k0,

– 1
εn! (s – k0 – ε)n, k0 ≤ s ≤ k0 + ε,

0, k0 + ε ≤ s ≤ b2,

(69)

and the remaining proof is identical as above.
(ii) is the same as (i). �

Remark 7 By analogy to Sects. 6 and 7 of Aras-Gazič et al. [22], the n-exponential convex-
ity, exponential convexity, and applications to Stolarsky-type means can be established for
the functionals defined as the difference between the R.H.S and the L.H.S of generalized
inequalities (22) and (33), where U is defined in (23) and (34), respectively.
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