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1 Introduction

The multilinear Calderé6n—Zygmund theory was originally introduced by Coifman and
Meyer [1-3] in their study of certain singular integral operators, such as Calderén com-
mutators, paraproducts, and pseudodifferential operators. Afterwards, the multilinear
Calder6n—Zygmund theory has been further developed by many scholars in the last
few decades. For example, Grafakos and Torres studied systematically on the multilin-
ear Calderén—Zygmund operators in [4]. They proved an end-point weak type estimate
and obtained the strong type L#! x --- x LP» — L[? boundedness results for multilinear
Calder6n—Zygmund operators by the classical interpolation method. In [5] and [6], the
maximal operator associated with multilinear Calderén-Zygmund singular integrals was
introduced and used to obtain the weighted norm estimates for multilinear singular in-
tegrals. More recently, Stockdale and Wick [7] provided an alternative proof of the weak-
type (1,...,1;1/m) estimates for m-multilinear Calderén—Zygmund operators on R” first
proved by Grafakos and Torres. Subsequent results on end-point estimates of the bilinear
Calder6n—Zygmund operators can be found in [8]. Motivated by the research and consid-
ering that differential forms as the generalizations of functions are widely used in physics
systems, differential geometry, and PDEs, we aim to establish the boundedness of mul-
tilinear Calder6n—Zygmund operators on differential forms. In this paper, the definition
of multilinear Calderén—Zygmund operators on differential forms is set forth. Moreover,
by combining the Calder6n—-Zygmund decomposition with some skillful techniques, we
establish the end-point weak type boundedness of multilinear Calderén—Zygmund oper-
ators on differential forms which includes the result of multilinear Calderén—Zygmund
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operators on functions in [4] as a special case. Unfortunately, it is difficult to apply the
complex variable theory to differential forms. So the T'1 theorem and strong type bound-
edness of multilinear Calderén—-Zygmund operators on differential forms are still some
open questions. But with the help of decomposition theorem of differential forms, we
derive the Poincaré-type inequalities for multilinear Calderén—Zygmund operators on A-
harmonic tensors which are the generalized solutions to A-harmonic equations on differ-
ential forms. Based on the Poincaré-type inequalities, we can make a further study of the
multilinear Calderén—-Zygmund operators in Orlicz spaces and establish the L¥ norm in-
equalities. More results on the Poincaré-type inequalities and singular integral operators
on differential forms can be found in [9-13].

This work is organized as follows. To state our results, we first recall some necessary
notations and lemmas in Sect. 2. Then, in Sect. 3, we define the multilinear Calderén—
Zygmund operators on differential forms and prove the end-point weak type boundedness
of multilinear Calder6n—Zygmund operators on differential forms in Theorem 1. Using
the weak type inequality, we derive the Poincaré-type inequality for multilinear Calderén—
Zygmund operator on alocal domain in Theorem 2 in Sect. 4. Finally, the result is extended
to obtain the Poincaré-type inequality for the multilinear Calderén—Zygmund operator on

a bounded convex domain in Theorem 3.

2 Preliminaries

Throughout this paper, let 2 C R” be abounded domain, # > 2, B and o B be the balls with
the same center and diam(o B) = o diam(B). We use |E| to denote the Lebesgue measure of
aset ECR™ Let A{(R") = Al, 1=1,2,...,n, be the set of all [-forms u(x) = Z[ ur(x)dx; =
Zuil...,-l(x) dx; A --- A dx;, with summation over all ordered [-tuples I = (i1, i,...,i),
1<ij<---<ij<n D(Q,A) is the space of all differential /-forms on , namely, the
coefficient of the [-forms is differential on Q. The operator x : A/ (R") — A" (R") is
the Hodge—Star operator as usual, and the linear operator d : D'(2, A') — D/(Q, A™Y),
0 <l <mn-1,is called the exterior differential operator. The Hodge codifferential operator
d*:D'(Q, A1) — D/(Q, A'), the formal adjoint of d, is defined by d* = (—=1)"*! x dx, see
[14] for more introduction. We shall denote by L?(£2, A’) the space of differential /-forms
with the coefficients in L(£2,R") and with the norm ||u||,,e = (/5 (3", lur(x)2) % dx)ll’. The
homotopy operator T : C*®(2, A') — C®(2, A"!) is a very important operator in the the-

ory of differential forms, given by
Tu = / Y ()Kyudy,
Q
where ¥ € C3°(R2) is normalized by [, ¥(y)dy = 1, and K, is a linear operator defined by

1
(I(yu)(x; élw--?él—l) = / tlilu(tx ty - ty;x_y; Elﬁ---’sl—l)dt'
0

See [15] for more of the function v and the operator K. About the homotopy operator

T, we have the following decomposition:

u=d(Tu) + T(du)
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for any differential form u € L?(Q, A!), 1 < p < co. We also call it the decomposition
theorem for differential form which will be used repeatedly in the proof of this paper.
A closed form ug is defined by uq = d(Tu), [ = 1,...,n, and when u is a differential 0-form,
ug = Q™ [, u(y)dy.

The following lemma is the L? estimate for the homotopy operator T from [15].

Lemma 1l Letu €Ll (Q,A"),[=1,2,...,n,1<p< o0, be a differential form in Q, and T
be the homotopy operator defined on differential forms. Then there exists a constant C,

independent of u, such that
[ Tullpe < Cdiam($2)[lulp0-
The following nonlinear partial differential equation for differential forms
d*A(x, du) = B(x, du) 1)

is called nonhomogeneous A-harmonic equation, where A : @ x AYR”) — A/(R") and
B:Q x AYR") — A"1(R") satisfy the conditions:

|A(x, &) <alglP™',  A(x,&) &>, and |[Bx&)| <blgl™

for x € Q a.e. and all £ € A/(R”). Here, p > 1 is a constant related to equation (1), and
a,b>0.

In general, we call the differential form satisfying nonhomogeneous A-harmonic equa-
tion the nonhomogeneous A-harmonic tensor. In the proof of the strong type inequality
for the multilinear Calderé6n—Zygmund operator on differential forms, we let the differen-
tial form be the nonhomogeneous A-harmonic tensor to get the desired result. See [16—20]
for a list of recent results on the A-harmonic equations and related topics. We also need
the following weak inverse Holder inequality for nonhomogeneous A-harmonic tensor,

see [21] for more introduction.

Lemma 2 Let u € Q satisfy equation (1), o > 1, 0 < s,t < 0o. Then there exists a constant
C, independent of u, such that

luellss < CIBI“" | ul| 0
foroB C Q.

3 End-point estimate

In the classical theory of singular integrals, it is important to prove the end-point weak
type inequality which is the core link to get the strong boundedness of singular integral
operators. So the focus of this section is to establish the end-point weak type inequality
of multilinear Calderén—Zygmund operators on differential forms. Before giving the def-
inition of multilinear Calderén—Zygmund operators on differential forms, we first define
the kernel function in multilinear Calderén—Zygmund operators, see [4] for more intro-
duction about the kernel function.
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Definition 1 Let K(x,y1,...,¥,) be a locally integrable function which is defined on
(Rn)mﬂ \ {7,' c (R")WI,&C:yl .. :)’m}

and satisfy the following conditions:
(1) For some A > 0 and all points in the domain of definition, the function K(x, y1,..., ¥m)
satisfies

A

(= y1l+ -+ x =y )

’I((xryl!iym” =<
(2) For & > 0, we have
’K(x,yl,...,ym)—K(x/,yl,...,ym)’

Alx —x'|°

T (=il = gl

where |x —x'| < % maxi<j< |x — yj|. For other y;, we also have

’I((x,yl,...,y,»,...,ym)—K(x,yl,...,y;,...,ym)|
Alyj - yIf

= Qe =y

where |y; —y;l < % max<j<m |x — ¥;|. For convenience, we call conditions (1), (2) for kernel
function the m — CZK(A, ¢) conditions.

Next, we give the definition of multilinear Calderén—Zygmund operators on differential

forms.

Definition 2 The operator £ : AY(R") x ALR") x --- x ALR") — AYR”") is called multi-
linear operator on differential forms if

,C(u(l), s u(’”))(x;é)

=(/( ) K(x,yl,.-.,ym)u“)(x;é)~~~u(m)(x;é)dy1'--dym),
an

where x & (7 suppul, & = (£1,62,..., ).

Now, we establish the end-point weak type inequality for multilinear Calderén-

Zygmund operators on differential forms.

Theorem 1 Let L be a multilinear Calderon—Zygmund operator, the kernel function K
satisfies the m — CZK(A, ¢) conditions, and u®,...,u" c D'(Q, A"). Assume that, for 1 <
41,92 - qm < 00 and 0 < g < 0o with

1 1 1

1
—_—=— 4+ — 4+ —,
9 91 92 qm

Page 4 of 17
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if the operator L is weak-(q1,...,qm, q), that is,

q
s 2l 5] = (21, 11, )

forall . >0, then L is also a weak-(1,1,...,1, %) operator. Especially, we have
[;C]le,,,xLl_%l/m < C(A +[L]m ><-~><LqmeLq)r

where [-] means the weak norm of an operator and C > 0 is a constant that depends only
on the parameters n, m.

Proof Without loss of generality, suppose
R e P

In order to prove the conclusion, we need to show that there exists a constant C indepen-
dent of u@, ..., u" such that

(E(u(l),...,u(m)))*(k) = |{x: |£(u(1),...,u(’"))’ >}

3=

< {%(A+B)} . 3)

According to the algorithms of differential forms, for i; <iy <--- <irandj; <jo < -+ <jk,
we obtain

11 1fll =j1)i2=j21"'¢ik=jk:

dxil AN dxiz VANREIWAN dxik(eh,e,-z,...,ejk) =
0, others,

where ey, ¢€,...,e, are orthogonal basis for the tangent space of R”. So, for a differential

form

ux) = ) ur(x) day
1

with I = (i1, i2,...,0), 1 <i1 <iy <---<i; <n,we have
u; = u(x)(er),

where e; = (e;;,€;5,...,€;). It is also a differential form for the image of the multilinear
Calder6n—-Zygmund operator on a differential form. So, there exist a;, I = (i1, i3,...,i), 1 <
i1 <y <---<i; <nsatisfying

,C(u(l), . ..,u(m)) = Za; dx;.
I
If we write dy = dy; - - - dy,,, then it follows that

Zﬂ] dxl
1

’E(u(l),...,u(’”))(x” =
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1/2

- (213 |a1|2>1/2 = (ZI]ﬁ(u“),...,uW))(x;e,)P)
- (Z

1

=(Z

1

2)1/2

</ K@y1,. - ym)u V(s er) - - 1™ (x5 ep) dy)
Ry

2\ 1/2
(/ K(x,yb---,ym)uﬁ”---uﬁ”dy)) '
(Rmym

Applying the Calderén—-Zygmund decomposition to each function uy) at height o =

(Ap)Y'™, we obtain a sequence of pairwise disjoint cubes { Qik; }ﬁzl and a decomposition

RN e
ki

such that, foralli=1,...,m,
(@) lg/"] < Crar, |
(B) supp(8;"™”) € Qikis fo,, b1 (%) dx =0, and

/ |b§i,/<,')(x)| dx < C1a|Qi,ki|;
Qt’,k,‘

(©) X0 Qi) < & [ | ()] .
Applying the Calderén—Zygmund decomposition above to the operator £, we have

(£(u(1), s u(m)))*()\)
s £ ) 2

) , (4)

where hy) € {b}i), gl(i)}. Then, by properties (a) and (c), one has

. Zi _ / |g](i)(x){%dx+/ |g1(l)(x)
(U Qi) UQik;

e’
- [ el e [ (el e
ik )¢ ;

i,k Qi,kl

U]

qidx

< Claqi_1/|uy)(x)| dx + Cia?
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< G as[

= Cua 1], ®

Using (5) and the weak —(q1,42, - .., qm>¢q) boundedness to the first item of the right-hand
side of inequality (4), we get

" A
et

Bzmcl q
<(Z 16l e,

Cqu l_la qqll |q/qz

C1B (Ao )

= Cqu)\_W pq_% . (6)

Now we begin to estimate the measure of the following set which appeared in (4):

|Es| =

{xzc(h§1>,...,h§’”>) > %} :

where 1" = b", 1 < r <t, and h i) (l”’

simplicity, there is no harm in the setting b[ appearing with superscript 1,...,¢. We set
that @ = |J._, @, = UL, Us, Q. x, with Q,, is a concentric and double diameter cube to
Q- Then we obtain

,1<j<m-t, 1<t <m.For the sake of

|Es| < 1€2] +

A
1) (£) (e+1) (m)
{xeR”\Q:L’(b, b g™ g )>2mcl}

= 19| +|E. (7)
Using properties (a), (b) and the Chebyshev inequality, we have

|Es|

2"C! N "
T [ )0
RM\Q

mel
< a2
A Jrne

« bgl,kl) o by,/q)g;m) 3 .gl(m)

/ (K(x,yl,...,ym)—K(x,cl,kl,...,ym))
()

dydx

_2"G
=— )’"/ Z/ (K910 9m) = K@, €Lt 0 m) |
RNQ o)

,,,,,

x b b | dy de
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« ’bﬁl,kl) o b;t,k;)| dy

<2 "()»,0) g /(an Z (/R\Q dx)

x |6 b1 dy, (8)

A|y1 —Clk |S
(lx_y1| oot |x_ym|)mn+8

where ¢ 4, is the center of cube Q1 4, . We represent the difference set (27*1Q,x,)\ (27 Q,,)
by H, for,=1,2,...,and r = 1,...,¢. Then the difference set of R” and < satisfies

R'AQC U ﬂ i)

T1 e Tt=1 r=1

Note that, for the arbitrary x € (._, (H, ) and y, € Q,x,, we have

|y1 - Cl,kl | = 2_12(Ql,k1)

and

2TVZ(QV,I<,) < |x _yr| < 2Tr+lz(Qr,kr)r (9)

where Z(Qr,kr) denotes the diameter of the cube Q,,kr. Hence, it follows that

ly1 —ciiql® - ly1 —c1q1°
(e =yl + -+ lx=yml)® = (x=y1l)*
< ‘2_1’{((21,/(1) ¢
zrll(Ql,kl)

= ! . (10)

JTiEte

Bringing formula (10) into (8) and combining with inequality (9), we get

./(‘Rn)m </R”\Q
dx
2119# (1,k1) (t:ke)
bV . b dy
/Rn /R”\Q (Z, 1= y1|)mn| ' |
/ / 2rls+b dx ‘b(l k1) L. h(tvkt>| dyl . dyt
Rt JRM\Q (Z -1 =y '

Aiedx
27187 (Lky) zk
/ / /t |b1 Ve z’dyl
Qi Q Mr=1H

v (i e =y
<L,y

A|)’1 —Cl,k1|8
(I =y1] + - + [x =y )7%e

dx) | Bk . bﬁt,kt)‘ dy

tke TLyeres Tt 1

A% dx
/t 7 ¢ 2r1~ tn bﬁl,kl)”'bgt‘kt”dyl"'dyt
e, (50 1271Qu))

tkt 11,...,1p=1

Page 8 of 17



Li et al. Journal of Inequalities and Applications (2021) 2021:92

o0

A=t dx !
<Gyt / AL Q|
. Z e, (08 129UQu ) ) 1_!

dx
< Gua! e : / / —— —dy---dy,
Ty ft= Qi ﬂilef,’k, (Z/‘:l |2Trl(Qr,kr)|) "
o0
x
< Csaf / / —————dy; - dye. (11)
rl,Z,r;:l QT1E+E th, mr lHrkr 1 1 |x y}|)

Owing to the fact that the sets H:”kr and 7, = 1,..., 00 are disjoint, we know

3 / &
Ty TE= 1Hrkr (Z;=1 |x—)’j|)"’

o]

dx
9,00 Ti—1=1 ﬂtr; rkr (ZI 1 |x yl

dx
' 12
E/HH (L, k=) "

Lk

Similarly, we have

/Qlkl /Qm (Z; 1 |x ¥l )m
ks 1/Qll<1 L: Lke_q ~/R” (Z] 1|x y/|)m

,,,,,

,,,,,

CE [ et
kpokyy ¥ Qukg Qe-1k_1 (Z,’:l |x—yj|)(t_l)"
d
- / o (13)
Quy, (=311

Combining (8), (11), (12), and (13), we obtain

A
m= st dyr d
< Ca2oCngtp) ’2 / / srewe dy1
Qlkl Hl,lk]

s (I =y1D)"
2m dx
<G G, at(hp) —0 / / ——dy
TIZI 20 Z Qi THk, % — 1l
2m
< Xt 1) | /
; 2mere Z Qui, JHY |2”1(Qrk,)|”
<Cs

m d
)»p t Z QTiete Z/ Nix dy1

=1 k1 Q1kq 27 *1Q k, |2Trl(Qr,ky)|n

ml

2mCl -
< G2 (hp) " ZZWDQIM

11=1

Page 9 of 17
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2mCL L e
SCS A O[()L,O) " 22118“0{
71=1

< C3A(Mp) ”’mllf |t ()| dy:

= C3Ap— / |u1 ()/1)|d)’1
< C3AP—/ | ()| dys.
o Jrn

Choose p = 1 B, then inequality (6) shows that

. A
ool 52 |

< CyBIA - |u®] 7

1 o ,
_CBIH (A_+ B) @]

a “m
~ai(p) 7 (rp) 0
A+B A+B 1

1
A+B\™", ,
~a(550) e

On the other hand, property (c) implies that

2] =
= ik
C
<2 |u§s)(x)| dx
o
A+B\7
+B\ ™ ¥
=C4( ) /|u§)(x)|dx,
)\4 Rn
where

/Rn|ugs)(x)‘ =max{/Rn|u§1)(x)

And it should be noted that

- 1
|Ey| < C3Ap— f | (y1)| dyn
o R~

) (5 Lo

SC5<A+B) /|u Y1) dys.

/ |”11)(Y1)| dy,

.,/ ’uﬁm)(x)|}.
Rn

(14)

(15)

(16)

(17)

Page 10 of 17
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Finally, combining (15), (16), and (17), we have

(E(u(l), e u(”‘)))*(k)

= |{x |£(u(1),..‘,u(”’))| >)LH

m A
5t )
m A
+Z< > {x:,c(h§1>,...,h§ ’)>2mcl”)
I n

O _p0)
3 =b}

B1)« (3 o1+

(@) _p0)
3y’ =b}

1

D T (a(57) [lrele))

3 =)
A+B\7
+ m
S (6ft22) fwio)
L g0l
1
A+B\™"
5c6< * ) . (18)
A
This ends the proof of Theorem 1. O

4 Poincaré-type inequalities
In this section, we establish the Poincaré-type inequalities for multilinear Calderén—
Zygmund operators on differential forms in the local and global domain. So we first define

the operator on differential /-form in a local domain as follows:

E(u(l), e u('”))(x;é)

= ( /( ) K@, y1, eyt 8) - u (o €) dyy - - ~dym> (19)
Bm

for x ¢ (2, supp u}i), B C 2, and the kernel function K(y1,...,y:,) satisfies

|K(x,y1,...,ym)—K(x/,yl,...,ym)|
Alx —x'|

< (20)
(Je = y1l + - + [x = g ] )1

for |x — x| < 3 maxy<jzm & — ;1.
Next, we give the Poincaré-type inequality for the multilinear Calder6n-Zygmund op-

erator £ on a differential form in the local domain.
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Theorem 2 Let L be a multilinear Calderon-Zygmund operator defined by (19), BC €,
the kernel function K satisfies condition (2) in Definition 1, and u,...,u" e ¥ (Q,A")

loc
satisfy A-harmonic equation (1), then for 6 =1 + % - "’T_l, we have

||£~(u(1), e u(m))(x) - (E(u(l), e u(”‘))(x))B ||p'B

)

< CIBI" |« L

p.oB ’

Proof Applying the decomposition theorem for a differential form and Lemma 1, we get

||Z(u(1),...,u(m))(x) - (Z(u(l), e u(m))(x))B ”p,B
= | T(dZ(u(l), oo ™) (x)) + d(TZ(u<1), e ™) (%)) — (Z(uu), ™)), ”p,B

= | T@EE?, . u") @),

< C|B| diam(B) [d(L(u", ..., u") @), 5- (21)

For convenience, we write

EI(u(l),..‘,u(’”))(x):/ K(x,yl,...,ym)ugl)ugz)~~~u§m)dy1--~dym.
Bm

Then,
d(Z(u(l), . u(”’)) (x))

- d(Z((ZI(um, e u™) (%)) dx1)>

I
_iZaZ](ll(l),...,
k=1 1 dxk
m, (m) )
ZZhng 1, ) me) = B, @)
n— n

ZZIH% (Kx+7lek,y1, V) = K@ 91, V)
n—

n
X ugl) e Mgm) dy;--- d)’m) dox A dxy. @2

ul™)(x)

dxi A dxy

In terms of the conditions of kernel function K, we know

K(x+neg, y15- - Ym) — K, Y15+ 3 Vi)
Alx + nex — x|
T (=il =yl

An (23)
(Rl + -+ o=y

Page 12 of 17
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It follows from (23) and (22) that

d(E(u(l), e u™) (x))
me W)uﬁl) . MEM) dy -+ dyp

n
=3 Yiim :
k=1 I

AV dyy - dy,,
SNt [ e
=0 Jpm o=y

dxk A dxy

(le=y1l +--
n A 1. (m)d ..d
:ZZ/ U A Y 1dxk/\dx1
= T e (=l + e = yl)

Further, we get

[d(Z(, ... ) @),

" W)y m
Aup - u™ dy; - -d

< E E/ _1 AN ymnldxk/\de
= T e (K=l + -+ = yl)

B

1
(S5l ooy
A=t P G y1|+ +Ix—ym|)"'”‘1 o
< CXH:Z/ Auf - u™ dy, - dyy
= 1
o TV (=gl oot =y |
n (1)
u; dy
< |cA L
- ;X,:/Bm1(/3(Ix—y1|+~-~+|x—ym|)’””‘1>

X uf,z) o ugm) dyy -+ - dy,,

p.B

Bm-1 B (|x y | |x ym')
(2)

x u® - u™ dyy - dy,,

sy Yy
k=1 1

p.B

Apply Holder’s inequality to the innermost layer integral of the right-hand side of the in-

n(m-1)—¢e

equality above with Holder mdex satisfying 1 = + , 0 < ¢ < 1. For the conve-

n(m-1) n(m 1)’
nience of writing, we write 2 = 27=1<e "1 _ , then it follows that
¢ n(m-1) ’ 7 n(m—l)
1
/ u§ ' dy,
B (e =yl +- -+ 2= ym|)™!
(1)
Uy
= dy,
/B (e =yl + -+ e =y )7

1
(e =yl + - e =y )6

=(/ ) 141,

Page 13 of 17
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1
! Sl
E( re (|8 =y1] + -+ |8 — yp] )58 dy1> (I Hn,B

S

(o] “’ )
<\ wx
o (r+lx—y]+--

o+ |x _ym|);’mn—§—n+1

_ > r d )
(o[ ot ) 1l

=

4”15

G oy
= [,
(e —ya| + -« + & — gy |y -2 10 AnB

we have

B (Ix—y1I +oe X = )

1

Similarly, applying Holder’s inequalities (72 — 2) times with the indexes satisfying 1 = % .

dy -
< [T e 1

Let xp be a characteristic function as

1, xeB,
XB=
0, x¢B,
then we get
B |x ym|n+s 1 B
x5(*) x8(/m)
H/ u] XB()/m £ 1 B(y 1 d)’m (24')
(I = ym |17 (Jor = gy |67 1) pB
Applying Holder’s inequalities again with the indexes satisfying 1 = - + %, we obtain
m x5(x) x8m)
,/ ( )X Om) 1 - 1 dy
R” (|x_ym|”+£_1)p (|x_ym|n+8_1)q
1
m xs(x) [ »
< (/ ”5 )XB()/m)B—l d)’m)
R (1% =y |re=1) P
I PR
q
x ( f X . dym) . (25)
# | (f — ylree-1)

The integral in the second bracket above can be simplified by the basic inequality as fol-
lows:
XB (ym)

) l
R (| =y |"re-1) @

q
Z+X
:/ XB( )dZ
RN |Z|n+8—l

q
dy,,
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1
= /l;’ |Z|n+8—1 dZ

< w, (r1 + diam(B))H2 -
< wy((r1 +diam(B) - rl)l_g)
= w,(diam(B)) e (26)

Here, B' = B(y,) and B = B(y,) with y; = yo —x, r1 is the distance from 0 to B'. And then, by
Fubini’s theorem, we have

|u1 B(ym)ip — 1dy dx
/ / yl

- [ sl [ O aray,

" |x_ym|n+s 1

< o,(diam(B))" " ™ [" . (27)

Combining (24), (25), (26), and (27), we have

/ M < C(diam(B))"" [ul™] . (28)
5 10— L g
Applying Lemma 2 to [ ||,5, 1 <i < m -1, we get
[?],5 < 1BI7 4],
= BT [, 9
for o > 1 with 0 B C Q. Combining (21), (28), (29), we obtain
[2(®, ) ) = (L, u) @)y 5
< CIBI A E T DDl )
=CIBM T ] " e
<CIBM T (w0, [ a6 (30)
O

Finally, we give the Poincaré-type inequality for the multilinear Calderén—Zygmund op-
erator £ in a bounded convex domain. We need the following covering lemma.

Lemma 3 ([21]) There exists a cover V = {B;} for any bounded subset Q in an n-
dimensional Euclidean space R" satisfying

UB Q, ZX[B <Nxa

BieV

for a constant N > 1. And if B; N\ B; # ), then there exists a cube Q included in B; N B; with
B; UB; C NR, and the cube Q does not have to be an element in the set family V.
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Theorem 3 Let L be a multilinear Calderén—Zygmund operator defined by (19), 2, CC
Q, kernel function K satisfies condition (2) in Definition 1, u'V,...,u" e I¥ (Q, A) satisfy

loc

A-harmonic equation (1) and 2p + (p + 1 — m)n > 0, then

|| Z(u(l), e u(”’)) (x) — (Z(u(l), s u(”‘)) (x)) Q ||P:QI

= Clu®] g W], 4 ] o
Proof By Lemma 3 and Theorem 2, we have

” T(dE(u(l), e u(”‘))(x)) ’

’1!%91

< DI T(AL@, ... ) @),
BeVy ,
2_m-1 _
= Z(Cl |B|1+ "or ” u(l) ||p,UB T H u(”” K ||p,UB ” u(M) ”p,B)
BeV
< ON[u®, o [0 4], 0

where N is the constant in Lemma 3. Next, from the decomposition theorem of homotopy
operator, we get

|| Z(u(l), o u(”’)) (x) — (Z(u(l), s u(m)) (x)) Q ||17le

< || T(dz(u(l), oo u(”’))(x)) ||Pr91
=GN, q [, o 4", 00
which completes the proof of Theorem 3. d
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