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Abstract
In this paper, we introduce (h1,h2)-preinvex interval-valued function and establish the
Hermite–Hadamard inequality for preinvex interval-valued functions by using
interval-valued Riemann–Liouville fractional integrals. We obtain
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functions. Further, some examples are given to confirm our theoretical results.
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1 Introduction
Hanson [8] introduced one of the most important generalizations of convex functions as
the class of invex functions. In 1988, Weir and Mond [30] established sufficient optimal-
ity conditions and duality in nonlinear programming by using the concept of preinvex
functions. Wang et al. [28] investigated fractional integral identities for a differentiable
mapping involving Riemann–Liouville fractional integrals and Hadamard fractional in-
tegrals and gave some inequalities via standard convex, r-convex, s-convex, m-convex,
(s, m)-convex, (β , m)-convex functions, etc. Further, Işcan [10] obtained some Hermite–
Hadamard type inequalities using fractional integrals for preinvex functions. For more
generalizations of the Hermite–Hadamard inequality, see [2, 6, 16, 23].

Moore [18] computed arbitrarily sharp upper and lower bounds on exact solutions of
many problems in applied mathematics by using interval arithmetic, interval-valued func-
tions, and integrals of interval-valued functions. Moore [18] showed that if a real-valued
function ξ (x) satisfies an ordinary Lipschitz condition in X, |ξ (x) – ξ (y)| � L|x – y| for
x, y ∈ X, then the united extension of ξ is a Lipschitz interval extension in X.

Hilger [9] proposed a theory on time scales that can unify the study of the discrete and
continuous dynamical system. The prolific increase of the applications of the dynamic
equations and integral inequalities on time scales in the various fields, such as electri-
cal engineering, quantum mechanics, heat transfer, neural network, combinatorics, and
population dynamics [1], made visible to us the requirement of this theory. Agarwal et
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al. [1] discussed dynamic inequalities on time scales such as Young’s inequality, Hölder’s
inequality, Minkoswki’s inequality, Jensen’s inequality, Steffensen’s inequality, Hermite–
Hadamard inequality, Čebyšv’s inequality, and Opial type inequality. In 2010, Srivastava et
al. [24] established some general weighted Opial type inequalities on time scales. Further,
Srivastava et al. [25] presented some extensions and generalizations of Maroni’s inequal-
ity to hold true on time. Wei et al. [29] established local fractional integral analogue of
Anderson’s inequality on fractal space under some suitable conditions and also showed
that the local fractional integral inequality on fractal space is a new generalization of the
classical Anderson’s inequality. Further, Tunç et al. [27] established an identity for local
fractional integrals and derived several generalizations of the celebrated Steffensen’s in-
equality associated with local fractional integrals. For more details, we can refer to [1, 26]
and the references therein.

Bhurjee and Panda [3] defined the interval-valued function in the parametric form and
developed a methodology to study the existence of the solution of a general interval opti-
mization problem. Lupulescu [14] introduced the differentiability and integrability for the
interval-valued functions on time scales by using the concept of the generalized Hukuhara
difference. In 2015, Cano et al. [7] proposed a new Ostrowski type inequalities for gH-
differentiable interval-valued functions and obtained generalization of the class of real
functions which is not necessarily differentiable. Cano et al. [7] obtained error bounds to
quadrature rules for gH-differentiable interval-valued functions. Further, Roy and Panda
[22] introduced the concept of μ-monotonic property of interval-valued function in the
higher dimension and derived some results by using generalized Hukuhara differentiabil-
ity. For more details of interval-valued functions, we refer to [4, 5, 11, 13, 15, 22] and the
references therein.

Recently, An et al. [2] introduced (h1, h2)-convex interval-valued function and obtained
some interval Hermite–Hadamard type inequalities. Further, Budak et al. [6] established
the Hermite–Hadamard inequality for the convex interval-valued function and for the
product of two convex interval-valued functions.

Motivated by the above works and ideas, we introduce the concept of (h1, h2)-preinvex
interval-valued function and establish the Hermite–Hadamard inequality for preinvex
interval-valued functions and for the product of two preinvex interval-valued functions
via interval-valued Riemann–Liouville fractional integrals. Also, we give some examples
in the support of our theory.

2 Preliminaries
In this section, we mention some definitions and related results required for this manu-
script.

2.1 Interval arithmetic
The rules for interval addition, subtraction, product, and quotient [18] are

[X, X] + [Y , Y ] = [X + Y , X + Y ],

[X, X] – [Y , Y ] = [X – Y , X – Y ],

X.Y = {xy : x ∈ X, y ∈ Y }.
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It is easy to see that X.Y is again an interval, whose end points can be computed from

X.Y = min{XY , XY , XY , XY }

and

X.Y = max{XY , XY , XY , XY }.

The reciprocal of an interval is as follows:

1/X = {1/x : x ∈ X}. (1)

If X is an interval not containing the number 0, then

1/X = [1/X, 1/X].

X/Y = X.(1/Y ) = {x/y : x ∈ X, y ∈ Y },

where 1/y is defined by (1).
Scalar multiplication of the interval X is defined by

λX = λ[X, X] =

⎧
⎪⎪⎨

⎪⎪⎩

[λX,λX], if λ > 0,

{0}, if λ = 0,

[λX,λX], if λ < 0,

where λ ∈R.
Let RI , R+

I , and R
–
I be the sets of all closed intervals of R, sets of all positive closed

intervals of R, and sets of all negative closed intervals of R, respectively. Now, we discuss
some algebraic properties of interval arithmetic [18].

(1) (Associativity of addition) (X + Y ) + Z = X + (Y + Z), ∀X, Y , Z ∈RI .
(2) (Additive element) X + 0 = 0 + X = X , ∀X ∈RI .
(3) (Commutativity of addition) X + Y = Y + X , ∀X, Y ∈RI .
(4) (Cancellation law) X + Z = Y + Z �⇒ X = Y , ∀X, Y , Z ∈RI .
(5) (Associativity of multiplication) (X.Y ).Z = X.(Y .Z), ∀X, Y , Z ∈RI .
(6) (Commutativity of multiplication) X.Y = Y .X , ∀X, Y ∈RI .
(6) (Unit element) X.1 = 1.X = X , ∀X ∈RI .
(7) (Associate law) λ(μX) = (λμ)X , ∀X ∈RI , and ∀λ,μ ∈ R.
(8) (First distributive law) λ(X + Y ) = λX + λY , ∀X, Y ∈RI , and ∀λ ∈R.
(9) (Second distributive law) (λ + μ)X = λX + μX , ∀X ∈RI , and ∀λ,μ ∈R.

However, the distributive law does not always hold.

Example 1

X = [–2, –1], Y = [–1, 0] and Z = [1, 3].

X.(Y + Z) = [–2, –1].
(
[–1, 0] + [1, 3]

)
= [–6, 0],
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whereas

X.Y + X.Z = [–2, –1].[–1, 0] + [–2, –1].[1, 3] = [–6, 1].

2.2 Integral of interval-valued functions:
A function ξ is said to be an interval-valued function of δ on [c, d] if it assigns a nonempty
interval to each δ ∈ [c, d]

ξ (δ) =
[
ξ (δ), ξ (δ)

]
,

where ξ and ξ are real-valued functions. A partition of [c, d] is any finite ordered subset P
having the form

P : c = t0 < t1 < · · · < tn = d.

The mesh of a partition P is defined by

mesh(P) = max{ti – ti–1 : i = 1, 2, . . . , n}.

The set of all partitions of [c, d] is denoted by P([c, d]). Let P(ρ, [c, d]) be the set of all
P ∈ P([c, d]) such that mesh(P) < ρ . Choose an arbitrary point xi in the interval [ti–1, ti],
i = 1, 2, . . . , n, and we define the sum

S(ξ , P,ρ) =
n∑

i=1

ξ (xi)[ti – ti–1],

where ξ : [c, d] → RI . S(ξ , P,ρ) denotes the Riemann sum of ξ corresponding to P ∈
P(ρ, [c, d]).

Definition 1 ([21]) A function ξ : [c, d] → RI is called interval Riemann integrable (IR-
integrable) on [c, d] if there exists K ∈ RI such that, for each ε > 0, there exists ρ > 0 such
that

d
(
S(ξ , P,ρ), K

)
< ε

for every Riemann sum S of ξ corresponding to each P ∈ P(ρ, [c, d]) and independent
of the choice of xi ∈ [ti–1, ti] for 1 ≤ i ≤ n. K is called the IR-integral of ξ on [c, d] and is
denoted by

K = (IR)
∫ d

c
ξ (δ) dδ.

The collection of all (IR)-integrable functions on [c, d] is denoted by IR([c,d]).

Theorem 1 ([19]) Let ξ : [c, d] → RI be an interval-valued function such that ξ (δ) =
[ξ (δ), ξ (δ)]. ξ ∈ IR([c,d]) if and only if ξ (δ), ξ (δ) ∈ R([c,d]) and

(IR)
∫ d

c
ξ (δ) dδ =

[

(R)
∫ d

c
ξ (δ) dδ, (R)

∫ d

c
ξ (δ) dδ

]

,

where R([c,d]) denotes the R-integrable function.
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Definition 2 ([12]) Let ξ ∈ L1[c, d]. The Riemann–Liouville fractional integrals Jα
c+ξ and

Jα
d–ξ of order α > 0 with c ≥ 0 are defined by

Jα
c+ξ (x) =

1
	(α)

∫ x

c
(x – δ)(α–1)ξ (δ) dδ, x > c,

and

Jα
d–ξ (x) =

1
	(α)

∫ d

x
(δ – x)(α–1)ξ (δ) dδ, x < d,

respectively. Here, 	(α) is the gamma function and J0
c+ξ (x) = J0

d–ξ (x) = ξ (x).

Definition 3 ([15]) Let ξ : [c, d] → RI be an interval-valued function such that ξ (δ) =
[ξ (δ), ξ (δ)] and ξ ∈ IR([c,d]). The interval-valued left-sided Riemann–Liouville fractional
integral of function ξ is defined by

Jα
c+ξ (x) =

1
	(α)

(IR)
∫ x

c
(x – δ)(α–1)ξ (δ) dδ, x > c,α > 0,

where 	(α) is the gamma function.

Definition 4 ([6]) Let ξ : [c, d] → RI be an interval-valued function such that ξ (δ) =
[ξ (δ), ξ (δ)] and ξ ∈ IR([c,d]). The interval-valued right-sided Riemann–Liouville fractional
integral of function ξ is defined by

Jα
d–ξ (x) =

1
	(α)

(IR)
∫ d

x
(δ – x)(α–1)ξ (δ) dδ, x < d,α > 0,

where 	(α) is the gamma function.

Corollary 1 ([6]) If ξ : [c, d] → RI is an interval-valued function such that ξ (δ) =
[ξ (δ), ξ (δ)] with ξ (δ), ξ (δ) ∈ R([c,d]), then we have

Jα
c+ξ (x) =

[
Jα
c+ξ (x), Jα

c+ξ (x)
]

and

Jα
d–ξ (x) =

[
Jα
d–ξ (x)Jα

d–ξ (x)
]
.

Definition 5 ([30]) The set A ⊆ R
n is said to be invex with respect to a vector function

η : Rn ×R
n →R

n if

y + δη(x, y) ∈ A, ∀x, y ∈ A, δ ∈ [0, 1].

It is well known that every convex set is invex with respect to η(x, y) = x – y but not con-
versely.
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Definition 6 ([30]) The function ξ on the invex set A is said to be preinvex with respect
to η if

ξ
(
y + δη(x, y)

) ≤ (1 – δ)ξ (y) + δξ (x), ∀x, y ∈ A, δ ∈ [0, 1].

It is well known that every convex function is preinvex with respect to η(x, y) = x – y but
not conversely.

Condition C ([17]) Let A ⊆ R
n be an open invex subset with respect to η : A × A → R.

We say that the function η satisfies Condition C if, for any x, y ∈ A and any δ ∈ [0, 1],

η
(
y, y + δη(x, y)

)
= –δη(x, y),

η
(
x, y + δη(x, y)

)
= (1 – δ)η(x, y).

Note that ∀x, y ∈ A and δ ∈ [0, 1], then from Condition C we have

η
(
y + δ2η(x, y), y + δ1η(x, y)

)
= (δ2 – δ1)η(x, y).

Theorem 2 ([20]) Let ξ : A = [c, c +η(d, c)] → (0,∞) be a preinvex function on the interval
of real numbers int(A) and c, d ∈ int(A) with c < c + η(d, c). Then the following inequality
holds:

ξ

(
2c + η(d, c)

2

)

≤ 1
η(d, c)

∫ c+η(d,c)

c
ξ (x) dx ≤ ξ (c) + ξ (d)

2
. (2)

3 Main results
In this section, first, we give the definition of interval-valued h-preinvex function and dis-
cuss some special cases of interval-valued h-preinvex functions.

Definition 7 Let h : [a, b] → R be a nonnegative function, (0, 1) ⊆ [a, b] and h �= 0. Let
A ⊆ R be an invex set with respect to η : A × A → R, ξ (x) = [ξ (x), ξ (x)] be an interval-
valued function defined on A. We say that ξ is h-preinvex at x with respect to η if

ξ
(
y + δη(x, y)

) ⊇ h(δ)ξ (x) + h(1 – δ)ξ (y), ∀δ ∈ [0, 1] and ∀x ∈ A.

Now, we discuss some special cases of interval-valued h-preinvex functions.
(1) If h(δ) = 1, then we have the definition of interval-valued P-preinvex functions.
(2) If h(δ) = δ, then we have the definition of interval-valued preinvex functions.
(3) If h(δ) = δ–1, then we have the definition of interval-valued Q-preinvex functions.
(4) If h(δ) = δs with s ∈ (0, 1), then we have the definition of interval-valued s-preinvex

functions.

Theorem 3 Let h : [a, b] →R be a nonnegative function, (0, 1) ⊆ [c, d] and h �= 0. Let A be
an invex subset of R with respect to η : A × A → R and ξ be an interval-valued function
defined on A. Then ξ is h-preinvex at x if and only if ξ and ξ are h-preinvex at x with respect
to η i.e.

ξ
(
y + δη(x, y)

) ≤ h(δ)ξ (x) + h(1 – δ)ξ (y)
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and

ξ
(
y + δη(x, y)

) ≤ h(δ)ξ (x) + h(1 – δ)ξ (y), ∀δ ∈ [0, 1] and ∀x ∈ A.

Now, we establish the Hermite–Hadamard inequalities for the preinvex interval-valued
functions.

Theorem 4 Let A ⊆R be an open invex subset with respect to η : A × A →R and c, d ∈ A
with c < c + η(d, c). If ξ : [c, c + η(d, c)] → R

+
I is a preinvex interval-valued function such

that ξ (δ) = [ξ (δ), ξ (δ)]. ξ ∈ L[c, c + η(d, c)] and η satisfies Condition C and α > 0, then we
have

ξ

(

c +
η(d, c)

2

)

⊇ 	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)
]

⊇ ξ (c) + ξ (c + η(d, c))
2

⊇ ξ (c) + ξ (d)
2

. (3)

Proof Since ξ is a preinvex interval-valued function, we have

ξ

(

x +
1
2
η(y, x)

)

⊇ ξ (x) + ξ (y)
2

, ∀x, y ∈ [
c, c + η(d, c)

]
. (4)

Using x = c + (1 – δ)η(d, c), y = c + δη(d, c) and Condition C in (4), we get

ξ

(

c + (1 – δ)η(d, c) +
1
2
η
(
c + δη(d, c), c + (1 – δ)η(d, c)

)
)

⊇ ξ (c + (1 – δ)η(d, c)) + ξ (c + δη(d, c))
2

.

This implies

ξ

(

c +
1
2
η(d, c)

)

⊇ ξ (c + (1 – δ)η(d, c)) + ξ (c + δη(d, c))
2

. (5)

Multiplying by δα–1, α > 0 on both sides in (5), we have

δα–1ξ

(

c +
1
2
η(d, c)

)

⊇ δα–1

2
[
ξ
(
c + (1 – δ)η(d, c)

)
+ ξ

(
c + δη(d, c)

)]
. (6)

Integrating the above inequality on [0, 1], we get

(IR)
∫ 1

0
δα–1ξ

(

c +
1
2
η(d, c)

)

dδ ⊇ 1
2

[

(IR)
∫ 1

0
δα–1ξ

(
c + (1 – δ)η(d, c)

)
dδ

+ (IR)
∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
dδ

]

. (7)

Applying Theorem 1 in the above relation, we get

(IR)
∫ 1

0
δα–1ξ

(

c +
1
2
η(d, c)

)

dδ

=
[

(R)
∫ 1

0
δα–1ξ

(

c +
1
2
η(d, c)

)

dδ, (R)
∫ 1

0
δα–1ξ

(

c +
1
2
η(d, c)

)

dδ

]
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=
[

ξ

(

c +
1
2
η(d, c)

)

(R)
∫ 1

0
δα–1 dδ, ξ

(

c +
1
2
η(d, c)

)

(R)
∫ 1

0
δα–1 dδ

]

=
[

1
α

ξ

(

c +
1
2
η(d, c)

)

,
1
α

ξ

(

c +
1
2
η(d, c)

)]

=
1
α

ξ

(

c +
1
2
η(d, c)

)

, (8)

(IR)
∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
dδ

=
[

(R)
∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
dδ, (R)

∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
dδ

]

.

This implies

(IR)
∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
dδ

=
[

1
ηα(d, c)

(R)
∫ c+η(d,c)

c
(v – c)α–1ξ (v)dv,

1
ηα(d, c)

(R)
∫ c+η(d,c)

c
(v – c)α–1ξ (v)dv

]

=
	(α)

ηα(d, c)
[
Jα
(c+η(d,c))–ξ (c), Jα

(c+η(d,c))–ξ (c)
]

=
	(α)

ηα(d, c)
Jα
(c+η(d,c))–ξ (c). (9)

Similarly,

(IR)
∫ 1

0
δα–1ξ

(
c + (1 – δ)η(d, c)

)
dδ =

	(α)
ηα(d, c)

Jα
c+ξ

(
c + η(d, c)

)
. (10)

Using (8), (9), and (10) in (7), we have

ξ

(

c +
1
2
η(d, c)

)

⊇ 	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)
]
. (11)

Now, we prove the second pair of inequalities.
Since ξ is an interval-valued preinvex function on [c, c + η(d, c)]. Therefore,

ξ
(
c + δη(d, c)

)
= ξ

(
c + η(d, c) + (1 – δ)η

(
c, c + η(d, c)

))

⊇ δξ
(
c + η(d, c)

)
+ (1 – δ)ξ (c) (12)

and

ξ
(
c + (1 – δ)η(d, c)

)
= ξ

(
c + η(d, c) + δη

(
c, c + η(d, c)

))

⊇ (1 – δ)ξ
(
c + η(d, c)

)
+ δξ (c). (13)

Adding (12) and (13), we have

ξ
(
c + δη(d, c)

)
+ ξ

(
c + (1 – δ)η(d, c)

) ⊇ ξ (c) + ξ
(
c + η(d, c)

)
. (14)
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Multiplying by δα–1 and integrating on [0, 1], we have

(IR)
∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
dδ + (IR)

∫ 1

0
δα–1ξ

(
c + (1 – δ)η(d, c)

)
dδ

⊇ (IR)
∫ 1

0
δα–1[ξ (c) + ξ

(
c + η(d, c)

)]
. (15)

Applying Theorem 1 in the above relation, we get

(IR)
∫ 1

0
δα–1[ξ (c) + ξ

(
c + η(d, c)

)]

=
[

(R)
∫ 1

0
δα–1[ξ (c) + ξ

(
c + η(d, c)

)]
dδ, (R)

∫ 1

0
δα–1[ξ (c) + ξ

(
c + η(d, c)

)]
dδ

]

=
[
[
ξ (c) + ξ

(
c + η(d, c)

)]
(R)

∫ 1

0
δα–1 dδ,

[
ξ (c) + ξ

(
c + η(d, c)

)]
(R)

∫ 1

0
δα–1 dδ

]

=
[

1
α

[
ξ (c) + ξ

(
c + η(d, c)

)]
,

1
α

[
ξ (c) + ξ

(
c + η(d, c)

)]
]

=
1
α

[
ξ (c) + ξ

(
c + η(d, c)

)]
. (16)

Using (9), (10), and (16) in (15), we have

	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)
]

⊇ ξ (c) + ξ (c + η(d, c))
2

⊇ ξ (c) + ξ (d)
2

. (17)

From (11) and (17), we get

ξ

(

c +
η(d, c)

2

)

⊇ 	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)
]

⊇ ξ (c) + ξ (c + η(d, c))
2

⊇ ξ (c) + ξ (d)
2

.

This completes the proof. �

Example 2 Let ξ (x) = [x, 2x], η(d, c) = d – 2c, α = 1, c = 0, and d = 2, then all assumptions
of the above theorem are satisfied.

Remark 1 When η(d, c) = d – c, then the above theorem reduces to Theorem 3.4 of [6].

We prove Hermite–Hadamard type inequalities for the product of two preinvex interval-
valued functions.

Theorem 5 Let A ⊆ R be an open invex subset with respect to η : A × A → R and c, d ∈
A with c < c + η(d, c). If ξ ,φ : [c, c + η(d, c)] → R

+
I is a preinvex interval-valued function

such that ξ (δ) = [ξ (δ), ξ (δ)] and φ(δ) = [φ(δ),φ(δ)]. ξ ,φ ∈ L[c, c + η(d, c)] and η satisfies
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Condition C and α > 0, then we have

	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
φ
(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)φ(c)
]

⊇
(

1
2

–
α

(α + 1)(α + 2)

)

M
(
c, c + η(d, c)

)
+

α

(α + 1)(α + 2)
N

(
c, c + η(d, c)

)
,

where M(c, c +η(d, c)) = ξ (c)φ(c) + ξ (c +η(d, c))φ(c +η(d, c)) and N(c, c +η(d, c)) = ξ (c)φ(c +
η(d, c)) + ξ (c + η(d, c))φ(c).

Proof Since ξ and φ are two preinvex interval-valued functions for δ ∈ [0, 1], we have

ξ
(
c + δη(d, c)

)
= ξ

(
c + η(d, c) + (1 – δ)η

(
c, c + η(d, c)

))

⊇ δξ
(
c + η(d, c)

)
+ (1 – δ)ξ (c) (18)

and

φ
(
c + δη(d, c)

)
= φ

(
c + η(d, c) + (1 – δ)η

(
c, c + η(d, c)

))

⊇ δφ
(
c + η(d, c)

)
+ (1 – δ)φ(c). (19)

Since ξ (x),φ(x) ∈R
+
I , ∀x ∈ [c, d], then from (18) and (19) we have

ξ
(
c + δη(d, c)

)
φ
(
c + δη(d, c)

)

⊇ δ2ξ
(
c + η(d, c)

)
φ
(
c + η(d, c)

)
+ (1 – δ)2ξ (c)φ(c)

+ δ(1 – δ)
[
ξ
(
c + η(d, c)

)
φ(c) + ξ (c)φ

(
c + η(d, c)

)]
. (20)

Similarly,

ξ
(
c + (1 – δ)η(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)

⊇ δ2ξ (c)φ(c) + (1 – δ)2ξ
(
c + η(d, c)

)
φ
(
c + η(d, c)

)

+ δ(1 – δ)
[
ξ
(
c + η(d, c)

)
φ(c) + ξ (c)φ

(
c + η(d, c)

)]
. (21)

Adding (20) and (21), we have

ξ
(
c + δη(d, c)

)
φ
(
c + δη(d, c)

)
+ ξ

(
c + (1 – δ)η(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)

⊇ δ2[ξ (c)φ(c) + ξ
(
c + η(d, c)

)
φ
(
c + η(d, c)

)]

+ (1 – δ)2[ξ (c)φ(c) + ξ
(
c + η(d, c)

)
φ
(
c + η(d, c)

)]

+ 2δ(1 – δ)
[
ξ
(
c + η(d, c)

)
φ(c) + ξ (c)φ

(
c + η(d, c)

)]

=
[
δ2 + (1 – δ)2][ξ (c)φ(c) + ξ

(
c + η(d, c)

)
φ
(
c + η(d, c)

)]

+ 2δ(1 – δ)
[
ξ
(
c + η(d, c)

)
φ(c) + ξ (c)φ

(
c + η(d, c)

)]

=
[
2δ2 – 2δ + 1

]
M

(
c, c + η(d, c)

)
+ 2δ(1 – δ)N

(
c, c + η(d, c)

)
. (22)
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Multiplying by δα–1 on both sides and integrating on [0, 1], we have

(IR)
∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
φ
(
c + δη(d, c)

)
dδ

+ (IR)
∫ 1

0
δα–1ξ

(
c + (1 – δ)η(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)
dδ

⊇ (IR)
∫ 1

0

[
2δα+1 – 2δα + δα–1]M

(
c, c + η(d, c)

)
dδ

+ (IR)
∫ 1

0
2
[
δα – δα+1]N

(
c, c + η(d, c)

)
dδ. (23)

Since

(IR)
∫ 1

0
δα–1ξ

(
c + δη(d, c)

)
φ
(
c + δη(d, c)

)
dδ =

	(α)
ηα(d, c)

Jα
(c+η(d,c))–ξ (c)φ(c), (24)

(IR)
∫ 1

0
δα–1ξ

(
c + (1 – δ)η(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)
dδ

=
	(α)

ηα(d, c)
Jα
c+ξ

(
c + η(d, c)

)
φ
(
c + η(d, c)

)
, (25)

(IR)
∫ 1

0

[
2δα+1 – 2δα + δα–1]M

(
c, c + η(d, c)

)
dδ

=
2
α

(
1
2

–
α

(α + 1)(α + 2)

)

M
(
c, c + η(d, c)

)
, (26)

and

(IR)
∫ 1

0
2
[
δα – δα+1]N

(
c, c + η(d, c)

)
dδ =

2
(α + 1)(α + 2)

N
(
c, c + η(d, c)

)
. (27)

Using (24), (25), (26), and (27) in (23), we have

	(α)
ηα(d, c)

[
Jα
(c+η(d,c))–ξ (c)φ(c) + Jα

c+ξ
(
c + η(d, c)

)
φ
(
c + η(d, c)

)]

⊇ 2
α

(
1
2

–
α

(α + 1)(α + 2)

)

M
(
c, c + η(d, c)

)
+

2
(α + 1)(α + 2)

N
(
c, c + η(d, c)

)
. (28)

This implies

	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
φ
(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)φ(c)
]

⊇
(

1
2

–
α

(α + 1)(α + 2)

)

M
(
c, c + η(d, c)

)
+

α

(α + 1)(α + 2)
N

(
c, c + η(d, c)

)
. �

Remark 2 When η(d, c) = d – c, then the above theorem reduces to Theorem 3.5 of [6].
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Theorem 6 Let A ⊆ R be an open invex subset with respect to η : A × A → R and c, d ∈
A with c < c + η(d, c). If ξ ,φ : [c, c + η(d, c)] → R

+
I is a preinvex interval-valued function

such that ξ (δ) = [ξ (δ), ξ (δ)] and φ(δ) = [φ(δ),φ(δ)]. ξ ,φ ∈ L[c, c + η(d, c)] and η satisfies
Condition C and α > 0, then we have

2ξ

(

c +
1
2
η(d, c)

)

φ

(

c +
1
2
η(d, c)

)

⊇ 	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
φ
(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)φ(c)
]

+
(

1
2

–
α

(α + 1)(α + 2)

)

N
(
c, c + η(d, c)

)
+

α

(α + 1)(α + 2)
M

(
c, c + η(d, c)

)
,

where M(c, c + η(d, c)) and N(c, c + η(d, c)) are defined as previously.

Proof Since ξ is a preinvex interval-valued function, we have

ξ

(

x +
1
2
η(y, x)

)

⊇ ξ (x) + ξ (y)
2

, ∀x, y ∈ [
c, c + η(d, c)

]
.

Using x = c + (1 – δ)η(d, c), y = c + δη(d, c) and Condition C, we get

ξ

(

c + (1 – δ)η(d, c) +
1
2
η
(
c + δη(d, c), c + (1 – δ)η(d, c)

)
)

⊇ ξ (c + (1 – δ)η(d, c)) + ξ (c + δη(d, c))
2

.

This implies

ξ

(

c +
1
2
η(d, c)

)

⊇ ξ (c + (1 – δ)η(d, c)) + ξ (c + δη(d, c))
2

. (29)

Similarly,

φ

(

c +
1
2
η(d, c)

)

⊇ φ(c + (1 – δ)η(d, c)) + φ(c + δη(d, c))
2

. (30)

From (29) and (30), we get

ξ

(

c +
1
2
η(d, c)

)

φ

(

c +
1
2
η(d, c)

)

⊇ 1
4
[
ξ
(
c + (1 – δ)η(d, c)

)
+ ξ

(
c + δη(d, c)

)]

× [
φ
(
c + (1 – δ)η(d, c)

)
+ φ

(
c + δη(d, c)

)]

=
1
4
[
ξ
(
c + (1 – δ)η(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)
+ ξ

(
c + δη(d, c)

)
φ
(
c + δη(d, c)

)

+ ξ
(
c + (1 – δ)η(d, c)

)
φ
(
c + δη(d, c)

)
+ ξ

(
c + δη(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)]
. (31)
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Since ξ and φ ∈ R
+
I

, ∀x ∈ [c, c + η(d, c)] are two preinvex interval-valued functions for δ ∈
[0, 1], we have

ξ
(
c + (1 – δ)η(d, c)

)
φ
(
c + δη(d, c)

)

⊇ δ2ξ (c)φ
(
c + η(d, c)

)
+ (1 – δ)2ξ

(
c + η(d, c)

)
φ(c)

+ δ(1 – δ)
[
ξ
(
c + η(d, c)

)
φ
(
c + η(d, c)

)
+ ξ (c)φ(c)

]
. (32)

Similarly,

ξ
(
c + δη(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)

⊇ δ2ξ
(
c + η(d, c)

)
φ(c) + (1 – δ)2ξ (c)φ

(
c + η(d, c)

)

+ δ(1 – δ)
[
ξ
(
c + η(d, c)

)
φ
(
c + η(d, c)

)
+ ξ (c)φ(c)

]
. (33)

Adding (32) and (33), we obtain

ξ
(
c + (1 – δ)η(d, c)

)
φ
(
c + δη(d, c)

)
+ ξ

(
c + δη(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)

⊇ [
2δ2 – 2δ + 1

]
N

(
c, c + η(d, c)

)
+ 2δ(1 – δ)M

(
c, c + η(d, c)

)
. (34)

From (31) and (34), we have

ξ

(

c +
1
2
η(d, c)

)

φ

(

c +
1
2
η(d, c)

)

⊇ 1
4
[(

2δ2 – 2δ + 1
)
N

(
c, c + η(d, c)

)
+ 2δ(1 – δ)M

(
c, c + η(d, c)

)]

+
1
4
[
ξ
(
c + (1 – δ)η(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)
+ ξ

(
c + δη(d, c)

)
φ
(
c + δη(d, c)

)]
.

Multiplying by δα–1 on both sides, then integrating on [0, 1], we obtain

(IR)
∫ 1

0
ξ

(

c +
1
2
η(d, c)

)

φ

(

c +
1
2
η(d, c)

)

δα–1 dδ

⊇ 1
4

(IR)
∫ 1

0
δα–1(2δ2 – 2δ + 1

)
N

(
c, c + η(d, c)

)
dδ

+
1
2

(IR)
∫ 1

0
δα(1 – δ)M

(
c, c + η(d, c)

)
dδ

+
1
4

(IR)
∫ 1

0
ξ
(
c + (1 – δ)η(d, c)

)
φ
(
c + (1 – δ)η(d, c)

)
δα–1 dδ

+
1
4

(IR)
∫ 1

0
ξ
(
c + δη(d, c)

)
φ
(
c + δη(d, c)

)
δα–1 dδ.



Sharma et al. Journal of Inequalities and Applications         (2021) 2021:98 Page 14 of 15

This implies

2ξ

(

c +
1
2
η(d, c)

)

φ

(

c +
1
2
η(d, c)

)

⊇ 	(α + 1)
2ηα(d, c)

[
Jα
c+ξ

(
c + η(d, c)

)
φ
(
c + η(d, c)

)
+ Jα

(c+η(d,c))–ξ (c)φ(c)
]

+
(

1
2

–
α

(α + 1)(α + 2)

)

N
(
c, c + η(d, c)

)
+

α

(α + 1)(α + 2)
M

(
c, c + η(d, c)

)
.

This completes the proof. �

Remark 3 When η(d, c) = d – c, then the above theorem reduces to Theorem 3.6 of [6].

4 Conclusion
In this paper, we introduced the concept of interval-valued h-preinvex functions. We es-
tablished the Hermite–Hadamard inequalities for the preinvex interval-valued functions
and Hermite–Hadamard type inequalities for the product of two preinvex interval-valued
functions.
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