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Abstract
In the present paper, we extend the study of (Ali et al. in J. Inequal. Appl. 2020:241,
2020) by using differential equations (García-Río et al. in J. Differ. Equ. 194(2):287–299,
2003; Pigola et al. in Math. Z. 268:777–790, 2011; Tanno in J. Math. Soc. Jpn.
30(3):509–531, 1978; Tashiro in Trans. Am. Math. Soc. 117:251–275, 1965), and we find
some necessary conditions for the base of warped product submanifolds of
cosymplectic space form ˜M2m+1(ε) to be isometric to the Euclidean space Rn or a
warped product of complete manifold N and Euclidean space R.
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1 Background and motivation
In [11, 12, 17–19], the authors gave the characterizations of Euclidean spaces by analyzing
a differential equation. They have shown that a function ψ which is non-constant on a
complete manifold (�n, g) agrees with the following equation:

∇2ψ + cg = 0 (1.1)

if and only if (�n, g) is isometric to the Euclidean spaces Rn, where c is any positive con-
stant. There is another characterization by using differential equation which was discov-
ered by Río, Kupeli, and Unal [12]. They demonstrated that the complete Riemannian
manifold (�n, g) is isometric to the warped product of a complete Riemannian manifold
N and an Euclidean line R with warping function θ accomplishes the differential equation

d2θ

dt2 + λ1θ = 0 (1.2)
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if and only if there exists a real-valued non-constant function ψ associated with the neg-
ative eigenvalue λ1 < 0 that has the solution of the following differential equation:

�ψ + λ1ψ = 0. (1.3)

These types of complete space classifications are extremely significant and were re-
searched by several mathematicians (see [2, 6, 9–11, 16]). For example, by using (1.1),
Al-Dayel, Deshmukh, and Belova [3] showed that a connected and complete Riemannian
manifold (�n, g) is isometric to R

n if and only if the nontrivial concircular vector field
u along the function ψ satisfies R(∇ψ ,∇ψ) = 0 or �u = 0. In [7], Chen and Deshmukh
proved that a complete Riemannian manifold admits a concurrent vector field if and only
if it is isometric to an Euclidean space by using (1.1). Similarly, in [8] it has been shown that
(�n, g) is isometric to the Euclidean space if and only if (�n, g) permits the nontrivial gra-
dient conformal vector field which is named Jacobi-type vector field. On the other hand,
Matsuyama [14] derived a characterization such that the complete totally real submanifold
�n of the complex projective space CP

n with bounded Ricci curvature admits a function
ψ satisfying (1.3) for λ1 ≤ n, then �n is isometric to the hyperbolic space component that
is connected if (∇ψ)x = 0 or it is isometric to the warped product of the complete Rieman-
nian manifold and the Euclidean line if ∇ψ is non-vanishing, where the warping function
θ on R ensures equation (1.2). Also, similar results have been obtained for generalized
Sasakian space forms by Jamali and Shahid [13].

In the present paper, by using the Chen–Ricci inequality which was derived in [4], and
influenced by the studies in [1–3, 6, 13], we derive similar characterization for C-totally
real warped product submanifolds of cosymplectic space forms as rigidity theorems.

2 Notations and formulas
The almost contact metric manifold (˜M, g) with Riemannian metric g satisfies the condi-
tions

φ2 = –I + ξ ⊗ η,

η(ξ ) = 1, φ(ξ ) = 0, η ◦ φ = 0,

g(φW1,φW2) = g(W1, W2) – η(W1)η(W2),

η(W1) = g(W1, ξ ),

for the almost contact structure (φ,η, ξ ) and ∀ W1, W2 ∈ �(T ˜M). The manifold ˜M2m+1 is
defined to be a cosymplectic manifold if the following relation holds:

(˜∇W1φ)W2 = 0

for every W1, W2 ∈ �(T ˜M), where ˜∇ denotes the Riemannian connection with concern
of the metric g . A cosymplectic space form is the cosymplectic manifold considering the
constant φ-sectional curvature ε, it is also defined as ˜M2m+1(ε); see [Eq. (6.2) in [5]], where
the Riemannian curvature tensor of ˜M2m+1(ε) is defined in detail.

In case the structure field ξ is perpendicular to the submanifold �n in ˜M2m+1(ε), �n is
a C-totally real submanifold of ˜M2m+1(ε); also this case φ maps any tangent space of �n
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into its correspondent to the normal space (see [3, 5]). Now, we remember the Bochner
formula for a differential function on a Riemannian manifold �n, that is, ψ : �n → R, we
have

1
2
�|∇ψ |2 = Ric�n (∇ψ ,∇ψ) +

∣

∣Hess(ψ)
∣

∣

2 + g
(∇(�ψ),∇ψ

)

(2.1)

such that the Ricci tensor of �n is denoted by Ric. Now, let ψ be a differential function
defined on �. Thus, the gradient ∇f is given as follows:

(i) g(∇ψ , X) = Xψ , and (ii) ∇ψ =
n

∑

i=1

ei(ψ)ei. (2.2)

The Laplacian �ψ of ψ is also given by

�ψ =
n

∑

i=1

{

(∇ei ei)ψ – ei
(

ei(ψ)
)}

= –
n

∑

i=1

g(∇ei gradψ , ei) = – traceHess(ψ). (2.3)

Theorem 2.1 (Green’s theorem [20]) Let � be a compact oriented Riemannian manifold
without boundary, and let ψ be a differential function, then the following formula holds:

∫

M
�ψ dV = 0,

where dV denotes the volume of �.

3 The main results
To prove our main result, the next lemma which is proved in [4], is stated.

Lemma 3.1 ([4]) Suppose that ˜M2m+1(ε) is a cosymplectic space form, and let � : �n = B×f

F −→ ˜M2m+1(ε) be a B-minimal C-totally real isometric immersion of a warped product
submanifold �n into ˜M2m+1(ε). Then the Ricci inequality is given by

Ric(X) + q� ln f ≤ n2

4
‖H‖2 + q‖∇ ln f ‖2 +

ε

4
{pq + n – 1} (3.1)

for every unit vector X ∈ Tx�
n, where p = dimB and q = dimF. The qualities in the above

inequality have been discussed in detail in [4].

The next compositions will be used to the end of this paper: ‘CSF’ as cosymplectic space
form, ‘WF’ as warping function, and ‘WPS’ as warped product submanifold. More pre-
cisely, we give the next theorem.

Theorem 3.1 Let � : �n = B ×f F −→ M
2m+1(ε) be a B-minimal C-totally real isometric

immersion of the complete WPS �n into the CSF M
2m+1(ε) such that Ricci curvature is

bounded below by a positive constant K > 0. Then B is isometric to an Euclidean space Rp

if the following equality holds:

(λ1 + q)K = λ1

{

qλ1

p
+

n2

4
‖H‖2 +

ε

4
(pq + n – 1)

}

, (3.2)

where f : B−→ R is a real-valued function and called a warping function.
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Proof In particular, ψ = ln f such that f : B −→R and Eq. (3.1) gives

Ric(X) + q�ψ ≤ n2

4
‖H‖2 + q‖∇ψ‖2 +

ε

4
{pq + n – 1}.

Assuming that the Ricci curvature is bounded below with any positive constant K > 0, that
is, Ric(X) ≥ K , we have

K + q�ψ ≤ n2

4
‖H‖2 + q‖∇ψ‖2 +

ε

4
{pq + n – 1}. (3.3)

One of the most famous results connecting the curvature and topology of the complete
Riemannian manifold �n is the famous theorem of Myers [15], which states that if the
Ricci curvature with regard to unit vectors on �n is bounded with a positive constant
K > 0, then �n is compact. This implies that �n is compact, then taking integration (3.3)
and using Green’s lemma, we find that

Vol
(

�n)K ≤ n2

4

∫

�n
|H|2 dV + q

∫

�n
|∇ψ |2 dV +

∫

�n

ε

4
(pq + n – 1) dV .

This can be written as

∫

�n
|∇ψ |2 dV ≥ K

q
Vol

(

�n) –
n2

4q

∫

�n
|H|2 dV –

1
q

∫

�n

ε

4
(pq + n – 1) dV . (3.4)

On the other hand, we have

∣

∣Hess(ψ) – tI
∣

∣

2 =
∣

∣Hess(ψ)
∣

∣

2 + t2|I|2 – 2tg
(

I, Hess(ψ)
)

,

which leads to the following: g(Hess(ψ), I∗) = tr(I∗ Hess(ψ)) = trHess(ψ) = –�ψ and (2.3)

∣

∣Hess(ψ) – tI
∣

∣

2 = 2t�ψ + t2p +
∣

∣Hess(ψ)
∣

∣

2.

Substituting t = λ1
p and integrating the preceding equation with respect to the volume

element dV , we obtain

∫

�n

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV =
∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV +
∫

�n

λ2
1

p
dV . (3.5)

Applying the integration in Bochner formula (2.1) with the fact that �ψ = λ1ψ , we have

∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV = –λ1

∫

�n
|∇ψ‖2 dV –

∫

�n
Ric(∇ψ ,∇ψ) dV . (3.6)

Combining Eqs. (3.5) and (3.6), we derive

∫

�n

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV =
∫

�n

λ2
1

p
dV – λ1

∫

�n
|∇ψ‖2 dV –

∫

�n
Ric(∇ψ ,∇ψ) dV .



Ali et al. Journal of Inequalities and Applications         (2021) 2021:85 Page 5 of 9

As we assumed that Ric(∇ψ ,∇ψ) ≥ K for K > 0, then we proceed to the next expression

∫

�n

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV ≤
∫

�n

λ2
1

p
dV – λ1

∫

�n
|∇ψ‖2 dV – K Vol

(

�n).

Inserting Eq. (3.4) into the above equation, we derive

∫

�n

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV ≤
∫

�n

λ2
1

p
dV –

∫

�n

(

λ1K
q

+ K
)

dV

+
λ1n2

4q

∫

�n
|H|2 dV +

λ1

q

∫

�n

ε

4
(pq + n – 1) dV . (3.7)

If (3.2) is satisfied, then (3.7) implies that

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

= 0.

Hence, we get

Hess(ψ)(V , V ) = cg(V , V )

for any V ∈ �(B) with constant c = λ1
p . Therefore, by implementing Tashiro theorems [17,

19], we analyze that B is isometric to an Euclidean space R
p. �

The next result comes from the motivation by the study of Río, Kupeli, and Unal [12].
We prove the following.

Theorem 3.2 Let � : �n = B ×f F −→ M
2m+1(ε) be a B-minimal C-totally real isometric

immersion of a complete WPS �n into the CSF M
2m+1(ε) such that the Ricci curvature is

bounded below by a positive constant K > 0 and satisfies the following assumption:

∣

∣∇2ψ
∣

∣

2 =
λ1

4pq
{

ε(1 – pq – n) + 4K – n2|H|2} (3.8)

for λ1 < 0. Then B is isometric to the warped product of the form R×θ N with the warping
function θ satisfying the following differential equation:

d2θ

dt2 + λ1θ = 0.

Proof Let us define the following equation with ψ = ln f , we have

∣

∣tψI + Hess(ψ)
∣

∣

2 =t2(ψ)2|I|2 +
∣

∣Hess(ψ)
∣

∣

2 + 2tψg
(

I, Hess(ψ)
)

.

However, it is known that |I|2 = trace(II∗) = p, also g(Hess(ψ), I∗) = tr(I∗ Hess(ψ)) =
trHess(ψ) = –�ψ from (2.3). Then the preceding equation takes the form

∣

∣tψI + Hess(ψ)
∣

∣

2 =
∣

∣Hess(ψ)
∣

∣

2 + pt2(ψ)2 – 2tψ�ψ .
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If ψ is an eigenfunction associated with the eigenvalue λ1 such that �ψ = λ1ψ with im-
plemented integration, then we get the following from the preceding equation:

∫

�n

∣

∣tψI + Hess(ψ)
∣

∣

2 dV =
∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV +
∫

�n

(

pt2 – 2tλ1
)

(ψ)2 dV . (3.9)

On the other hand, we obtain

�
ψ2

2
= ψ�ψ – |∇ψ |2.

Applying Green’s theorem along with �ψ = λ1ψ , we arrive at
∫

�n
(ψ)2 dV =

1
λ1

∫

�n
|∇ψ |2 dV . (3.10)

From (3.9) and (3.10), we find that

∫

�n

∣

∣Hess(ψ) + tψI
∣

∣

2 dV =
∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV +
∫

�n

(

pt2

λ1
– 2t

)

|∇ψ |2 dV . (3.11)

In particular, t = λ1
p in (3.11), and taking integration, we get

∫

�n

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV =
∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV –
λ1

p

∫

�n
|∇ψ |2 dV . (3.12)

Again taking integration on (3.1) and involving Green’s theorem, we have

∫

�n
RicM(X) dV ≤ n2

4

∫

�n
|H|2 dV + q

∫

�n
|∇ψ |2 dV +

∫

�n

ε

4
(pq + n – 1) dV . (3.13)

From (3.12) and (3.13), we derive

1
q

∫

�n
RicM(X) dV ≤ n2

4q

∫

�n
|H|2 dV –

p
λ1

∫

�n

∣

∣

∣

∣

Hess(ψ) +
λ1

n
ψI

∣

∣

∣

∣

2

dV

+
p
λ1

∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV +
∫

�n

ε

4

(

p + 1 +
p – 1

q

)

dV .

As we considered that the Ricci curvature is bounded Ric(X) ≥ K as K > 0, thus the pre-
ceding equation implies

∫

�n

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV ≤ n2λ1

4pq

∫

�n
|H|2 dV +

∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV –
λ1

pq

∫

�n
K dV

+
λ1

p

∫

�n

ε

4

(

p + 1 +
p – 1

q

)

dV ,

it is equivalent to the following:

∫

�n

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV ≤
∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV

+
λ1

p

∫

�n

{

n2

4q
|H|2 +

ε

4

(

p + 1 +
p – 1

q

)

–
K
q

}

dV .
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The above equation implies that

∫

�n

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV

≤
∫

�n

{

λ1n2

4pq
|H|2 +

λ1ε

4p

(

p + 1 +
p – 1

q

)

–
λ1K
pq

+
∣

∣Hess(ψ)
∣

∣

2
}

dV . (3.14)

Our assumption (3.8) is satisfied, that is,

λ1n2|H|2 + 4pq
∣

∣Hess(ψ)
∣

∣

2 = λ1
(

ε(1 – pq – n) + 4K
)

. (3.15)

From (3.14) and (3.15), we get the following:

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

≤ 0.

The above equation gives us

Hess(ψ) +
λ1

p
ψI = 0.

Tracing the preceding equation, we derive

�ψ + λ1ψ = 0. (3.16)

According to [12], the base B is isometric to the connected components of hyperbolic
space if (∇ψ)x = 0. But (∇ψ)x = 0 leads to a contradiction as �n is a nontrivial warped
product. Hence B is isometric to the warped product of the type R ×θ N , where N is
the complete Riemannian manifold, also R is an Euclidean line. Moreover, the warping
function θ ensures the following differential equation:

d2θ

dt2 + λ1θ = 0.

This proof is completed. �

For the minimality case, that is, ‖H‖2 = 0, we give the following corollary.

Corollary 3.1 Let 
 : �n = B ×f F −→ M
2m+1(ε) be a C-totally real minimal isometric

immersion of a complete WPS �n into the CSF M
2m+1(ε) such that the Ricci curvature is

bounded below of a positive constant K > 0 which satisfies the condition

(λ1 + q)K = λ1

{

qλ1

p
+

ε

4
(pq + n – 1)

}

.

Then B is isometric to an Euclidean space Rp.

We give the following corollary by using Theorem 3.2.
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Corollary 3.2 Let � : �n = B×f F −→M
2m+1(ε) be a C-totally real minimal isometric im-

mersion of a complete WPS �n into the CSF M
2m+1(ε) such that Ricci curvature is bounded

below of a positive constant K > 0 satisfying the assumption

∣

∣∇2ψ
∣

∣

2 =
λ1

4pq
{

ε(1 – pq – n) + 4K
}

.

Then B is isometric to the warped product of the form R×θ N with the warping function θ

satisfying differential equation (1.2).

Classifying Dirichlet energy of smooth functions is treated as an integral part in the field
of physics and engineering. Moreover, Dirichlet energy is formulated to be an equivalent
of kinetic energy. Let ψ be any real-valued smooth function on a compact manifold, then
the Dirichlet energy is defined by

E(ψ) =
1
2

∫

‖∇ψ‖2 dV . (3.17)

By using the above formula and Lemma 3.1, we give the following theorem.

Theorem 3.3 Suppose that ˜M2m+1(ε) is a cosymplectic space form, and let � : �n = B×f

F −→ ˜M2m+1(ε) be a C-totally real immersion of the warped product submanifold �n into
˜M2m+1(ε) such that the base B is minimal. Then the Dirichlet energy inequality is given by

∫

�n
Ric(X) dV ≤ n2

4

∫

�n
‖H‖2 dV + 2qE(ψ) + {pq + n – 1}

∫

�n

ε + 3
4

dV (3.18)

for every unit vector X ∈ Tx�
n, where p = dimB and q = dimF.

Proof Taking integration in Eq. (3.1) and using Green’s lemma with (3.17), we get the re-
quired result (3.18). This completes the proof of the theorem. �
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