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1 Introduction and preliminaries
Let us recall the definition of convex mappings in the classic sense: A mapping f : Z C
R” — R is called a convex mapping if for all v,v, € Z and ¢ € [0, 1],

f(tUl + (1 — t)Uz) < tf(Ul) + (1 — If)f(Uz).

Based on the convexity of mappings, many mathematicians have established different
classes of inequalities, such as the Hardy-type inequality [13], Ostrowski-type inequality
[4], midpoint-type inequality [5], trapezoidal-type inequality [29], Simpson-type inequal-
ity [32], and so on, among which the most famous is the Hermite—Hadamard inequality

f<v1+U2>S 1 /sz(t)dtfw, (1.1)
Uy — U1 Jy; 2

2

where f: L € R — R is a convex mapping, and vy, v, € K with v; < vs.

A number of interesting generalizations of (1.1) have been proposed in the theory of
mathematical inequalities. For instance, see [7-9, 18, 19, 34, 35, 37] and the references
therein. The application of (1.1) to the error estimates for interpolatory approximation
and approximate multivariate integration can be found in [10-12]. An important mathe-
matical tool concerning inequalities related to convex mappings is the Holder inequality,
which is also used widely in many other disciplines of applied mathematics.
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Theorem 1.1 (Holder inequality for sums [21]) Let a = (ay,ay,...,a,) and b = (by, by,

-1

..., by) be two positive n-tuples, and let p,o > 1 with p~' + 07! = 1. Then we have

1 1
o) (2)

Theorem 1.2 (Hélder inequality for integrals [21]) Let o > 1 and p™ + o~! = 1. If f and
w are real mappings defined on [vy, v;] and if |w|P and |f|° are integrable on [vy,v,], then

/2|w(x)f(x)|dx§(/ 2|w(x)|pdx>ﬁ(/ 2[f(x)|adx);.

A different form of Holder inequality was given as follows.

Theorem 1.3 (Power-mean integral inequality) Let o > 1. If f and w are real mappings
defined on [v1, vy] and if \w| and |w||f|® are integrable on [v1, v;], then

vy v2 -3 v2 5
/ ’w(x)f(x)’ dx < (/ ’w(x)’dx) (/ ‘w(x)Hf(x)’g dx) .

In 2019, Iscan [14] established an improved version of the Hélder inequality.

Theorem 1.4 (Hélder—Iscan integral inequality) Let o > 1 and p™' + o071 = 1. If f and w
are real mappings defined on [vy, V] and if |w|° and |f|° are integrable on [v1,v,], then

/;1112|w(x)f(x)|dx§ szUl {(/;IUZ(UZ—x)iw(x)V dx>5<[}jz(U2—x)V(x)|g dx);
+(/ 2(ac—v1)|w(x)|pdx)z(‘/ 2(x—ul)[f(x)rrdx)g}
5(/ 2|w(x)|ﬂdx)p(/ 2[f(x)|"dx)a.

In [15], a different version of Holder—Iscan inequality was provided as follows.

Theorem 1.5 (Improved power-mean integral inequality) Let o > 1. If f and w are real
mappings defined on [vy, V7] and if |w| and |w||f|° are integrable on [vy, v,], then

/ " ’w(x)f(x)‘ dx

1

v2 -z v 1
= o i o {</v1 (Us — x) | w(x)| dx) </U1 (vs = %) |[w@)|[f )| dx)
v2 - v 1
+ (/ (x - v1)|w(x)|dx) </ (x— v1)|w(x)|[f(x)|° dx) }

%) 1-1 ) o
< ([“mwlas) ([ meler )
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In the rest of this section, we review some preliminaries of (p,q)-calculus. Through-
out this paper, let [a¢,b] C R, and let p, g be two constants such that 0 < g < p < 1. The
existence of (p, q)-derivatives and (p, g)-integrals is required, and the convergence of the
corresponding series mentioned later in the proofs are assumed. Now we recall the the-
ory of (p, q)-calculus. These concepts and results related to the (p, ¢)-derivative and (p, q)-
integral are mainly due to Tung and Gév [30].

Definition 1.1 ([30]) Letf :[a,b] — R be a continuous mapping. The (p, g)-derivative of
fatx € [a, D] is defined as

_Sflpx+ (1 -p)a) —flgx + (1 - q)a)

D qf , X #d} aDp,qf(a) = jlci_l;r}ZﬂDp»qf(x)

-9 (x-a)
Example 1.1 Define the mapping f : [a,b] — R by f(x) =x?. Let 0<g<p < 1.For x #a,
we have
b 2. Prt1-pa)’—(gx+(1-g)a)
e p-q)(x-a)
_prX®+ (- (p+q))2ax+ (p+q-2)a’
x—a

=p+qx+Q2-p-qa.
For x = a, we have ,D,, ,a* = lim,_, ,(,Dp ;%) = 2a.

Definition 1.2 ([30]) Let f : [2,b] — R be a continuous mapping. If ,D,,f is (p,q)-
differentiable on [a, b], then the second-order (p,q)-derivative of f is defined as anwf
together with D, ;(.Dp4f) : [a,b] — R. Similarly, the higher-order (p, q)-derivatives of f
are defined as aDZ,qf :[a,b] — R.

Considering Example 1.1 again, for x # a, we have

aDp,q(Px +(1 _17)61)2 - qu,q(qx +(1- ‘])61)2

2 2 _
Lo = (p—q)(x—a)
_4@’x+(1-p% @+qux+u pq)a)* +p(g’x + (1 - g*)a)*
pa(p - q)*(x—a)?

=p+q.
Again, for x = a, we have an,] qa2 = limxﬁa(aD;yqxz) =p+q.

Definition 1.3 ([30]) Let f : [a,b] — R be a continuous mapping. The (p, g)-integral on
[a, b] is defined as

/ f(t)”dp’qt = (p - q)(x - ﬂ) Z pZ+1f(pZ+lx + (1 - pZ+l )ﬂ)

n=0

for x € [a, b]. Moreover, if ¢ € (a, ), then the (p, g)-integral on [c, x] is defined as

/c‘xf(t)“dp’qt:/ﬂxf(t)“dp’qt_/acf(t)adp,qt.
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Example 1.2 Define the mapping f : [a,b] — R by f(x) = x — A with a constant X € [a, b].
Let0<g<p<1.Then

b b A
/A(x—)»)adp,qxzf (x—A)adp,qx—/ (6= 1) adpgx
n qn
_(p q)(b a)z n+1 (pn+1b+(1_pn+l>a_)L>
n qn
_(p q(k a)z r1+1 <pn+lx+<1_pn+1)ﬂ_k>

b+(p+q Da-p+r)b-a)+@p+q-1)(A - a)2
pPtq

Note that when p =1 and ¢ — 17, the above integral reduces to the classic integral

b _(b-2)?
A(t—k)dt_ 7

Theorem 1.6 ([30]) Letf,g: [a,b] — R be two continuous mappings. Then

fVu)llg ) dpqu<(/ . Mu) (/ o MM);

forall x € [a,b] and p,o > 1 with p™L +o7t = 1.

In 2018, Kunt et al. [17]generalized the Hermite—Hadamard inequality to (p, g)-integrals

as follows.

Theorem 1.7 ([17]) Let f : [a,b] — R be convex and (p, q)-differentiable on [a,b]. Then

we have

qa + pb pbr(l-pla qf(a)+pf(b)
f( p+q ><p(b a)/ S @ adpqr < p+q (12

For more details on the (p, q)-integrals, we refer the interested readers to [2, 16, 27, 31].
Note that if we take p = 1 in Theorem 1.7, then we have the g-Hermite—Hadamard
inequality; for more detail, see [20, 22, 23, 25, 26]. Besides, we are also directed to
some recent work related to other type quantum integral inequalities; see, for instance,
[1, 3, 6, 24, 28, 33, 36] and the references therein.

This paper is mainly devoted to investigating (p,q)-integral inequalities via (p,q)-
calculus. For this purpose, we extend some of important integral inequalities of analysis
to (p,q)-calculus such as Hermite—Hadamard, Holder, and the power-mean integral in-
equalities. To present some applications of our main results, we establish an identity to
express the difference between the middle part and the right-hand side of the analogue
of (p,q)-Hermite—Hadamard inequality (1.2). Based on this identity, we give several es-
timates for (p, g)-integral inequalities via convexity. Meanwhile, we compare some of the
derived results in this paper, in an interesting way, with the known works.
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2 Main results

In this section, we establish several integral inequalities concerning the quantum ver-
sion of (p,q)-Hermite—Hadamard inequality, the improved (p, g)-Holder—Iscan integral
inequality, and the refinement of (p, g)-power-mean integral inequality. The first result is

as follows.

Theorem 2.1 Let f: [a,b] — R be convex and (p, q)-differentiable on [a, b, and let m be

an integer. Then we have

(p + q—p”’)a +pmb 1 p"b+(1-p™)a
f( p+q = prb-a) / S®adpax

_ b+q-p")f(a) +p"f(b)
B p+q '

Proof Using the identity Y - (1 - 1%) Z—: =1,0< g <p <1, Jensen’s inequality for infinite

sums, and Definition 1.3, we have that

f((p+q—p’”)a +p’”b)
pP+q

= a\1" [ 1" q"
=f<Z(1 ) 5)17 (p"""“ ot (1 o )a)>
n=0
= a\1" . 7" q"
= Z<1 - ;)ﬁf<p”"““ b (1 o )ﬂ>
n=0

1 "p+(1-p™)a
el S

Using Definition 1.3 and the convexity of f, we get

1 p"b+(1-p™)a
poal 0

C- q" q
Z 1 _> ( H—m+ b + (1 - H—m+ >a)
—~ ( )2 ! prt

n

Z 1- ) n( n— m+1f( (1_ nq:;+1)/(a))
n=0 p

_+q-p")f(a) +p"f(b)
pP+q

The proof is completed. g

Remark 2.1 1f we take m = 1 in Theorem 2.1, then we obtain Theorem 1.7 established by
Kunt et al. [17].
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Example 2.1 Let f(x) = x* on [1,4]. Applying Theorem 2.1 witha=1,b=4,p = %, q=
and m = 3, the left-hand side of (2.1) becomes

(P +q —p”’)a +pmb 1 p"b+(1-p"™)a
f( p+q _p’”(b—a)/ @ adna

<(1+— %)+%)2
- 1 1
2ta

For the right-hand side of (2.1), we have

1 /Pm‘”“‘f””)“ P ady gt (p+q-p")f(a) +p"f(b)
) Ja o

prb-a p+q

1 (1 1 s 47 (4 2
:zx<§—1)x(4—l)x2 ZW(WXB-'-I)
23 n=0

Gri-f)vgxe

- 1,1

2ts

65 7 33
“28 27 28

We next establish an important refinement of the (p, g)-Holder inequality.

Theorem 2.2 ((p, q)-Hoélder—Iscan integral inequality) Let y; > 1 and y;' + y; ! = L Iff

and w are real mappings on [a, b] such that |f|"* and |w|"? are integrable on [a, b], then
b
/ |W@)f (x)|] adp,gx
a

1 b 1 n %
< b_a{(/a (b )]" adp,qx) (/ (b—)|wi) pqx)
</ (x— a)[f(x |y Mx>1(/ (x— a)|w(x)| pqx)m}
= @)™ adpg W) adpgr )

Proof First, by Definition 1.3 and the discrete Holder inequality we obtain

b
/ |w(x)f ()| adp,g

7 q" T
_(p q) b “)Z n+1 ( n+1 ( pn+l)a)HW(pn+lx+ (l_pn+1>a>‘

1
3
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{(p do-ay L ( ,,:)(b—ﬂ)

:OP
qn
(5 (1= 55 o) (e (1= 55 o)
— 7"
+(p-q)b- a)gpﬂpm(b—a)

’W(pz”ﬂ (1 ) pz”)“) H
1

1
y1:| "

1

T

|:(p lChy ”)Z Z+1 (pnjl(b_a))P(ijlx‘F(1_193:)“)
— 7" (" 7" 7
) {(p_q)(b_a);p”“ (p”” (b_a)> ‘W<Wx+ (1 - p”“)a>
b
zbia{(/a & -x)|fex)|" dpqx> (/ (b - x)|w(x) Mx)
(/ (- a)|f()]" dpqx>_l(/ (@ —a)|wx)|” . ,,qx)ﬁ}.
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This completes the proof for the first part of inequality (2.2). For the second part, using
Definition 1.3 again yields that

b 7 %
7 i . { (/a (b-x) [f(x)‘y1 adp,qx> (/ﬂ (b-x) |w(x) |V2 adp g%
b

+ (f (x—cz){f(x)‘y1 adpgX

a

~
=
A~
—
=
X
|
S
=
)
Q
o
B
N——
N
—_—

| p-ab-03 ‘1"1(

1
V1]71
n]

+|(p-q)b-a) Zi ( Z}: (b—a)»/( Zj b+(1— Zi )a)
{ 2_0:19 "t ! !

x |:(p—q)(b—a)zpz+1( Z+1(b—a))‘w<1%b+ (1- 1 )a)

pn+1
(-5))
pn+

NS

|

1
1/1:| 71

IA
I‘»—l
Q
r——
1
)
|
o)
=
|
&
[
NN
>
R
TN
X (N
)
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00 n n n "1 %
|:(p q)(b— “Z n+1‘r/<p3+1b+(l_p3+l)a> :|
|o-a-0y L W( z “(1‘ z ))‘n

o prt| T\ prt pr

b i 7
:</ lf(x)|yludp,qx) (/ |w(x)| pqx) .

Thus the proof of Theorem 2.2 is completed. d

N

As a generalization of the (p, q)-Holder inequality, we give the following improvement

of (p, q)-power-mean integral inequality.

Theorem 2.3 (Improved (p, q)-power-mean integral inequality) Let y; > 1. Iff and w are
real mappings on |a, b] such that |f| and |f||w|"* are integrable on [a, b], then

/ W) ()] adpgx
= b—-a { (L (b - x) V(x)| “deq‘x> (/; (b - x) V(x)‘ ’W(x)’ adp,qx)
b 1_% b %
* </ (x—a)|f ()] ﬂdp:qx> </ (x = a)|f ()] [wix)|™ adp,qx) }
b 0
S </ lf(x)| adp,qx> </ lf(x)| |W ?C)| 19 qx) .

Proof We can easily see that inequality (2.3) holds for y; = 1. Now we suppose that y; > 1.
Using Definition 1.3 and the discrete Holder inequality, we have that

(2.3)

b
/ |w(x)f(x) | adp,gx

qn
=-q9b- a)nXO:pml (Vl+1 ( pn+l>a)
qn
{(p 26— ﬂ>Z,, ( pm>(b—a>

Y (-5
q

e (o))
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AN
SR
Tl
s
®
+
o
—
|
Ys
Tl
s
——

1
11’1

n 7 1_ 7 7
q " q q
P (p”“(b_ﬂ)> p(ﬁ””“ (1 _W>a>
x(q—l(b—a)>np(qlx+(l—q—l)a) w(qlx+<1— ql>a>‘}
Pt Pt Pt Pt Pt

1 o 4" q"
= m”(p—qxb—a);pm ((1- 25 )o-a)

1
71

Yo (e () ]
pm—l pVH-l pn+1 pn+1

1 b g/ b L
- b_a{ ( / (b—x)V(x>|adp,qx) ( [ @0l admx)

1

b -5/ b o
+ (/ (x—a)|f()| admx> (f (x - a)|[f ()| |wx)|” ﬂdp,qx) }

This completes the proof for the first part of inequality (2.3). Now let us invoke Defini-

tion 1.3 again to prove the second part. Specifically, we have

b 1—% b ;/1_1
b f a { </a b —x)lf(x)| adp,qx) (/ﬂ b —x)V'(x)i|w(x)|Vl adp,qx)

1

b -5 7 rb i
+ (/ (x—a) [f(x)| udp,qx> (/ (x—a) [f(x)| \w(x)!y1 adp,qx> }
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o0 qn q}’l qn qn
Ho-00-0% Lo (Loo-0) (Lo (1--L)a)
[ Z;Pl P ! pr
2

X[@—W%—@

X "/<pqn+lx+ <1_pqn+l>a> wl —

IA
|‘>—‘
Q
— e,
1
i)

|
_
=

|
]
1M
YR
+ =
-
—
N
X
1'- X
/N
—_

|
1IN
: X
N——
Q
N——

o0 qn 71
x (;(1_[);“1)(19_4))
%) " " p 17%
q q q
Ho-pt-aY L p( . +(1_ T )a)H
|: ,12:0:19 gt Pt
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0 qn ’1
(Sio-) |
o qn qn qn %
= [@_q)(b_ﬂ);prﬁl "/<pn+1b+ (1 - pn+1)a> ‘i|

(e (1= 5)a) |
b -5/ b o
([ Vo latoar) " ([ Yol wel sdr) "

The proof of Theorem 2.3 is completed. g

3 Applications

In this section, we present some interesting applications of the results developed in Sect. 2.
To this end, we consider the difference between the middle part and the right-hand side
of the analogue of (p,q)-Hermite—Hadamard inequality (1.2) and propose the following

lemma.

Lemma3.1 Letf :[a,b] — R betwice (p, q)-differentiable mapping on (a, b), and let aD;, qf

be continuous and integrable on [a, b). Then we have

qf (a) + pf (pb + (1 - p)a))
p+q
_pq’(b-a)

- p+q

1 Pb+(1-p*)a
S R
a

1

/ t(1 - qt)oD;, f (th + (1 - t)a) odp gt.
0

Proof From Definitions 1.1 and 1.2 we have

anwf(tb +(1-t)a)

= aDpg(aDpof (0 + (1 - t)a))
_ aDpof (pth + (1 - pt)a) — ,D,qf (qth + (1 — gt)a)

tip-q)(b-a)
_f(p*tb+ (1-p*t)a) - f(pqtb + (1 - pqt)a)
- pt(p - q)*(b - a)?

_ flpgth + (1 - pqt)a) —f(g*th + (1 - g*t)a)
qt*(p - q)*(b - a)?
_ @b+ (1-p*t)a) - (0 + 9)f (path + (1 - pqt)a) + pf (q*th + (1 - g*t)a)
pat*(p - 9)*(b - a)? ’

Page 12 of 26
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Utilizing this calculation and Definition 1.3, we have

1
/0 taD) f (th + (1 - )a) odp gt

_ /1 af p*th + (1 - p*t)a) - (p + q)f (pqtb + (1 - pqt)a) + pf (¢°th + (1 - g*t)a)
patp — q)*(b - a)?

X Odpqt
/’ qf P*th + (1 — p*t)a) — qf (pqth + (1 — pqt)a)
pat(p - q)z(b a)?
+/ pf (@*th + (1 — g*t)a) — pf (pqtb + (1 — pqt)a)
0 pat(p — q)*(b - a)*
Al b+ (- e - Yo f (G
- pa(p—q)(b - a)

| PIEA Cob+(1-20)a) - Yo f(Lrb+ (1- L
pq(p - q)(b - a)?
_af b+ (1 -pla) - fa)] + plf(a) - f(gb + (1 - q)a)]
pq(p - q)(b - a)?
_¢fwb+ (A -pla)-pflgh+(1-qg)a) + - q)f(a)
rqlp-q)(b-a)?

Odp,qt

Odp,qt

a)]

)a)]

and

1
/0 .05 f (th + (1= t)a) odpqt

) /1 af p*th + (1 - p*t)a) - (p + q)f (pqtb + (1 - pqt)a) + pf (g*th + (1 - g*t)a)
pap - q)*(b—a)?

X Odpqt
n+1 n+1 n+l n+l
Zn Opn+1f( n1b+(1_ nl)a) Zn Oerlf(q b+(1_qpn )a)
) ralp - q)(b-a)®
00 n+2 n+2 n+1 n+l
Zn:OZ ( n+1 b + ( - pn+1 )ﬂ) Zn =0 pnf( (1 - qpn )ﬂ)
+
rq(p - q)(b-a)’
n+1 n n n+2 n+1 n+1
Soe Grf b+ (1- )~ £ 308, Lof (b + (1- L))

palp - q)(b-a)
Ly S (b4 (1= £0)a) = 30580 G (L b+ (1- £)a)
palp - q)(b-a)
~ ) e Laf b+ (1 - L)a) + f(pb + (1 - pla)
ra(p —q)(b-a)’

n+l

(& —1) Yoo G (Bb +
rqp - q(b a)2

- 2f(qb+ (1~ q)a)

+
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b+ (-pla) + (1= D) Y, S (G
B pp-(b-a)?
B(E 1) Lo (Lmb + (1 - L)a) - L (g + (1 - g)a))
' 40— b ap
b+ (1 -p)a) + (1= O Ff (b + (- Fn)a) = f b+ (1= pla)]
P - )b -a?

p(r_y\| s (4 _a )L .
* (q <q 1) |:n2=(; pn+1f<pn—1 b+ <1 pn_l >ﬂ> pf(pb +(1 P)d):|
- éf(qb +(1- q)a)) /(alp-q)(b-a)?)

_u I )
= 0P -a)b f(pb+(1 pa) - z(p_q)(b_a)zf(qb+(1 9)a)

b+(1—p )a
p+q i
e %) adp,g%.
ﬁfw—mﬁi J®adpq

After suitable arrangement, we get the desired result. Thus the proof is completed. =~ O
Remark 3.1 In Lemma 3.1, choosing p = 1, we obtain Lemma 4.1 in [20].

Using Lemma 3.1, we derive the following theorem.

Theorem 3.1 Let f : [a,b] — R be twice (p, q)-differentiable mapping on (a,b), and let
p'qf be continuous and integrable on [a, b]. If |, pyqﬂ”z is convex for y, > 1 on [a,b] and

vyt + vyt =1, then we have

qf (a) + pf (pb + (1 - p)a) 1 2he(1-p
prq _Pz(b—a)/u J®) adpgx
<P6]2(b—a)2 g v, |,D? 7 4w, 02 Fb)|?]% (3.1)
== 1 WD @]+ walaD f 0] ]

L

+ QI [Wo| D2 f (@) + Ws| D2 f(B)]*] 7},

where

2 qn qn+1 Y1

Ql_(p q)Z( n+1) (l_p;ﬂl)(l_p;ﬁl) ’
n+l\ V1
Q= q) Z( n+1> ( Z}’l+l) ’

1 2 1

= = + 5
PP +r2a+pi®+q® pP+pa+qt p+q

) 1 1

CPPpa+q PP pPqrpgt g
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and

1
PP+

Proof Using Lemma 3.1, the (p, q)-Holder—Iscan integral inequality, and the convexity of
D3, f 1" on [a, b], we have

qf (a) + pf (pb + (1 - p)a) 1 p2h+(1-p)a
p+q _Pz(b—a)/ S®) adpqx

2 2 1 %

1
X (/0 1- t)t!atDﬁyqf(tb +(1- t)a) |y2 adp,qx>
1 7 7
+ (/ 221 - gt adp,qt> </ (D3 f (tb + (1 - t)a) |”? adp,qt) }
0 0
2 1
< | ([a-o-am )

1 1
x UO (1= 0¢((1 - DD f @] + t|aD;,qf(b)|y2)adp,qxi| "

1 i
+ (/ (1 - gt adp,qt>
0
1

1 72
XUO tz((l—t)|ﬂD;'qf(a)‘n+t|ﬂD[27,qf(b)|y2)adp,qti| }

1
72

We obtain the desired inequality by noting that

1 2 qn qn+1 71
fir-sa-ar - oS5 (£

p
1 oo n+1
/ tZ(l_qt)Vl adpqt = (P_q)2< Z+1> ( qn+1>
0 n=0 p

/1( 02 ,d, t= 1
0 P g pP @ P rpat @ prd

1 1 1
1-0 ,d, t= - ,
fo (1=0F adpg P pa+q®  pP+p*q+pa + gt

and

1
1
2 ,d, t= .
/0 T Py p’q+ pa? + 4P

This ends the proof. O
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Corollary 3.1 Ifwesetp =1 and q— 1~ in Theorem 3.1, then we have

f@fe) 1
‘ 5 _b—a/a flx)dx
(b_a)z 1 % 1 % V2 1 1" V2 %
=2 {<(y1+2)(3/1+3)) [ﬁv @) +EV @l ] 52

2 20 1 WP I, |
+<(V1+1)(J/1+2)(y1+3)> [QV(“)I +4V<b)|} }

In Theorem 5.2 of [20], as ¢ — 17, the authors obtained the following result.

Proposition 3.1 Let a continuous and integrable function f : [a,b] — R be twice differen-

tiable on (a,b). If |f"'|"* is convex for yo > 1 on [a,b] and y;* + y; ! = 1, then we have

b
[CHCR

<(b—a)2< 1 )%[W(a)vuzlf”(wq%
T2 \n+D0n+2) 6 '

(3.3)

Remark 3.2 Inequality (3.2) is sharper than inequality (3.3). Indeed, since the function

h:[0,00) > R, h(t) = %, k € (0, 1], is concave, we can write

MKHK:h(u)+h(v)<h(u+v>=(ﬂ+v)K (3.4)

2 2 - 2 2
for all i, v > 0. In inequality (3.4), choosing

_i Z Y2 i// Y2 _i 1/ Y2 1// Y2
n=Slr @2 Sl =@l e,

and k = i, ¥ > 1, we have

sl grer]” e Jror)”

< [tf”(ann . 2W(b)|w]%
- 12 )

Thus we obtain the following result:

(b-a)? 1 7 I TS S I
2 {<(V1+2)(y1+3)> [ﬁlf(aﬂ +E[f(b)|}

2 A T T

+<(V1+1)(V1+2)(y1+3)> [EVWI *ﬂ“’”] }

(b-a)? 1 w1 Ui o 1, m%
=2 ((V1+1)(y1+2)) (E){[ﬁv(“)’ +EV(19)|}
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N

1 1/ 2 1 /!
i@l s o]

I'l

3 (b—a>2( 1 ) (L) <i>[w<a>|w +zv“<b>|n]%
-2 n+1D(n+2) Y WASY 6

_<b—a>2( 1 )vﬁ[w<a>|n+2mb>m]r§
2 \n+Dn+2) 6 '

The upper bound for the right-hand side of the Hermite—Hadamard inequality for con-
vex mappings obtained in inequality (3.2) is shaper than that of inequality (3.3), which can
be illustrated by the following example.

Example 3.1 Considering the mapping f(x) = %3, x >0, we apply it to inequalities (3.3) anzd
(3.2). Let the right-hand sides of inequalities (3.3) and (3.2), except a common factor @,
be denoted by

Ey( ) 1 % a” + 2bv2 %
ARE _<(y1+1)()/1+2)) [ 6 ]

and

£ )_{(___1___>%[gﬂn+g¢nyv
Y= NN+ 20m+3)) (12 12

2 %inzﬂq
+((V1+1)(V1+2)(7/1+3)) [121/1 +4b '

Next, let us compare E;(y1, y2) with E5(y4, ¥2). For y» > 2 with y = %, a=2,and b =5,

from Fig. 1 we see that Ex(y1,)») is a sharper error bound than E;(y1, y2). Therefore it
reveals that the result of Corollary 3.1 is sharper than that of Proposition 3.1.

The next result deals with the other case where |an,] qf |2 is convex for y; > 1.

0.81 1
0.8 \
0.79 F

0.78

Figure 1 Error curves of £y and £, on the variable y»
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Theorem 3.2 Let f : [a,b] — R be twice (p, q)-differentiable mapping with (a, b), and let
an,yqf be continuous and integrable on [a, b]. IflﬂwafP’2 is convex for v, > 1 on [a, b] and

yit+ vyt =1, then we have

qf (@) + pf (pb + (1 - p)a) 1 P2br(1-pP)a
p+q T pb-a) /a S () adpqx

2 bh— 2 1 1
< ’%{x{l [ aD2 f@ + Aol f(B)] ]
1
+ X7 [AaleD2 f@| + As|D2 f(B))?]7 ),

where

o no\ Y1+l n n+l\ 71
q q q
t-o-0X () (-5m)(-5m)
; pn+1 pn+l pn+l
o qn V1+2 qn+1 71
XZZ(p_q) ( > 1_ ’
; pn+1 pn+l

-2 1
_pra-z,

Al B) 27
prt+tq p +pqt+q
1 1
Ar= T2 2’
ptq p t+tpqgt+q
and
1
3= 55—
Pr+pg+q*

Proof By Lemma 3.1, the (p,q)-Holder—Iscan integral inequality, and the convexity of
|51D1127,qf|1’2 on [a, b] we have

’qf(a)+pf(pb+(1—p)a))
p+q

2(b — a)? 1 +
< u (/ (1 _ t)tl/l(l _ qt)}/l adp,qt) "
pt+q 0

1 p*o+(1-pPa
Foal e

1
Y2

1
x (/ (1—t)|aD;’qf(tb+(1—t)a)|nadp,qx>
0
1 % 1 1
i (f (1 - gt adp,qt> (/ taD} f (th + (1 - t)a) | adp,qt> " }
0 0

200 _ )2 1
pab-ay { ( / (15 (1 - gty ﬂdp,qt) n
ptq 0

1

1 Y2
. [ /0 (A=D1 - DD f @[ + D2 fB)]) udp,qx]

1 ) i
+ / (1 —gt)" odp gt
0
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1

|:/ t(1-1)| quf(a)|y2+t| quf(b)|”2) pqt]n}'

We obtain the desired inequality by noting that

1 0 qn v+l qn qn+1 71
fo (l_t)tn(l_qt)n“d”'qt:(p_q)nz_;(p”“) (l_p"“)<l_p"“> ’
o q" Y1+2 qn+1 71
[ a8 () (-5
7+ pr

n=|

-2 1
/(1 )?,.d Mt_p+q +— 5
p+q ptpgt+q
1 1

(1=8)t,dy it = - ,
/0 P prq PP pg+ g

and

1
1
A3 = lf2 d,,t=——"—¥—.
3[0 TP P2 pg+ g

This ends the proof.

Corollary 3.2 Ifweselect p =1 and g — 1~ in Theorem 3.2, then we have

b b
‘f(a);f( )_bia/ o) dx

NS

b 2
<t Lnea| [Glr@p o]

1

1 ! 2 1 1/ E
e gror])

where B(x,y) = fol 11 -tYtde, x>0,y >0.

Theorem 3.3 Let f : [a,b] — R be twice (p, q)-differentiable mapping with (a, b), and let

quwf be continuous and integrable on [a, b]. If|,1D127,qf|V is convex for y > 1 on [a, b], then

we have

‘Zf(ﬂ) +pf(pb +(1 —p)a) 1 P2h+(1-p2)
p+q - pPb-a) /a S %) adpgx

2 b— 2 _1 1
< PLEC (o) [l f @]+ Hal D 0]

+ 0y 7 [Ha]uD2 f(@)] + HalaDLf ®)']7 ),

(3.5)

where

i qn 2 qn 2 qn+1 Y
e a B (- 5 -5
= p 1 p+1 pnl
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3 7n n+l\ vV
oS5 (- 505

ot qn 4 qVH-l 12
oS5
n=0

le+
1 1
p+q P +pq+q*’

and

. 1
CpPrpg+qt

Proof First, we suppose that y = 1. Using the convexity of |“D;'qf | on [a,b] and Lemma 3.1,

we have

af (@) + pf b + (1 - p)a))

1 2b+ —p
Pb—a) / S5 adpa

p+q
b
—pq;wa /|f(1 q0)| oDy of (tb + (1 = )a)| odp gt
b
5%/{) |61 - q8)|[(1 = )] D2 f @)] + t]aD2 f(B)|] 0dpgt

) 2q2(b—6l)2
@ +a)p* +pg+q*)p® +p>q + pg® + ¢°)
X[p4+2p3q+pq +pq° - p* - p*q-q* D
pP+q

@]+ o2 )]

This ends the proof for the case of y = 1. Second, we suppose that y > 1. Using the im-
proved (p, q)-power-mean integral inequality and the convexity of |aD;yqf |” on [a,b], we
have

qf (@) + pf (pb + (1 — p)a) 1 2pi(1-p
’ rP+q " p2b-a) /ﬂ f&) adp g%

2(b — a)? 1 1-1
Su{(/ (l_t)tadp,qt) ’
pb+q 0
1

1 v
x(/o(l—t)t(l—qt)”| 2 S(th+(1-10a)|”, pqx>

1 -1 1 1
i (/ tzadmt) ’ (f (1 - qt)” D5 f (th + (1 - t)a)|Vadp,qt) ’ }
0 0
2 _ 2 1 1-1
EIM{( / (1_t)tadp,qt) v
pt+q 0

1
. [ /0 (1= 081 - gt (- DD f@)| + D2 )] adp,qx]

1 1-1
+ (/ tzudp,qt)
0

<|=
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=

><|:/0 (1 - qt) (1= 8)|aD2 f @) +t|uD2 f(B)]") pqt]

We obtain the desired inequality by noting that

1 ) 00 qn 2 qn 2 qn+1 12
o] n 3 n n+l\ vV
2 q q q
/(; t (1 - t)(l qt)y Pqt (p q ;<pn+1> (1 B pn+1 ) <1 B pVHl) ’
s 4 qn+1 v
/(; (1 qt pqt (P q) Z( n+1> <1 - pn+1) ’

1 1
p+q pPP+pq+q*’

1
/ (1 - t)tadpyt =
0

and

12 1
£odyt=— .
‘A T P pg+q?

The proof of Theorem 3.3 is completed. g

Corollary 3.3 Ifwe takep =1 and g — 1~ in Theorem 3.3, then we have

‘f(a) / o

(b a)2 ? 1/ 14
—TKE) [(J/+3)(J/+4)Lf()i

ECl ] (3.6)

" (y+2)(y+3 (y +4)

+ <1)1_;|: 2 lf//(ﬂ)|)/
3 (v +2)(y +3)(y +4)

6 7 Y
vy e LA } }

In Theorem 5.1 of [20], as ¢ — 17, the authors obtained the following result.

Proposition 3.2 Let a continuous integrable function f : [a, b] — R be twice differentiable
on (a,b). If |f"|V is convex for y > 1 on [a, b], then we have

f(a) +f / )

Remark 3.3 Inequality (3.6) is shaper than inequality (3.7). Indeed, since the function 4 :
[0,00) = R, k(1) = ¥, k € (0,1], is concave, we can write

4 :h(u)+h<v>5h(“”>:(’“”>K (38)
2 2 2 2

_b-a)’ Ty + D@ + 2" (b))

[ } (37)
T o9y (r + Dy +2)(y +3)
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for all i, v > 0. In inequality (3.8), choosing

1/ Y 2 17
ST LA I TR T
_ 2 lf// a)|V + 6 lf//(b)
S (y 2y +3)(y +4) (v + Dy +2)(y +3)(y +4)

14

’

(y+3 (y +4)

Y

’

and k = %,y > 1, we have

XI=

1 ; e \|Y 2 oy
2[(y+3)(y+4)lf e e AL }

1

1 2 7 Y 6 17 Y ]
— b
+2[W+%W+$W+®V'm’+W+DW+$W+&W+®V(”

3 [(y DI @) + 21f”(b)|yr
L 2v+ Dy +2r+3) ]

Thus we obtain the following result:

R

(b—ﬂ)2{<1>1%|: 17 )/ 2 1/ 7]
— b
2 6 (J/+3)(J/+4)Lf()i W+DW+$W+®V(”
1 17% 2 17 Y
' <§> [(y 2 ar e/ @
6 1/ V] }
(V+1XV+ZKV+3 (v +4) V()|

(b-a)( 1 1 oy 2 § y]i
= (21%)”<y+3)(y+4>v(“)| ‘oo ana) @

2 L4 6 .
+[(V+2)(V+3>(V+4>V(“)| (y+1)(y+2)(y+3)y+4)lf()|} }

3 (b—a)Z(Lxg)[(y+1W”(a>|y+2W(b)|y]%
T o2y ol /97 (v + D(y +2)(y +3)
_(b-ap [(y DI @) + 21f"<b>v]¢

927 (y + D)y +2)(y +3) '

The upper bound for the right-hand side of the Hermite—Hadamard inequality for con-
vex mappings obtained in inequality (3.6) is better than that of inequality (3.7), as the the
following example shows.

Example 3.2 Considering the mapping f(x) = €, x > 0, we apply it to inequalities (3.7) and
(3.6). Let the right-hand sides of inequalities (3.7) and (3.6), except a common factor %
be denoted by

)

(y + 1)e™ + 2eb7 v
)

Ex(y) = — [
W= T G D+ 2y +3
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Figure 2 Error curves of £3 and £4 on the variable y

and

)
0

v

1 2

y+3)y+4)°

ay by
T3 +a° }

XI=

[ 2 e + 6 e
(y +2)(y +3)(y +4) (y + Dy +2)(y +3)(y +4)

gl

Let us compare Es(y) with E4(y). For y > 2,a =3,and b = 7, from Fig. 2 we see that E4(y)

is a shaper error bound than E3(y). Therefore it reveals that the result of Corollary 3.3 is

shaper than that of Proposition 3.2.

Finally, we get the following result dealing with the other case where | aDZ, /17 is convex

fory > 1.

Theorem 3.4 Let f : [a,b] — R be a twice (p, q)-differentiable mapping on (a, b), and let
aD;'qf be continuous and integrable on [a, b]. If|aD127,qf|V is convex for y > 1 on [a, b], then

we have

af@)+pfpb+(A-pla) 1

pP+q

p+tq-1

pb+(1-pPa
)/ f(x)adp,qx
a

prb-a

<pq%b—af{<

pt+q

pt+q

1_% 1
+(3) Tkl salo o)

ptq
where
G- 0-0 Y (£
n=0 p
.- -0 Y (£
n=0 p

R

) [G1|uD2 @] + Gl f )]

(3.9

Page 23 of 26



Yu et al. Journal of Inequalities and Applications (2021) 2021:82 Page 24 of 26

and

o n o\ Y+3 n+l\ ¥
e o B (2

7n+1
n=0 p

Proof Using Lemma 3.1, the improved (p, g)-power-mean integral inequality, and the con-
vexity of |uD12wf |” on [a, b], we have

qf (a) + pf pb + (1 — p)a) 1 p2b+(1-p?)a
’ p+q _pZ(b_a) _/(; S ) adpgx

2(b — a)? 1 1-1
([

1
x(/(1—ﬂﬂu—qﬂd#ﬁgﬁb+u—ﬂﬁﬁa@@0
0

1 -4/ 1 y
+< / L‘adp,qt> ( f ty+1(1—qt)”|aD12wf(tb+(1—t)a)|yadp,qt> }
0 0

_1
<qu(b—ﬂ)2{(19+61—1>1 v
T ptq p+q

1
Y

|—

1

1 Y
. [ [ a0 a0 (@ - oD@l + s 017) ad,,,qx]

1 1
1 Y

1-= 1 )
+<—) |:/(; tm(l“ﬂ)y((l—t>|aDZ,qf(a)|y+t|aD§,qf(b)V)adp,qt} }

pr+q

We obtain the desired inequality by noting that

EN

n
q
n+1

p

1 5 o y+1 qn 2 n+l\ ¥

(L= 0P8 (1= 1) dpgt = (- < ) <1__) (1_ ) ,
_/0 q pq (p 9 HX:(; pn+1 pn+1

1 o no\ V+2 n n+l\ v

1 -1 - )" wdypyt = (p - q) (q > (1_ 1 )(1_”1 ) ,
‘/0 q y2U4 (P q nX:(): pn+1 pn+1 pn+1

and

1 0 qn v+3 an 1%
/0 t}/+2(1—qt)y adpyqtz(p—q)Z( ) (1——) .

1 1
—~ pr pr
The proof is completed. d

Corollary 3.4 Ifwe choose p = 1 and q — 1~ in Theorem 3.4, then we have

fla)+f) 1 [°
‘ 2 b-a /a ) d

- (b-a)*

([B6 + 1Ly +I| @] + By 42,y +2|f"®)']7

1
2%y

L[BU + 2y + 2l @] + Bl + 3,y + DB ]7).
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4 Conclusion

We extend some important integral inequalities of analysis to (p, g)-calculus, which in-
clude the Hermite—Hadamard, Hé6lder, and power-mean integral inequalities. As appli-
cations, for mappings with convex absolute values of the second derivatives, we derive
certain analogue of (p, g)-Hermite—Hadamard inequalities based on the established (p, q)-
integral identity. By an interesting comparison it turns out that the results obtained in this
paper are shaper than the existing results. With these ideas and techniques developed in
this work, the interested readers can be inspired to explore this fascinating field of (p, q)-
integral inequalities.
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