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Abstract
In this paper, we establish a finiteness theorem for Lp harmonic 1-forms on a locally
conformally flat Riemannian manifold under the assumptions on the Schrödinger
operators involving the squared norm of the traceless Ricci form. This result can be
regarded as a generalization of Han’s result on L2 harmonic 1-forms.

MSC: 53C21; 53C25

Keywords: Lp harmonic 1-forms; Conformally flat; Finite index

1 Introduction
Investigating the relationship between the geometry and topology of a Riemannian man-
ifold M and the spaces of harmonic forms is one of the most important problems in dif-
ferential geometry. Thanks to the Hodge theory, it is known that when M is compact, the
space of harmonic 1-forms on M is isomorphic to its first de Rham cohomology group.
When M is noncompact, the Hodge theory is no longer applicable, and it is natural to con-
sider L2 harmonic forms. Furthermore, L2 Hodge theory holds for complete noncompact
manifolds (see, e.g., [1, 9]), just like classical Hodge theory works on the compact case.
Particularly, Li and Tam [21] showed that the theory of L2 harmonic 1-forms can be used
for understanding the topology at infinity of a complete Riemannian manifold.

Recall that a Riemannian manifold (Mm, g) of dimension m is said to be locally confor-
mally flat if it admits a coordinate covering (Uα ,ϕα) such that the map ϕα : (Uα , gα) →
(Sm, g0) is a conformal map, where g0 is the standard metric on Sm. A conformally flat Rie-
mannian manifold may be regarded as a generalization of a Riemannian surface because
every two-dimensional Riemannian manifold is locally conformally flat. However, not all
higher-dimensional manifolds have locally conformally flat structure, and giving classifi-
cation of locally conformally flat manifolds is important as well as difficult. However, under
various geometric conditions, there are substantial research results on the classification
of conformally flat Riemannian manifolds (see [2, 5, 6, 14, 18, 22, 29] for details).

For L2 harmonic forms, Lin [23] proved some vanishing and finiteness theorems for L2

harmonic 1-forms on a locally conformally flat Riemannian manifold that satisfies an in-
tegral pinching condition on the traceless Ricci tensor and for which the scalar curvature
is nonpositive or satisfies some integral pinching conditions. Dong et al. [10] proved van-
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ishing theorems for L2 harmonic p-forms on a complete noncompact locally conformally
flat Riemannian manifold under suitable conditions. Similarly, Han [16] obtained some
vanishing and finiteness theorems for L2 harmonic 1-forms on a locally conformally flat
Riemannian manifold under the assumptions on the Schrödinger operators involving the
squared norm of the traceless Ricci form. Moreover, many results showed that there is a
close correlation between the topologies of the submanifolds and L2 harmonic 1-forms;
see [3, 11, 12, 24, 30, 31] and the references therein.

The results of L2 harmonic forms make L2 theory on manifolds clearer and easier to
understand as compared to general Lp theory (see [26]). For Lp harmonic 1-forms, Han
et al. [18] obtained some vanishing and finiteness theorems for Lp p-harmonic 1-forms
on a locally conformally flat Riemannian manifold with some assumptions. Analogously,
there is substantial research indicating that the topologies of the submanifolds is closely
associated with Lp harmonic 1-forms; see [4, 7, 8, 15, 17, 19, 22] and the references therein.

Meanwhile, Lin [24] studied the relations between the index of the Schrödinger operator
L = � + m–1

m |B|2 and the topology of Mm, where B is the second fundamental form of Mm,
and Mm is a complete noncompact minimal submanifold of dimension m immersed in
Rm+n. In particular, when Mm is an m-dimensional locally conformally flat Riemannian
manifold, Han [16] focused on the Schrödinger operator L = � + |T | and investigated the
relations between it and the topological structure of Mm, where Ric, R, and T = Ric– R

m g are
the Ricci curvature tensor, the scalar curvature, and the traceless Ricci tensor of (Mm, g),
respectively.

Inspired by Han’s work [16] and the above mentioned aspects, in this paper, we inves-
tigate relations between the index of a Schrödinger operator L = � + |T | of the locally
conformally flat manifold Mm and the space of Lp harmonic 1-forms on Mm. We prove
that if the index of a Schrödinger operator is finite and

∫
M |R| m

2 dv < ∞, then for certain
p > 0, the dimension of H1(L2p(M)) is finite. This can be regarded as a generalization of
Han’s results [16] for the space of L2 harmonic 1-forms.

In this paper, we obtain the following finiteness theorem for the space of Lp harmonic
1-forms.

Theorem 1.1 Let (Mm, g), m ≥ 3, be an m-dimensional complete, simply connected, and
locally conformally flat Riemannian manifold. Assume that the index of the operator � +
|T | is finite. If

∫
M |R| m

2 dv < ∞ and p ∈ (1 –
√

1
m–1 , 1 +

√
1

m–1 ), then

dim H1(L2p(M)
)

< ∞,

where H1(L2p(M)) denotes the space of L2p harmonic 1-forms on M.

2 Preliminaries
Consider an elliptic operator L = � + Q̃ on Mm, where Q̃ is the smooth potential of it.
Let D be a relatively compact domain of Mm, and let ind(LD) be the number of negative
eigenvalues of L with Dirichlet boundary condition: Lf + λf = 0, f |∂D = 0. The index ind(L)
of L is defined by

ind(L) = sup
{
ind(LD)|D ∈ M rel. comp.

}
.
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Let (Mm, g) be complete locally flat Riemannian manifold of dimension m, and let � be
the Hodge Laplace–Beltrami operator of Mm that acts on the space of differential p̃-forms.
From the Weitzenböck formula [28] we know that

� = ∇2 – Kp̃,

where ∇2 is the Bochner Laplacian, and Kp̃ is an endomorphism depending on the cur-
vature of Mm. By choosing an orthonormal basis {θ1, . . . , θm} dual to {e1, . . . , em}, we can
express Kp̃ as

〈
Kp̃(ω),ω

〉
=

〈 m∑

j,k=1

θ k ∧ iej R(ek , ej)ω,ω

〉

for p̃-forms ω. In particular, when ω is a 1-form and ω	 expresses the vector field dual to
ω, we have

〈
K1(ω),ω

〉
= Ric

(
ω	,ω	

)
.

We also need the following lemmas, which are important tools in proving our result.

Lemma 2.1 ([23]) Let (Mm, g) be an m-dimensional complete Riemannian manifold. Then

Ric ≥ –|T |g –
|R|√

m
g

in the sense of quadratic forms, where Ric, R, and T = Ric – R
m g are the Ricci curvature

tensor, the scalar curvature, and the traceless Ricci tensor of (Mm, g), respectively.

A simply connected and locally conformally flat manifold Mm (m ≥ 3) has a conformal
immersion into Sm. From [13] we know that the Yamabe constant of Mm satisfies Q(Mm) =

Q(Sm) = m(m–2)ω
2
m
m

4 , where ωm is the volume of the unit sphere in Rm. Hence we have the
inequality

Q
(
Sm)

(∫

M
f

2m
m–2

)m–2
m

≤
∫

M
|∇f |2 +

m – 2
4(m – 1)

∫

M
Rf 2 (1)

for any f ∈ C∞
0 (M). By using (1) Lin [23] obtained the following result.

Lemma 2.2 ([23]) Let (Mm, g) (m ≥ 3) be an m-dimensional complete, simply connected,
and locally conformally flat Riemannian manifold with R ≤ 0 or

∫
M |R| m

2 dv < ∞. Then we
have the Sobolev inequality

(∫

M
f

2m
m–2

)m–2
m

≤ C(m)
∫

M
|∇f |2 (2)

for some constant C(m) > 0, which is equal to Q(Sm)–1 in the case of R ≤ 0, where f ∈
C∞

0 (M). In particular, M has infinite volume.
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Lemma 2.3 ([20, 25]) Let E be a finite-dimensional subspace of L2p harmonic q̄-forms on
an m-dimensional complete noncompact Riemannian manifold M for any p > 0. Then there
exists η ∈ E such that

(dim E)min{1,p}
∫

Bx(r)
|η|2p

≤ Vol
(
Bx(r)

)
min

{(
m
q̄

)

, dim E

}min{1,p}
· sup

Bx(r)
|η|2p

for any x ∈ M and r > 0.

3 Proof of Theorem 1.1
Let ω be a nontrivial L2p harmonic 1-form on M, that is,

�ω = 0 and
∫

M
|ω|2p < ∞.

By Lemma 2.1 and the Weitzenböck formula [28] we have

1
2
�|ω|2 = 〈�ω,ω〉 + |∇ω|2 + Ric

(
ω	,ω	

)≥ |∇ω|2 – |T ||ω|2 –
|R|√

m
|ω|2. (3)

Moreover,

1
2
�|ω|2 = |ω|�|ω| +

∣
∣∇|ω|∣∣2. (4)

From (3), (4), and the refined Kato inequality |∇ω|2 ≥ m
m–1 |∇|ω||2 (see [27]) it follows that

|ω|�|ω| ≥ 1
m – 1

∣
∣∇|ω|∣∣2 – |T ||ω|2 –

|R|√
m

|ω|2. (5)

Furthermore |∇|ω|p|2 = p2|ω|2p–2|∇|ω||2. Combining with (5), we have

|ω|p�|ω|p

= |ω|pp(p – 1)|ω|p–2∣∣∇|ω|∣∣2 + p|ω|p|ω|p–1�|ω|

= p(p – 1)
1
p2

∣
∣∇|ω|p∣∣2 + p|ω|2p–2|ω|�|ω|

≥ p – 1
p

∣
∣∇|ω|p∣∣2 + p|ω|2p–2

[
1

m – 1
∣
∣∇|ω|∣∣2 – |T ||ω|2 –

|R|√
m

|ω|2
]

=
(

1 –
1
p

+
1

p(m – 1)

)
∣
∣∇|ω|p∣∣2 – p|T ||ω|2p –

p|R|√
m

|ω|2p,

that is,

|ω|p�|ω|p ≥
(

1 –
1
p

+
1

p(m – 1)

)
∣
∣∇|ω|p∣∣2 – p|T ||ω|2p –

p|R|√
m

|ω|2p. (6)
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Since the operator � + |T | has finite index, there exists a large enough r0 > 0 such that

∫

M\Bx0 (r0)
|T |u2 ≤

∫

M\Bx0 (r0)
|∇u|2 (7)

for any fixed point x0 and any u ∈ C∞
0 (M\Bx0 (r0)). Choose r > r0 +1 and η ∈ C∞

0 (M\Bx0 (r0))
such that

η =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 on Bx0 (r0) ∪ (M\Bx0 (2r)),

ρ(x0, x) – r0 on Bx0 (r0 + 1)\Bx0 (r0),

1 on Bx0 (r)\Bx0 (r0 + 1),
2r–ρ(x0,x)

r on Bx0 (2r)\Bx0 (r),

where ρ(x0, x) denotes the geodesic distance from x0 to x on M. Then, choosing u = η|ω|p
in (7) and noting that ω ∈ H1(L2p(M)), we get

∫

M\Bx0 (r0)
|T |η2|ω|2p ≤

∫

M\Bx0 (r0)

∣
∣∇(

η|ω|p)∣∣2. (8)

Multiplying inequality (6) by η2 and integrating over M\Bx0 (r0), we get

∫

M\Bx0 (r0)
η2|ω|p�|ω|p

≥
∫

M\Bx0 (r0)
η2
(

1 –
1
p

+
1

p(m – 1)

)
∣
∣∇|ω|p∣∣2 –

∫

M\Bx0 (r0)
pη2|T ||ω|2p

–
∫

M\Bx0 (r0)
η2 p|R|√

m
|ω|2p,

that is,

∫

M\Bx0 (r0)
η2|ω|p�|ω|p + p

∫

M\Bx0 (r0)
η2|T ||ω|2p

+
p√
m

∫

M\Bx0 (r0)
|R|η2|ω|2p

≥
(

1 –
1
p

+
1

p(m – 1)

)∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2. (9)

From integration by parts and (9) we get

–2
∫

M\Bx0 (r0)
η|ω|p〈∇|ω|p,∇η

〉
+ p

∫

M\Bx0 (r0)
η2|T ||ω|2p

+
p√
m

∫

M\Bx0 (r0)
|R|η2|ω|2p

≥
(

2 –
1
p

+
1

p(m – 1)

)∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2. (10)
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From (2), (8), (10), and Hölder’s inequality we can deduce that

(

2 –
1
p

+
1

p(m – 1)

)∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2

≤ –2
∫

M\Bx0 (r0)
η|ω|p〈∇|ω|p,∇η

〉
+ p

∫

M\Bx0 (r0)
η2|T ||ω|2p

+
p√
m

∫

M\Bx0 (r0)
|R|η2|ω|2p

≤ –2
∫

M\Bx0 (r0)
η|ω|p〈∇|ω|p,∇η

〉
+ p

∫

M\Bx0 (r0)
η2|T ||ω|2p

+
p√
m

(∫

suppη

|R| m
2

) 2
m
(∫

M\Bx0 (r0)

(
η|ω|p) 2m

m–2

)m–2
m

≤ –2
∫

M\Bx0 (r0)
η|ω|p〈∇|ω|p,∇η

〉
+ p

∫

M\Bx0 (r0)
η2|T ||ω|2p

+
p√
m

C(m)ϕ(η)
∫

M\Bx0 (r0)

∣
∣∇(

η|ω|p)∣∣2

≤ 2
∫

M\Bx0 (r0)
η|ω|p∣∣∇|ω|p∣∣|∇η| + p

∫

M\Bx0 (r0)

∣
∣∇(

η|ω|p)∣∣2

+
p√
m

C(m)ϕ(η)
∫

M\Bx0 (r0)

∣
∣∇(

η|ω|p)∣∣2

= 2
∫

M\Bx0 (r0)
η|ω|p∣∣∇|ω|p∣∣|∇η|

+
(

p +
p√
m

C(m)ϕ(η)
)∫

M\Bx0 (r0)

∣
∣∇(

η|ω|p)∣∣2, (11)

where ϕ(η) = (
∫

suppη
|R| m

2 ) 2
m . By the Cauchy–Schwarz inequality and (11) we get

(

2 –
1
p

+
1

p(m – 1)

)∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2

≤ ε

∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2 +

1
ε

∫

M\Bx0 (r0)
|ω|2p|∇η|2

+
(

p +
p√
m

C(m)ϕ(η)
){

(1 + ε)
∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2

+
(

1 +
1
ε

)∫

M\Bx0 (r0)
|ω|2p|∇η|2

}

=
[

ε +
(

p +
p√
m

C(m)ϕ(η)
)

(1 + ε)
]∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2

+
[

1
ε

+
(

p +
p√
m

C(m)ϕ(η)
)(

1 +
1
ε

)]∫

M\Bx0 (r0)
|ω|2p|∇η|2
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for any ε > 0. Together with this inequality, we have the inequality

A
∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2 ≤ B

∫

M\Bx0 (r0)
|ω|2p|∇η|2, (12)

where A and B are two constants defined as

A =
(

2 –
1
p

+
1

p(m – 1)

)

–
(

p +
p√
m

C(m)ϕ(η)
)

(1 + ε) – ε (13)

and

B =
1
ε

+
(

p +
p√
m

C(m)ϕ(η)
)(

1 +
1
ε

)

.

According to the hypothetical condition
∫

M |R| m
2 < ∞, there exists a large enough r0 such

that

∫

M\Bx0 (r0)
|R| m

2 <
(√

m[1 – (m – 1)(p – 1)2]
p2(m – 1)C(m)

)m
2

, (14)

where p ∈ (1–
√

1
m–1 , 1+

√
1

m–1 ) by (13) and (14). From (14) and the definition of η it follows
that

ϕ(η) =
(∫

suppη

|R| m
2

) 2
m

<
√

m[1 – (m – 1)(p – 1)2]
p2(m – 1)C(m)

. (15)

By (13) and (15) we have

A =
(

2 –
1
p

+
1

p(m – 1)

)

–
(

p +
p√
m

C(m)ϕ(η)
)

(1 + ε) – ε > 0,

for ε small enough. Therefore from (12) we have

∫

M\Bx0 (r0)
η2∣∣∇|ω|p∣∣2 ≤ D(m, p)

∫

M\Bx0 (r0)
|ω|2p|∇η|2, (16)

where D(m, p) is a positive constant depending only on m and p.
On the other hand, applying the Sobolev inequality (2) to the term η|ω|p, we have

(∫

M\Bx0 (r0)

(
η|ω|p) 2m

m–2

)m–2
m

≤ C(m)
∫

M\Bx0 (r0)

∣
∣∇(

η|ω|p)∣∣2

≤ 2C(m)
∫

M\Bx0 (r0)

[
η2∣∣∇|ω|p∣∣2 + |ω|2p|∇η|2], (17)



Li et al. Journal of Inequalities and Applications         (2021) 2021:81 Page 8 of 13

where C(m) > 0 is the Sobolev constant. From (16) and (17) we have

(∫

M\Bx0 (r0)

(
η|ω|p) 2m

m–2

)m–2
m

≤ 2C(m)D(m, p)
∫

M\Bx0 (r0)
|ω|2p|∇η|2 + 2C(m)

∫

M\Bx0 (r0)
|ω|2p|∇η|2

= C1(m, p)
∫

M\Bx0 (r0)
|ω|2p|∇η|2, (18)

where C1(m, p) = C(m)(1 + D(m, p)) is a positive constant depending only on m and p.
From here the proof mainly follows by the standard techniques (e.g., see [3]). Applying
the definition of η to inequality (18), we get

(∫

Bx0 (r)\Bx0 (r0+1)

(|ω|p) 2m
m–2

)m–2
m

≤ C2(m, p)
∫

Bx0 (r0+1)\Bx0 (r0)
|ω|2p +

C2(m, p)
r2

∫

Bx0 (2r)\Bx0 (r)
|ω|2p,

where C2(m, p) = C(m)(1 + D(m, p)) is a positive constant depending only on m and p.
Then, letting r → ∞ and noting that |ω| ∈ L2p(M), we have

(∫

M\Bx0 (r0+1)

(|ω|p) 2m
m–2

)m–2
m

≤ C2(m, p)
∫

Bx0 (r0+1)\Bx0 (r0)
|ω|2p. (19)

By Hölder’s inequality we conclude that

∫

Bx0 (r0+2)\Bx0 (r0+1)
|ω|2p

≤ [
Vol

(
Bx0 (r0 + 2)

)] 2
m

(∫

Bx0 (r0+2)\Bx0 (r0+1)

(|ω|p) 2m
m–2

)m–2
m

. (20)

From (19) and (20) we have

∫

Bx0 (r0+2)
|ω|2p

≤ [
Vol

(
Bx0 (r0 + 2)

)] 2
m

(∫

Bx0 (r0+2)\Bx0 (r0+1)

(|ω|p) 2m
m–2

)m–2
m

+
∫

Bx0 (r0+2)
|ω|2p

≤ [
Vol

(
Bx0 (r0 + 2)

)] 2
m C2(m, p)

∫

Bx0 (r0+1)
|ω|2p +

∫

Bx0 (r0+2)
|ω|2p

=
[
1 +

[
Vol

(
Bx0 (r0 + 2)

)] 2
m C2(m, p)

]
∫

Bx0 (r0+1)
|ω|2p,
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that is,

∫

Bx0 (r0+2)
|ω|2p ≤ C3

∫

Bx0 (r0+1)
|ω|2p, (21)

where C3 is a positive constant depending only on Vol(Bx0 (r0 + 2)), m, and p.
Let F : M → [0,∞) be the function defined by F = p|T | + p |R|√

m . From (6) we have

|ω|p�|ω|p ≥
(

1 –
1
p

+
1

p(m – 1)

)∣
∣∇|ω|p∣∣2 – p|T ||ω|2p –

p|R|√
m

|ω|2p

=
(

1 –
1
p

+
1

p(m – 1)

)
∣
∣∇|ω|p∣∣2 – F|ω|2p. (22)

Fix x ∈ M and choose μ ∈ C∞
0 (Bx(1)). Multiplying (22) by μ2|ω|p(q–2) with q ≥ 2 and

integrating by parts, we have

(

1 –
1
p

+
1

p(m – 1)

)∫

Bx(1)
μ2|ω|p(q–2)∣∣∇|ω|p∣∣2 –

∫

Bx(1)
Fμ2|ω|pq

≤ –(q – 1)
∫

Bx(1)
μ2|ω|p(q–2)∣∣∇|ω|p∣∣2 – 2

∫

Bx(1)
|ω|p(q–1)μ

〈∇|ω|p,∇μ
〉

≤
[

–(q – 1) +
1

p(m – 1)

]∫

Bx(1)
μ2|ω|p(q–2)∣∣∇|ω|p∣∣2

+ p(m – 1)
∫

Bx(1)
|ω|pq|∇μ|2, (23)

where the second inequality follows from

–2
∫

Bx(1)
|ω|p(q–1)μ

〈∇|ω|p,∇μ
〉

≤ 1
p(m – 1)

∫

Bx(1)
μ2|ω|p(q–2)∣∣∇|ω|p∣∣2 + p(m – 1)

∫

Bx(1)
|ω|pq|∇μ|2.

Then from (23) we have

(

q –
1
p

)∫

Bx(1)
μ2|ω|p(q–2)∣∣∇|ω|p∣∣2

≤
∫

Bx(1)
Fμ2|ω|pq + p(m – 1)

∫

Bx(1)
|∇μ|2|ω|pq. (24)

By the Cauchy–Schwarz inequality we have

∫

Bx(1)

∣
∣∇(

μ
(|ω|p)

q
2
)∣
∣2

≤ (1 + q)
∫

Bx(1)
|ω|pq|∇μ|2 +

(

1 +
1
q

)
q2

4

∫

Bx(1)
|ω|p(q–2)μ2∣∣∇|ω|p∣∣2. (25)
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From (24) and (25) we have

∫

Bx(1)

∣
∣∇(

μ
(|ω|p)

q
2
)∣
∣2

≤ pq(1 + q)
4(pq – 1)

[∫

Bx(1)
Fμ2|ω|pq + p(m – 1)

∫

Bx(1)
|∇μ|2|ω|pq

]

+ (1 + q)
∫

Bx(1)
|ω|pq|∇μ|2

=
[

p2q(1 + q)(m – 1)
4(pq – 1)

+ q + 1
]∫

Bx(1)
|∇μ|2|ω|pq

+
pq(1 + q)
4(pq – 1)

∫

Bx(1)
Fμ2|ω|pq

≤ 4m2p2q
∫

Bx(1)
Fμ2|ω|pq + 4m2p2q

∫

Bx(1)
|∇μ|2|ω|pq. (26)

Using (26) and applying the Sobolev inequality (2) to μ|ω| pq
2 , we have

(∫

Bx(1)

∣
∣μ|ω| pq

2
∣
∣

2m
m–2

)m–2
m

≤ C(m)
∫

Bx(1)

∣
∣∇(

μ|ω| pq
2
)∣
∣2

≤ C(m)
[

4m2p2q
∫

Bx(1)
Fμ2|ω|pq + 4m2p2q

∫

Bx(1)
|∇μ|2|ω|pq

]

≤ 4m2p2qC4

∫

Bx(1)

(
μ2 + |∇μ|2)|ω|pq, (27)

where C4 is a positive constant depending only on m, p, and supBx(1) F .
Let qk = 2mk

(m–2)k and ρk = 1
2 + 1

2k+1 for k = 0, 1, 2, . . . . Choose a function μk ∈ C∞
0 (Bx(ρk))

as follows:

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ μk ≤ 1,

μk = 1 on Bx(ρk+1),

|∇μk| ≤ 2k+3.

By choosing q = qk and μ = μk in (27) we get

(∫

Bx(ρk+1)

∣
∣|ω| pqk

2
∣
∣

2m
m–2

)m–2
m

≤ 4m2p2qkC4

∫

Bx(ρk )

[
1 + |∇μ|2]|ω|pqk

≤ 4m2p2qkC4

∫

Bx(ρk )

[
1 + 4k+3]|ω|pqk

≤ 4kqk
(
4m2p2C4 + 44m2p2C4

)
∫

Bx(ρk )
|ω|pqk .
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Then we have

(∫

Bx(ρk+1)
|ω|pqk+1

) 1
qk+1 ≤ (

qk · 4k+k0
) 1

qk

(∫

Bx(ρk )
|ω|pqk

) 1
qk

,

where k0 is a positive integer such that 4m2p2C4(1 + 43) ≤ 4k0 . From the above inequality
and the Morse iteration we conclude that

(∫

Bx(ρk+1)
|ω|pqk+1

) 1
qk+1 ≤

k∏

i=0

q
1
qi
i 4

i+4
qi

(∫

Bx(1)
|ω|2p

) 1
2

. (28)

Letting k → ∞ in (28), we have

∥
∥|ω|p∥∥L∞(Bx( 1

2 )) ≤ C5
∥
∥|ω|p∥∥L2(Bx(1)), (29)

where C5 is a positive constant depending only on m, p, and supBx(1) F . Now take y ∈
Bx0 (r0 + 1) such that

|ω|2p(y) = sup
Bx0 (r0+1)

|ω|2p. (30)

Note that By(1) ⊂ Bx0 (r0 + 2). Then (29) and (30) imply that

sup
Bx0 (r0+1)

|ω|2p ≤ C5

∫

Bx0 (r0+2)
|ω|2p. (31)

From (21) and (31) we have

sup
Bx0 (r0+1)

|ω|2p ≤ C6

∫

Bx0 (r0+1)
|ω|2p, (32)

where C6 is a positive constant depending only on m, p, Vol(Bx0 (r0 + 2)), and supBx0 (r0+2) F .
To show the finiteness of the dimension of H1(L2p(M)), we only need to prove that the

dimension of any finite-dimensional subspace of H1(L2p(M)) is upper bounded by a fixed
constant. Let W be any finite-dimensional subspace of H1(L2p(M)). By Lemma 2.3 there
exists ω ∈W such that

(dimW)min{1,p}
∫

Bx0 (r0+1)
|ω|2p

≤ Vol
(
Bx0 (r0 + 1)

)
min{m, dimW}{min{1,p} · sup

Bx0 (r0+1)
|ω|2p.

This, together with (32), yields that dim W is upper bounded by a fixed constant, that is,
dim W ≤ C7, where C7 depends only on m, p, Vol(Bx0 (r0 + 2)), and supBx0 (r0+2) F . Then we
obtain that dim H1(L2p(M)) < ∞. This completes the proof of Theorem 1.1.

4 Conclusions
In this paper, we study the dimension of the space of Lp harmonic 1-forms on a locally
conformally flat Riemannian manifold Mm. The key to our research is Lemma 2.3 for L2p
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harmonic q̄-forms [20, 25] and the geometric analysis techniques. With their help, we
prove that the dimension of the space of Lp harmonic 1-forms must be finite for certain p
under the assumptions on the Schrödinger operators involving the squared norm of the
traceless Ricci form. This result can be regarded as a generalization of Han’s result [16] for
L2 harmonic 1-forms.
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