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Abstract
The aim of this paper is to prove the superstability of the following functional
equations:

f (P(x, y)) = g(x)h(y),

f (x + y) = g(x)h(y).

MSC: 39B72; 39B82; 39B52

Keywords: Banach algebra; Pexider exponential equation; Exponential function;
Superstability

1 Introduction and preliminaries
The stability problem of functional equations was raised by Ulam from a question con-
cerning the stability of group homomorphisms [1]. Hyers [2] obtained the first important
result in this field. See [3–10] for more information on functional equations and applica-
tions. In 1979, Baker, Lawrence, and Zorzitto [11] proved the superstability of the expo-
nential functional equation: Let X be a real vector space and f : X →R be an approximately
exponential function, i.e., there exists a nonnegative number ε such that

∥
∥f (x + y) – f (x)f (y)

∥
∥ ≤ ε, x, y ∈ X.

Then f is either bounded or exponential. The same result is also true for approximately
exponential mappings f from a semigroup (G, +) with values in a normed algebra with the
property that the norm is multiplicative [12]. Gǎvruta [13] proved the superstability of the
Lobacevski functional equation

f
(

x + y
2

)2

= f (x)f (y)
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under the condition bounded by a constant. Kim [14] investigated the solution and the
superstability of the Pexiderized Lobacevski functional equation

f
(

x + y
2

)2

= g(x)h(y).

Kim and Park [15] considered the superstability of the generalized Pexider exponential
functional equation

f
(

x + y
m

)m

= g(x)h(y)

in unital normed algebras, where m is a positive integer. For more information on the
superstability of functional equations and applications, see [16–18].

The aim of this paper is to prove the superstability of the following generalized Pexider
exponential functional equation:

f
(

P(x, y)
)

= g(x)h(y) (GPE)

in unital normed algebras.

2 Superstability of the generalized Pexider exponential functional equation
(GPE)

In this section, assume that (G,∗) is a semigroup with identity e, A is a commutative unital
normed algebra with unit I , and P : G × G → G is a function such that

P(x, y ∗ z) = P(x ∗ y, z), x, y, z ∈ G.

It is clear that if x ∗ y = y ∗ x, then P(x, y) = P(x, y ∗ e) = P(x ∗ y, e) = P(y, x).

Example 2.1
(1) Let G be an operator algebra and P : G × G → G be given by P(a, b) = ab for all

a, b ∈ G. Then P(x, yz) = x(yz) = (xy)z = P(xy, z) for all x, y, z ∈ G.
(2) Let G = GL2(C) be the set of invertible 2 × 2 complex matrices and P : G × G → G

be given by P(a, b) = b–1a–1 for all a, b ∈ G. Then

P(x, yz) = (yz)–1x–1 =
(

z–1y–1)x–1 = z–1(y–1x–1) = z–1(xy)–1 = P(xy, z)

for all x, y, z ∈ G.
(3) Let G = U(A) be the unitary group of a unital C∗-algebra A and P : G × G → G be

given by P(a, b) = b∗a∗ for all a, b ∈ G. Then

P(x, yz) = (yz)∗x∗ =
(

z∗y∗)x∗ = z∗(y∗x∗) = z∗(xy)∗ = P(xy, z)

for all x, y, z ∈ G (see [19]).

We prove the superstability of the generalized Pexider exponential equation (GPE).
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Theorem 2.2 Let ϕ : G × G → [0, +∞) be a function. Assume that supy∈G ϕ(x, y) < ∞ for
each x ∈ G, and that f , g, h : G → A satisfy the inequality

∥
∥f

(

P(x, y)
)

– g(x)h(y)
∥
∥ ≤ ϕ(x, y) (2.1)

for all x, y ∈ G. If there exists a sequence {yn}n in G such that ‖h(yn)–1‖ → 0 as n → ∞,
then g satisfies g(x ∗ y)g(e) = g(x)g(y) for all x, y ∈ G.

Proof It follows from (2.1) that

∥
∥f

(

P(x, yn)
)

h(yn)–1 – g(x)
∥
∥ =

∥
∥
[

f
(

P(x, yn)
)

– g(x)h(yn)
]

h(yn)–1∥∥

≤ ∥
∥f

(

P(x, yn)
)

– g(x)h(yn)
∥
∥ · ∥∥h(yn)–1∥∥

≤ ∥
∥h(yn)–1∥∥ϕ(x, yn)

(2.2)

for all x ∈ G. So we have

g(x) = lim
n→∞ f (P(x, yn)h(yn)–1, x ∈ G. (2.3)

For x, y ∈ G, let �(x, y) = f (P(x, y)) – g(x)h(y). Then (2.1) implies that

∥
∥�(x, y ∗ yn)g(z)

∥
∥ ≤ ϕ(x, y ∗ yn)

∥
∥g(z)

∥
∥

for all x, y, z ∈ G. Since limn→∞ ‖h(yn)–1‖ = 0, we get

lim
n→∞�(x, y ∗ yn)g(z)h(yn)–1 = 0, x, y, z ∈ G.

Therefore it follows from (2.5) that

g(x ∗ y)g(z) = lim
n→∞ f (P(x ∗ y, yn)h(yn)–1g(z)

= lim
n→∞ f (P(x, y ∗ yn)h(yn)–1g(z)

= lim
n→∞

[

�(x, y ∗ yn)h(yn)–1g(z) + g(x)h(y ∗ yn)h(yn)–1g(z)
]

= lim
n→∞

[

�(x, y ∗ yn)g(z)h(yn)–1 + f
(

P(z, y ∗ yn)
)

g(x)h(yn)–1

– �(z, y ∗ yn)g(x)h(yn)–1]

= lim
n→∞

[

�(x, y ∗ yn)g(z)h(yn)–1 + f
(

P(z ∗ y, yn)
)

g(x)h(yn)–1

– �(z, y ∗ yn)g(x)h(yn)–1]

= g(x)g(z ∗ y).

Hence

g(x ∗ y)g(z) = g(x)g(z ∗ y), x, y, z ∈ G. (2.4)

Putting z = e in (2.4), we obtain g(x ∗ y)g(e) = g(x)g(y) for all x, y ∈ G. �
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Using the proof of Theorem 2.2, we get the following result.

Theorem 2.3 Let ϕ : G × G → [0, +∞) be a function. Assume that f , g, h : G → A sat-
isfy inequality (2.1) for all x, y ∈ G. If there exists a sequence {yn}n in G such that ϕ(x, y ∗
yn)‖h(yn)–1‖ → 0 for all x, y ∈ G, as n → ∞, then g satisfies g(x ∗ y)g(e) = g(x)g(y) for all
x, y ∈ G.

Proof According to the proof of Theorem 2.2, we get (2.2). By the assumption (with
y = e), we have ϕ(x, yn)‖h(yn)–1‖ → 0 for all x ∈ G. Then (2.2) implies (2.5). Let �(x, y) :=
f (P(x, y)) – g(x)h(y). By (2.1), we have

∥
∥�(x, y ∗ yn)g(z)

∥
∥ ≤ ϕ(x, y ∗ yn)

∥
∥g(z)

∥
∥, x, y, z ∈ G.

Since ϕ(x, y ∗ yn)‖h(yn)–1‖ → 0, we get

lim
n→∞�(x, y ∗ yn)g(z)h(yn)–1 = 0, x, y, z ∈ G.

The rest of the proof is the same as the proof of Theorem 2.2. �

The proof of the following theorem is similar to the proof of Theorem 2.2.

Theorem 2.4 Let ϕ : G × G → [0, +∞) be a function. Assume that supx∈G ϕ(x, y) < ∞ for
each y ∈ G, and that f , g, h : G → A satisfy inequality (2.1) for all x, y ∈ G. If there exists
a sequence {yn}n in G such that ‖g(yn)–1‖ → 0 as n → ∞, then h satisfies h(x ∗ y)h(e) =
h(x)h(y) for all x, y ∈ G.

Proof It follows from (2.1) that

∥
∥f

(

P(yn, x)
)

g(yn)–1 – h(x)
∥
∥

=
∥
∥
[

f
(

P(yn, x)
)

– g(yn)h(x)
]

g(yn)–1∥∥

≤ ∥
∥f

(

P(yn, x)
)

– g(yn)h(x)
∥
∥ · ∥∥g(yn)–1∥∥

≤ ∥
∥g(yn)–1∥∥ϕ(yn, x)

for all x ∈ G. So we have

h(x) = lim
n→∞ f (P(yn, x)g(yn)–1, x ∈ G. (2.5)

Let �(x, y) = f (P(x, y)) – g(x)h(y). Then (2.1) implies that

∥
∥�(yn ∗ y, z)h(x)

∥
∥ ≤ ϕ(yn ∗ y, z)

∥
∥h(x)

∥
∥, x, y, z ∈ G.

Since limn→∞ ‖g(yn)–1‖ = 0, we get

lim
n→∞�(yn ∗ y, z)h(x)g(yn)–1 = 0, x, y, z ∈ G.
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Therefore it follows from (2.5) that

h(x ∗ y)h(z) = lim
n→∞ f (P(yn, x ∗ y)g(yn)–1h(z)

= lim
n→∞ f (P(yn ∗ x, y)g(yn)–1h(z)

= lim
n→∞

[

�(yn ∗ x, y)h(z)g(yn)–1 + g(yn ∗ x)h(y)g(yn)–1h(z)
]

= lim
n→∞

[

�(yn ∗ x, y)h(z)g(yn)–1 + f
(

P(yn ∗ x, z)
)

h(y)g(yn)–1

– �(yn ∗ x, z)h(y)g(yn)–1]

= lim
n→∞ f

(

P(yn, x ∗ z)
)

g(yn)–1h(y)

= h(x ∗ z)h(y).

Hence

h(x ∗ y)h(z) = h(x ∗ z)h(y), x, y, z ∈ G. (2.6)

Letting z = e in (2.6), we obtain h(x ∗ y)h(e) = h(x)h(y) for all x, y ∈ G. �

Remark 2.5 It is clear that the results in Theorems 2.2 and 2.4 are valid if ϕ(x, y) = ε for all
x, y ∈ G, where ε ≥ 0 is a constant.

Corollary 2.6 Let ϕ : G × G → [0, +∞) be a function. Assume that supy∈G ϕ(x, y) < ∞ for
each x ∈ G(supx∈G ϕ(x, y) < ∞ for each y ∈ G), and that f , g : G → A satisfy the inequality

∥
∥f

(

P(x, y)
)

– g(x)g(y)
∥
∥ ≤ ϕ(x, y)

for all x, y ∈ G and g(e) = I . If there exists a sequence {yn}n in G such that ‖g(yn)–1‖ → 0 as
n → ∞, then g satisfies g(x ∗ y) = g(x)g(y) for all x, y ∈ G.

Proof Letting h = g in Theorems 2.2 and 2.4 and using g(e) = I , we get the desired
result. �

Corollary 2.7 Let ϕ : G × G → [0, +∞) be a function. Assume that supy∈G ϕ(x, y) < ∞ for
each x ∈ G(supx∈G ϕ(x, y) < ∞ for each y ∈ G), and that f : G → A satisfies the inequality

∥
∥f

(

P(x, y)
)

– f (x)f (y)
∥
∥ ≤ ϕ(x, y)

for all x, y ∈ G. If there exists a sequence {yn}n in G such that ‖f (yn)–1‖ → 0 as n → ∞, then
f satisfies f (x ∗ y)f (e) = f (x)f (y) for all x, y ∈ G.

Proof Letting h = g = f in Theorems 2.2 and 2.4, we get the desired result. �

Corollary 2.8 Let ϕ : G × G → [0, +∞) be a function. Assume that supy∈G ϕ(x, y) < ∞ for
each x ∈ G, and that f , g, h : G →C satisfy the inequality

∣
∣f

(

P(x, y)
)

– g(x)h(y)
∣
∣ ≤ ϕ(x, y)

for all x, y ∈ G. If h is not bounded, then g satisfies g(x ∗ y)g(e) = g(x)g(y) for all x, y ∈ G.
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Proof Since h is not bounded, one can choose {yn}n such that |h(yn)–1| = 1
|h(yn)| → 0 as

n → ∞. Hence one can get the desired result by Theorem 2.2. �

Corollary 2.9 Let ϕ : G × G → [0, +∞) be a function. Assume that supx∈G ϕ(x, y) < ∞ for
each y ∈ G, and that f , g, h : G → C satisfy the inequality

∣
∣f

(

P(x, y)
)

– g(x)h(y)
∣
∣ ≤ ϕ(x, y)

for all x, y ∈ G. If g is not bounded, then h satisfies h(x ∗ y)h(e) = h(x)h(y) for all x, y ∈ G.

Proof Since g is not bounded, one can choose {yn}n such that |g(yn)–1| = 1
|g(yn)| → 0 as

n → ∞. Hence one can get the desired result by Theorem 2.4. �

Corollary 2.10 Suppose that f : G → C satisfies the inequality

∣
∣f

(

P(x, y)
)

– f (x)f (y)
∣
∣ ≤ ε

for all x, y ∈ G. If f is not bounded, then f satisfies f (x ∗ y)f (e) = f (x)f (y) for all x, y ∈ G.

Remark 2.11 When the semigroup G and the function ϕ(x, y) in the above results are re-
placed with an algebra B and ϕ(x) or ϕ(y), respectively, we have similar results.

Given a semigroup (G,∗) and a commutative field F, let W be a vector space of functions
f from G into F. The vector space W is called right invariant if, for each f ∈ W , the map-
ping ψy : G → F, for each y ∈ G, defined by ψy(x) = f (x ∗ y) belongs to W . Left invariant
spaces are defined similarly. The vector space W is called invariant if it is both right and
left invariant. Following Székelyhidi [20], we obtain the following results.

Theorem 2.12 Given a semigroup (G,∗) with identity e, a commutative field F, and a right
invariant vector space W of F-valued functions on G. Let f , g, h : G → F be such that the
function ψy : G → F defined by ψy(x) = f (P(x, y)) – g(x)h(y) belongs to W for each y ∈ G. If
h(e) = 1, then either g ∈ W or h(x ∗ y) = h(x)h(y) for all x, y ∈ G.

Proof Suppose that there are y0, z0 ∈ G such that h(y0 ∗ z0) 	= h(y0)h(z0). Hence

[

h(y0 ∗ z0) – h(y0)h(z0)
]

g(x) =
[

f
(

P(x ∗ y0, z0)
)

– g(x ∗ y0)h(z0)
]

–
[

f
(

P(x, y0 ∗ z0)
)

– g(x)h(y0 ∗ z0)
]

+ h(z0)
[

f
(

P(x, y0)
)

– g(x)h(y0)
]

– h(z0)
[

f
(

P(x ∗ y0, e)
)

– g(x ∗ y0)h(e)
]

for all x ∈ G. Since ψy ∈ W for each y ∈ G, we get that the function φy,z : G → F defined
by φy,z(x) = ψy(x ∗ z) for all z ∈ G belongs to W . Therefore

g =
[

h(y0 ∗ z0) – h(y0)h(z0)
]–1[

φz0,y0 – φy0∗z0,e + h(z0)φy0,e – h(z0)φe,y0

]

.

So we conclude g ∈ W . �
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Let (G,∗) be a semigroup and B(G,C) be the linear space of bounded functions with
complex values on G. It is clear that B(G,C) is an invariant vector space. Hence Corollary
2.9 is a consequence of Theorem 2.12.

Theorem 2.13 Given a semigroup (G,∗) with identity e, a commutative field F, and an
invariant vector space W of F-valued functions on G. Let f , g, h : G → F be such that the
functions φx,ψy : G → F defined by φx(y) = f (P(x, y)) – g(x)h(y) and ψy(x) = f (P(x, y)) –
g(x)h(y) belong to W for each x, y ∈ G. If h(e) = 1, then either g ∈ W or h(x ∗ y) = h(x)h(y)
and g(x) = g(e)h(x) for all x, y ∈ G.

Proof Suppose that g /∈ W . By Theorem 2.12, h satisfies h(x ∗ y) = h(x)h(y) for all x, y ∈ G.
Since φe ∈ W and W is left invariant, the function ξx : G → F for each x ∈ G, defined by
ξx(y) = φe(x ∗ y), belongs to W . For all x, y ∈ G, we have

f
(

P(e, x ∗ y)
)

– g(e)h(x ∗ y) =
[

f
(

P(x, y)
)

– g(x)h(y)
]

+
[

g(x)h(y) – g(e)h(x ∗ y)
]

=
[

f
(

P(x, y)
)

– g(x)h(y)
]

+
[

g(x) – g(e)h(x)
]

h(y).

Therefore

[

g(x) – g(e)h(x)
]

h = ξx – φx, x ∈ G. (2.7)

We claim that g(x) = g(e)h(x) for all x ∈ G. If there is x0 ∈ G such that g(x0) – g(e)h(x0) 	=
0, then (2.7) implies that h ∈ W . Since h,φe ∈ W , we get that the function ϑ : G → F

defined by ϑ(y) = f (P(e, y)) = f (P(y, e)) belongs to W . Therefore g ∈ W , since ϑ = ψe + g .
This contradiction implies that g(x) = g(e)h(x) for all x ∈ G. �

Corollary 2.14 Given a semigroup (G,∗) with identity e and a function ϕ : G × G →
[0, +∞) with supx∈G ϕ(x, y) < ∞ and supy∈G ϕ(x, y) < ∞ for all x, y ∈ G. Let f , g, h : G → F

be such that

∣
∣f

(

P(x, y)
)

– g(x)h(y)
∣
∣ ≤ ϕ(x, y), x, y ∈ G.

If h(e) = 1, then either g is bounded or h(x ∗ y) = h(x)h(y) and g(x) = g(e)h(x) for all x, y ∈ G.

Proof Let W be the vector space of all bounded functions from G to F. Then W is an
invariant vector space. Hence the desired result follows from Theorem 2.13. �

Corollary 2.15 Given a semigroup (G,∗) with identity e, a commutative field F, and an
invariant vector space W of F-valued functions on G. Let f , g, h : G → F be such that the
functions φx,ψy : G → F defined by φx(y) = f (x ∗ y) – g(x)h(y) and ψy(x) = f (x ∗ y) – g(x)h(y)
belong to W for each x, y ∈ G. If h(e) = 1, then either g ∈ W or h(x ∗ y) = h(x)h(y) and
g(x) = g(e)h(x) for all x, y ∈ G. Moreover, if g ∈ W , then f ∈ W .

Proof The desired result follows from Theorem 2.13 by letting P(x, y) = x ∗ y for all
x, y ∈ G. �

Specially, we have the following result without any assumption on h.
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Corollary 2.16 Given a semigroup (G,∗) with identity e, a commutative field F, and an
invariant vector space W of F-valued functions on G. Let f , h : G → F be such that the
functions φx,ψy : G → F defined by φx(y) = f (x ∗ y) – f (x)h(y) and ψy(x) = f (x ∗ y) – f (x)h(y)
belong to W for each x, y ∈ G. Then either f ∈ W or h(x ∗ y) = h(x)h(y) and f (x) = f (e)h(x)
for all x, y ∈ G.

Proof Suppose that f /∈ W . We claim that h(x ∗ y) = h(x)h(y) for all x, y ∈ G. Let y0, z0 ∈ G
such that h(y0 ∗ z0) 	= h(y0)h(z0). Hence

[

h(y0 ∗ z0) – h(y0)h(z0)
]

f (x) =
[

f (x ∗ y0 ∗ z0) – f (x ∗ y0)h(z0)
]

–
[

f (x ∗ y0 ∗ z0) – f (x)h(y0 ∗ z0)
]

+ h(z0)
[

f (x ∗ y0) – f (x)h(y0)
]

for all x ∈ G. Since ψy ∈ W for each y ∈ G, we get that the function θy,z : G → F defined by
θy,z(x) = ψy(x ∗ z) for all z ∈ G belongs to W . Therefore

f =
[

h(y0 ∗ z0) – h(y0)h(z0)
]–1[θz0,y0 – θy0∗z0,e + h(z0)θy0,e.

So we conclude f ∈ W , which is a contradiction. Now, we prove f (x) = f (e)h(x) for all x ∈ G.
Suppose that there is x0 ∈ G such that f (x0) – f (e)h(x0) 	= 0. For each y ∈ G, we have

f (x0 ∗ y)) – f (e)h(x0 ∗ y) =
[

f (x0 ∗ y) – f (x0)h(y)
]

+
[

f (x0)h(y) – f (e)h(x0 ∗ y)
]

=
[

f (x0 ∗ y) – f (x0)h(y)
]

+
[

f (x0) – f (e)h(x0)
]

h(y).

Therefore, [g(x0) – f (e)h(x0)]h ∈ W , and so h ∈ W . Since h,φe ∈ W and φe = f – f (e)h, we
get f ∈ W , which is again a contradiction. �

Theorem 2.17 Given a semigroup (G,∗), a commutative field F, and a right invariant
vector space W of F-valued functions on G. Let f , g, h : G → F be such that the function
ψy : G → F defined by ψy(x) = f (x ∗ y) – g(x)h(y) belongs to W for each y ∈ G. If f – g ∈ W
or h(e) = 1 (when G has the identity e), then either f , g ∈ W or h(x ∗ y) = h(x)h(y) for all
x, y ∈ G.

Proof Let G have not an identity. Suppose that f – g ∈ W and there are y0, z0 ∈ G such that
h(y0 ∗ z0) 	= h(y0)h(z0). Then

[

h(y0 ∗ z0) – h(y0)h(z0)
]

g(x) =
[

f (x ∗ y0 ∗ z0) – g(x ∗ y0)h(z0)
]

–
[

f (x ∗ y0 ∗ z0) – g(x)h(y0 ∗ z0)
]

+ h(z0)
[

f (x ∗ y0) – g(x)h(y0)
]

– h(z0)
[

f (x ∗ y0) – g(x ∗ y0)
]

for all x ∈ G. Since ψy, f – g ∈ W for each y ∈ G, we get that the functions φy,ϕ : G → F

defined by φy(x) = ψy(x ∗ y0) and ϕ(x) = (f – g)(x ∗ y0) belong to W . Therefore

g =
[

h(y0 ∗ z0) – h(y0)h(z0)
]–1[

φz0 – ψy0∗z0 + h(z0)ψy0 – h(z0)ϕ
]

.
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So g ∈ W , and we conclude f ∈ W . For h(e) = 1, if G has the identity e, we get f – g ∈ W
by the hypothesis. Hence the result follows from the previous case. �

Specially, we get Székelyhidi’s result.

Corollary 2.18 ([20]) Given a semigroup (G,∗), a commutative field F, and a right invari-
ant vector space W of F-valued functions on G. Let f , g : G → F be such that the function
ψy : G → F defined by ψy(x) = f (x ∗ y) – f (x)g(y) belongs to W for each y ∈ G. Then either
f ∈ W or g(x ∗ y) = g(x)g(y) for all x, y ∈ G.

Proof It follows from Theorem 2.17 by replacing g with f , and h with g . �

3 Superstability of the Pexider exponential equation
Using an idea from [21], we establish the superstability of the Pexider exponential equation
f (x + y) = g(x)h(y).

Theorem 3.1 Let X and E be a real normed space and a normed algebra with multiplica-
tive norm, respectively. Let a ∈ (E \ {0}) ∪ (R \ {0}) and f : X → E be a function such that
af (z) = f (z)a for all z ∈ X. If f satisfies the inequality

∥
∥af (x + y) – f (x)f (y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ X (3.1)

for some ε, θ , p ≥ 0, then either sup‖x‖≥1
‖f (x)‖
‖x‖p < ∞ or

af (x + y) = f (x)f (y), x, y ∈ X.

Proof We assume that ε + θ > 0 and continue to employ the notation 
a
 to denote ‖a‖
(if a ∈ E) and |a| (if a ∈ R), respectively. Let { ‖f (x)‖

‖x‖p : ‖x‖ ≥ 1} be not bounded. Then there
exists a sequence {xn}∞n=1 ⊆ X such that

‖xn‖ ≥ 1,
‖f (xn)‖
‖xn‖p ≥ n, n ∈N.

Therefore

lim
n→∞

‖xn‖p

‖f (xn)‖ = 0, lim
n→∞

∥
∥f (xn)

∥
∥ = +∞. (3.2)

Choose x, y, z ∈ X with f (x) 	= 0. It then follows from (3.1) that

∥
∥af (x + y + z) – f (z)f (x + y)

∥
∥ ≤ ε

(‖x + y‖p + ‖z‖p) + θ‖x + y‖p‖z‖p,
∥
∥af (x + y + z) – f (y + z)f (x)

∥
∥ ≤ ε

(‖y + z‖p + ‖x‖p) + θ‖y + z‖p‖x‖p.

Hence we get

∥
∥f (z)f (x + y) – f (y + z)f (x)

∥
∥ ≤ ε

(‖x + y‖p + ‖y + z‖p + ‖x‖p + ‖z‖p)

+ θ
(‖x + y‖p‖z‖p + ‖y + z‖p‖x‖p).

(3.3)
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In view of (3.1), we have

∥
∥af (z)f (x + y) – f (z)f (y)f (x)

∥
∥ ≤ ∥

∥f (z)
∥
∥
[

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p]. (3.4)

Inequalities (3.3) and (3.4) yield

∥
∥af (y + z)f (x) – f (z)f (y)f (x)

∥
∥ ≤ ε
a


(‖x + y‖p + ‖y + z‖p + ‖x‖p + ‖z‖p)

+ θ
a

(‖x + y‖p‖z‖p + ‖y + z‖p‖x‖p)

+
∥
∥f (z)

∥
∥
[

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p].

(3.5)

Since E is a normed algebra with multiplicative norm, it follows from (3.5) that

∥
∥af (y + z) – f (z)f (y)

∥
∥

≤ ε
a
(‖x + y‖p + ‖y + z‖p + ‖x‖p + ‖z‖p)
‖f (x)‖

+
θ
a
(‖x + y‖p‖z‖p + ‖y + z‖p‖x‖p)

‖f (x)‖

+
‖f (z)‖[ε(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p]

‖f (x)‖ .

(3.6)

If we put x = xn in (3.6) and take the limit as n → +∞, then it follows from (3.2) that

af (z + y) = f (z)f (y),

as desired. �

Theorem 3.2 Let X and E be a real normed space and a normed algebra with multiplica-
tive norm, respectively. Let f , g : X → E be functions such that f (0)f (z) = f (z)f (0) for all
z ∈ X and satisfy

∥
∥g(x + y) – f (x)f (y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ E (3.7)

for some ε, θ , p ≥ 0. Then either sup‖x‖≥1
‖g(x)‖
‖x‖p < ∞ or

f (0)f (x + y) = f (x)f (y), x, y ∈ X.

Proof Let { ‖g(x)‖
‖x‖p : ‖x‖ ≥ 1} be not bounded. Then (3.7) implies that f (0) 	= 0 and { ‖f (x)‖

‖x‖p :
‖x‖ ≥ 1} is not bounded. In view of (3.7), we have

∥
∥g(x + y) – f (0)f (x + y)

∥
∥ ≤ ε‖x + y‖p ≤ 2pε

(‖x‖p + ‖y‖p), x, y ∈ X.

Therefore

∥
∥f (0)f (x + y) – f (x)f (y)

∥
∥ ≤ ∥

∥f (0)f (x + y) – g(x + y)
∥
∥ +

∥
∥g(x + y) – f (x)f (y)

∥
∥

≤ (

2p + 1
)

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ X.

By Theorem 3.1, we conclude that f (0)f (x + y) = f (x)f (y) for all x, y ∈ X. �
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Theorem 3.3 Let X and E be a real normed space and a normed algebra with multiplica-
tive norm, respectively. Let a ∈ (E \ {0}) ∪ (R \ {0}) and f , g : X → E be functions satisfying
one of the following conditions:

(i) af (z) = f (z)a, ‖af (x + y) – f (x)g(y)‖ ≤ ε(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y, z ∈ X ;
(ii) ag(z) = g(z)a, ‖af (x + y) – g(x)f (y)‖ ≤ ε(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y, z ∈ X ,

for some ε, θ , p ≥ 0. Then either sup‖x‖≥1
‖f (x)‖
‖x‖p < ∞ or

ag(x + y) = g(x)g(y), x, y ∈ X.

Proof We use the notation 
a
 to denote ‖a‖ (if a ∈ E) and |a| (if a ∈R), respectively. Let f ,
g satisfy (i) and { ‖f (x)‖

‖x‖p : ‖x‖ ≥ 1} be unbounded. Then there exists a sequence {xn}∞n=1 ⊆ X
such that (3.2) holds true. In view of (i), we have

∥
∥af (x + y + z) – f (x + y)g(z)

∥
∥ ≤ ε

(‖x + y‖p + ‖z‖p) + θ‖x + y‖p‖z‖p,
∥
∥af (x + y + z) – f (x)g(y + z)

∥
∥ ≤ ε

(‖x‖p + ‖y + z‖p) + θ‖x‖p‖y + z‖p, x, y, z ∈ X.

Therefore
∥
∥f (x + y)g(z) – f (x)g(y + z)

∥
∥ ≤ ε

(‖x + y‖p + ‖y + z‖p + ‖x‖p + ‖z‖p)

+ θ
(‖x + y‖p‖z‖p + ‖x‖p‖y + z‖p)

(3.8)

for all x, y, z ∈ X. On the other hand, (i) implies

∥
∥af (x + y)g(z) – f (x)g(y)g(z)

∥
∥ ≤ ∥

∥g(z)
∥
∥
[

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p] (3.9)

for all x, y, z ∈ X. It follows from (3.8) and (3.9) that

∥
∥af (x)g(y + z) – f (x)g(y)g(z)

∥
∥ ≤ ε
a


(‖x + y‖p + ‖y + z‖p + ‖x‖p + ‖z‖p)

+ θ
a

(‖x + y‖p‖z‖p + ‖x‖p‖y + z‖p)

+
∥
∥g(z)

∥
∥
[

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p]

(3.10)

for all x, y, z ∈ X. Since af (x) = f (x)a and E is a normed algebra with multiplicative norm,
it follows from (3.10) that

∥
∥ag(y + z) – g(y)g(z)

∥
∥ ≤ ε
a
(‖x + y‖p + ‖y + z‖p + ‖x‖p + ‖z‖p)

‖f (x)‖

+
θ
a
(‖x + y‖p‖z‖p + ‖x‖p‖y + z‖p)

‖f (x)‖

+
‖g(z)‖[ε(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p]

‖f (x)‖

(3.11)

for all x, y, z ∈ X. If we put x = xn in (3.11) and take the limit as n → +∞, then it follows
from (3.2) that

ag(z + y) = g(z)g(y), y, z ∈ X.

Similarly, we get the result if f , g satisfy condition (ii). �
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Theorem 3.4 Let X and E be a real normed space and a normed algebra with multiplica-
tive norm, respectively. Let f , g, h : X → E be functions satisfying the inequality

∥
∥f (x + y) – g(x)h(y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ X (3.12)

for some ε, θ , p ≥ 0.
(i) If g(0)h(x) = h(x)g(0) for all x ∈ X , then either sup‖x‖≥1

‖h(x)‖
‖x‖p < ∞ or

g(0)g(x + y) = g(x)g(y), x, y ∈ X.

(ii) If h(0)g(x) = g(x)h(0) for all x ∈ X , then either sup‖x‖≥1
‖g(x)‖
‖x‖p < ∞ or

h(0)h(x + y) = h(x)h(y), x, y ∈ X.

Proof In view of (3.12), we have

∥
∥f (x + y) – g(0)h(x + y)

∥
∥ ≤ ε‖x + y‖p ≤ 2pε

(‖x‖p + ‖y‖p),
∥
∥f (x + y) – g(x + y)h(0)

∥
∥ ≤ ε‖x + y‖p ≤ 2pε

(‖x‖p + ‖y‖p), x, y, z ∈ X.

Therefore
∥
∥g(0)h(x + y) – g(x)h(y)

∥
∥

≤ ∥
∥f (x + y) – g(0)h(x + y)

∥
∥ +

∥
∥f (x + y) – g(x)h(y)

∥
∥

≤ (

2p + 1
)

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p,

(3.13)

and
∥
∥g(x + y)h(0) – g(x)h(y)

∥
∥

≤ ∥
∥f (x + y) – g(x + y)h(0)

∥
∥ +

∥
∥f (x + y) – g(x)h(y)

∥
∥

≤ (

2p + 1
)

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p

(3.14)

for all x, y, z ∈ X. To prove (i), if g(0) 	= 0, the result follows by Theorem 3.3. For the case
g(0) = 0, inequality (3.13) yields

∥
∥g(x)h(y)

∥
∥ ≤ (

2p + 1
)

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ X.

Hence, if { ‖h(x)‖
‖x‖p : ‖x‖ ≥ 1} is unbounded, then the last inequality implies that g(x) = 0 for

all x ∈ X. This completes the proof of (i).
Similarly, one can prove (ii). �

We now show some counterparts of Shtern’s theorem (see [7]).

Theorem 3.5 Let E be a normed linear space and A be a complex Banach algebra. Assume
that a ∈A∪R and the mapping f : E →A is such that af (z) = f (z)a for all z ∈ E, and

∥
∥af (x + y) – f (x)f (y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ E
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for some ε, θ , p ≥ 0. If, for each nonzero element b ∈A, the E-orbit of b

ORE(f , b) :=
{

f (x)b
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

, or OLE(b, f ) :=
{

bf (x)
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

is unbounded, then f satisfies af (x + y) = f (x)f (y) for all x, y ∈ E. Moreover, if a = 0, then
f ≡ 0.

Proof We assume that ε + θ > 0 and ORE(f , b) is unbounded for each b 	= 0. We continue to
employ the notation 
a
, to denote ‖a‖ (if a ∈A) and |a| (if a ∈R), respectively. For every
x, y, z ∈ E, we have

∥
∥f (x)

[

f (y)f (z) – af (y + z)
]∥
∥ ≤ ∥

∥a2f (x + y + z) – af (x)f (y + z)
∥
∥

+
∥
∥af (x + y)f (z) – a2f (x + y + z)

∥
∥

+
∥
∥f (x)f (y)f (z) – af (x + y)f (z)

∥
∥

≤ ε
a

(‖x‖p + ‖y + z‖p + ‖x + y‖p + ‖z‖p)

+ θ
a

(‖x‖p‖y + z‖p + ‖x + y‖p‖z‖p)

+ ε
∥
∥f (z)

∥
∥
(‖x‖p + ‖y‖p) + θ

∥
∥f (z)

∥
∥‖x‖p‖y‖p

≤ (∥
∥f (z)

∥
∥ + 2p+1
a


)

ε
(‖x‖p + ‖y‖p + ‖z‖p)

+
(∥
∥f (z)

∥
∥ + 2p
a
 + 2p)

× θ
(‖x‖p‖y‖p + ‖x‖p‖z‖p + ‖y‖p‖z‖p).

Then, for ‖x‖ ≥ 1, we have

∥
∥f (x)

[

f (y)f (z) – af (y + z)
]∥
∥ ≤ (∥

∥f (z)
∥
∥ + 2p+1
a


)

ε‖x‖p(1 + ‖y‖p + ‖z‖p)

+
(∥
∥f (z)

∥
∥ + 2p
a
 + 2p)θ‖x‖p(‖y‖p + ‖z‖p + ‖y‖p‖z‖p)

= M‖x‖p,

where

M := ε
(∥
∥f (z)

∥
∥ + 2p+1
a


)(

1 + ‖y‖p + ‖z‖p)

+ θ
(∥
∥f (z)

∥
∥ + 2p
a
 + 2p)(‖y‖p + ‖z‖p + ‖y‖p‖z‖p).

Therefore,
∥
∥
∥
∥

f (x)
f (y)f (z) – af (y + z)

M

∥
∥
∥
∥

≤ ‖x‖p.

Letting b := f (y)f (z)–af (y+z)
M , we get ORE(f , b) is bounded. By assumption, this implies b = 0.

Hence af (y + z) = f (y)f (z). Moreover, if a = 0, then we get f (x)f (y) = 0 for all x, y ∈ E.
Let y ∈ E be an arbitrary element. Then ORE(f , f (y)) = {0} is bounded, and by assump-
tion we conclude that f (y) = 0. Hence f ≡ 0. If we assume that OLE(b) is unbounded for
each nonzero b ∈A, the proof proceeds in a similar way. �
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Corollary 3.6 Let E be a normed linear space and A be a commutative semisimple com-
plex Banach algebra. Assume that a mapping f : E → A satisfies

∥
∥f (x + y) – f (x)f (y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ E

for some ε, θ , p ≥ 0. If, for every nonzero linear multiplicative functional ϕ on A, the set

Gϕ :=
{

(ϕof )(x)
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

is unbounded, then f is exponential.

Proof Let b 	= 0 be an element in A. Since A is semisimple, there is a linear multiplicative
functional ϕ on A such that ϕ(b) 	= 0. By assumption, Gϕ is unbounded. Then the set

Gϕ .ϕ(b) =
{

ϕ(f (x)b)
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

= ϕ
(

ORE(b)
)

is unbounded, and we conclude that ORE(b) is unbounded. By Theorem 3.5, f is exponen-
tial. �

Corollary 3.7 Let E be a normed linear space andA be a complex Banach algebra. Assume
that mappings f , g : E → A satisfy f (0)f (z) = f (z)f (0) for all z ∈ E, and (3.7). If, for each
nonzero element b ∈A, the E-orbit of b

ORE(f , b) :=
{

f (x)b
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

or OLE(b, f ) :=
{

bf (x)
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

is unbounded, then f satisfies f (0)f (x + y) = f (x)f (y) for all x, y ∈ E. Moreover, if f (0) = 0,
then f ≡ 0.

Proof As in the proof of Theorem 3.2, we obtain

∥
∥f (0)f (x + y) – f (x)f (y)

∥
∥ ≤ ∥

∥f (0)f (x + y) – g(x + y)
∥
∥ +

∥
∥g(x + y) – f (x)f (y)

∥
∥

≤ (

2p + 1
)

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ E.

By Theorem 3.5, we get the desired result. �

Theorem 3.8 Let E be a normed linear space and A be a complex Banach algebra. Assume
that ε, θ , p ≥ 0, a ∈A∪R and f , g : E →A satisfy one of the following conditions:

(i) af (z) = f (z)a, ‖af (x + y) – f (x)g(y)‖ ≤ ε(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y, z ∈ E; and for
each nonzero element b ∈A, the E-orbit of b

ORE(f , b) :=
{

f (x)b
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

is unbounded.
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(ii) ag(z) = g(z)a, ‖af (x + y) – g(x)f (y)‖ ≤ ε(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y, z ∈ E; and for
each nonzero element b ∈A, the E-orbit of b

OLE(b, f ) :=
{

bf (x)
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

is unbounded.
Then g satisfies ag(x + y) = g(x)g(y) for all x, y ∈ E. Moreover, if a = 0, then g ≡ 0.

Proof Let f , g satisfy (i) and ORE(f , b) be unbounded for each nonzero element b ∈ A.
Using the same argument as in the proof of Theorem 3.3, we obtain

∥
∥af (x)g(y + z) – f (x)g(y)g(z)

∥
∥ ≤ ε
a


(‖x + y‖p + ‖y + z‖p + ‖x‖p + ‖z‖p)

+ θ
a

(‖x + y‖p‖z‖p + ‖x‖p‖y + z‖p)

+
∥
∥g(z)

∥
∥
[

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p]

for all x, y, z ∈ E. Since af (x) = f (x)a, for ‖x‖ ≥ 1, we obtain

∥
∥f (x)

[

ag(y + z) – g(y)g(z)
]∥
∥ ≤ (∥

∥g(z)
∥
∥ + 2p+1
a


)

ε‖x‖p(1 + ‖y‖p + ‖z‖p)

+
(∥
∥g(z)

∥
∥ + 2p
a
 + 2p)θ‖x‖p(‖y‖p + ‖z‖p + ‖y‖p‖z‖p)

= M‖x‖p,

where

M := ε
(∥
∥g(z)

∥
∥ + 2p+1
a


)(

1 + ‖y‖p + ‖z‖p)

+ θ
(∥
∥g(z)

∥
∥ + 2p
a
 + 2p)(‖y‖p + ‖z‖p + ‖y‖p‖z‖p).

Therefore
∥
∥
∥
∥

f (x)
ag(y + z) – g(y)g(z)

M

∥
∥
∥
∥

≤ ‖x‖p.

Letting b := ag(y+z)–g(y)g(z)
M , by assumption, we get that b = 0. Therefore ag(y + z) = g(y)g(z)

for all y, z ∈ E. Moreover, if a = 0, then (i) implies that g ≡ 0.
Similarly, we get the result if f , g satisfy condition (ii). �

Theorem 3.9 Let E be a normed linear space and A be a complex Banach algebra. Let
f , g, h : E →A satisfy the inequality

∥
∥f (x + y) – g(x)h(y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p, x, y ∈ E (3.15)

for some ε, θ , p ≥ 0.
(i) If g(0)g(x) = g(x)g(0) for all x ∈ E, and for each nonzero element b ∈A the E-orbit of b

OLE(b, h) :=
{

bh(x)
‖x‖p : x ∈ E,‖x‖ ≥ 1

}
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is unbounded, then

g(0)g(x + y) = g(x)g(y), x, y ∈ E.

Moreover, if g(0) = 0, then g ≡ 0.
(ii) If h(0)g(x) = g(x)h(0) for all x ∈ E, and for each nonzero element b ∈A the E-orbit

of b

ORE(g, b) :=
{

g(x)b
‖x‖p : x ∈ E,‖x‖ ≥ 1

}

is unbounded, then

h(0)h(x + y) = h(x)h(y), x, y ∈ E.

Moreover, if h(0) = 0, then h ≡ 0.

Proof Using the same argument as in the proof of Theorem 3.4, we obtain

∥
∥g(0)h(x + y) – g(x)h(y)

∥
∥ ≤ (

2p + 1
)

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p

and

∥
∥g(x + y)h(0) – g(x)h(y)

∥
∥ ≤ (

2p + 1
)

ε
(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p

for all x, y, z ∈ E. Therefore the result follows from Theorem 3.8. �

Remark 3.10 We can replace ε(‖x‖p + ‖y‖p) + θ‖x‖p‖y‖p given in the main results of this
section by more general control functions ϕ(x, y) given by Gǎvruta [22]. The proofs are
similar to the proofs given in this section.

4 Conclusion
We have proved the superstability of the following functional equations:

f
(

P(x, y)
)

= g(x)h(y),

f (x + y) = g(x)h(y).
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