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1 Introduction
In [10], Muckenhoupt characterized the weights such that the inequality

0o x k 1/k oo 1/k
(/0 5)%"(96)(/0 ﬁ(g)d;) dx) §C</O wk(x)ﬁk(x)dx>

holds for all measurable /# > 0 and the constant C is independent of / (here 1 < k < 00).
The characterization reduces to the condition that the nonnegative functions % and w
satisfy

o0 1/k X . 1/k* k
sup(/ S)fk(g)dg> (f ok (g)dg) =K<oo, k¥=-—,
x>0 x 0 k -1

and K < C < KkYk(k*)VK"

In [7], Bradley gave new characterizations of weights such that the general inequality

%) x 1/ %) 1/k
(fo NR1(x) (/0 h(g)d;)qu> ! < C(/O oF () (x) dx)

holds for all measurable /i > 0 and the constant C is independent of /i (here 1 <k < g <

00). The characterization reduces to the condition that the nonnegative functions % and
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w satisfy

00 1/q x 1/k*
sup(/ mq(g)dg) (/ w-k*(g)dg) K <o,
x>0 X 0

and K < C < KkY4(k*)Y% for 1 <k <g<ooand K = Cif k=1 and ¢ = co.
In [3], Arino and Muckenhoupt characterized the weight function such that the inequal-

ity
00 c k 00
/ w(g)(l / h(x)dx) de<C / () () de )
0 S Jo 0

holds for all nonnegative nonincreasing measurable function / on (0, c0) with a constant
C > 0 independent on % (here 1 < k < 00). The characterization reduces to the condition
that the function ¢ satisfies

00 B I
/ if)dxf —k/ @(x)dx forall ¢ € (0,00) and B > 0.
4 X S 0

In [12], Sinnamon characterized the weights such that the inequality

b x q 1/q b 1/k
(/ %(x)(/ h(g)d§> dx) < C(/ () (x) dx)
1) 50 50

holds for all measurable & > 0 and the constant C is independent of /i (here 0 < g <1<k

and % = é - %). The characterization reduces to the condition that the nonnegative func-

tions N and w satisfy

b b rlk x , rIk’ k
/ (/ ?Tt(g)dg) (/ 'K (g)dg> Nx)dx=K <00, k' =-—.
so \Jx so k-1

For the discrete case, however, Bennett and Erdmann [4] characterized the weights such

that the inequality
oo 1 n k oo
n\ — <C nk) 1<k ) 2

holds for all nonnegative nonincreasing sequence z,. The characterization reduces to the
condition that the nonnegative sequence ¢, satisfies

oo B n
Z—;Dl,: == E ¢r forallmeNandB>O0.
k n
k=n k=1

In [8], Gao extended the results of Bennett and Erdmann and characterized the weights

such that the inequality

oo n k 00
> 1% (Z ﬂka) <C> puz, k=1, )

n=1""" \k=1 n=1
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holds for all nonnegative and nonincreasing sequences z,, and 4, with a; > 0, where the
constant C is independent of a,, and z,,. The characterization reduces to the condition that

the nonnegative sequences a, and ¢, satisfy

q)k kZ(pk forallm e Nand B> 0,

k=n k ” k=1

where A, =Y }_; ax.

In this paper, we are concerned with proving some dynamic inequalities on time scales;
see [1, 2]. The general idea is to prove our results where the domain of the unknown func-
tion is a so-called time scale T, which is an arbitrary nonempty closed subset of the real
numbers R. In [11], the authors characterized the weights such that the dynamic inequal-

ity
b o(x) 1/ b 1/k
( / ?R(x)( / h(g)Ag)qAx> qu( / v(x)hk(x)Ax) (4)
S0 [90] S0

on a time scale T holds for all nonnegative rd-continuous function # on [, b]1 with ¢,
beT, 1<k <g<oo. The characterization reduces to the condition that the nonnegative

functions N and v satisfy

b 1/q o (x) , 1/K k
sup </ ?)’i(;)Ag) (/ vk (g)Ag) =K<oo, kK=-—.
co<x<b \Jx < k-1

Moreover, the estimate for the constant C in (4) is given by

1/q K /K
1<5C5(1+1) (1+—> K.
K q

As a particular case of (4) if k = g, R(¢) = ¢(c)(0(s) — o)™ and v = ¢, then we get the
inequality

b 1 o(x) k b .
[oo(sm=s [ moas) ax=c [ aonwar ®

and the characterization reduces to the condition that the nonnegative function ¢ satisfies

Kk po) UK
o(s) >1/ </ 1K )
¢ " (¢)Ac =K < o0.
§0<x<b< (o) - §0)k S0

Our aim in this paper is to establish some new characterizations of the weights for the

dynamic inequalities of the form (5) and for the general inequalities of the form

/ wﬂ( 0<§)¢(x)h(x)Ax)kA§<D O[] A ()
o X7\, L ’

where T(¢) = f;) Y (x)Ax, 1 <k <o0o,and ¢ > 0.
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The paper is organized as follows. In Sect. 2, we present some definitions and basic
concepts of time scales and prove essential lemmas needed in Sect. 3 where the main re-
sults are proved. Our findings significantly recover particular cases. Indeed, the proposed
theorems contain the characterizations of inequalities (2) and (3) proved by Bennett and
Erdmann and Gao when T = N, whereas they give the characterizations of inequality (1)
proved by Arifio and Muckenhoupt when T = R.

2 Preliminaries and basic lemmas

For completeness, we recall the following concepts related to the notion of time scales.
We refer the reader to the two books by Bohner and Peterson [5, 6]. A time scale T is an
arbitrary nonempty closed subset of the real numbers R.

We assume throughout that T has the topology that it inherits from the standard topol-
ogy on the real numbers R. The forward jump operator and the backward jump operator
are defined by: 0 (¢) :=inf{s € T:s > ¢} and p(¢) := sup{s € T : s < ¢}, respectively. A point
¢ € T is said to be left-dense if p(¢) = ¢, right-dense if o (¢) = ¢, left-scattered if p(5) < ¢,
and right-scattered if o (¢) > ¢. A function z: T — R is said to be right-dense continuous
(rd-continuous) provided z is continuous at right-dense points and at left-dense points
in T, left-hand limits exist and are finite. The set of all such rd-continuous functions is
denoted by Cq(T,R).

The graininess function p for a time scale T is defined by u(s) :=o(s) — ¢ > 0, and
for any function i : T — R the notation /°(s) denotes i(o(¢)). The three most popular
examples of calculus on time scales are when T =R, T =N, and T = ¢"° = {g° : ¢ € Ny},
where g > 1. The derivative of the product /z and the quotient //z (where zz° #0) of two
differentiable functions & and z are given by

M2 hiz-hz?
- = 7)

(hz)® = hPz + hZ® = hz® + h22°, <—
z zz°

In this paper, we refer to the (delta) integral which is defined as follows: If Z*(¢) = z(¢),
then f;o z(s)As := Z(¢) — Z(gp). It can be shown (see [5]) that if z € C.q(T,R), then the
Cauchy integral Z(¢) := f;) z(s)As exists, ¢p € T, and satisfies Z*(¢) = z(¢), ¢ € T. An

improper integral is defined by f;)o 2(c)Ac¢ =limy_, oo f; z(¢)A¢, and the integration by
parts formula on time scales is given by

b b
[ 960086185 = P, - [ 94610 (6)as. ®)
S S

0 0

The time scales chain rule (see [5, Theorem 1.87]) is given by
(z08)%(s) =2 (8(d))8%(s), whered € [5,0(s)], 9)

where it is assumed that z: R — R is continuously differentiable and § : T — R is delta

differentiable. A simple consequence of Keller’s chain rule [5, Theorem 1.90] is given by

1
() =y /O [ () + (1 - h)x(g)]" " dha™(s). (10)
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The Holder inequality, see [5, Theorem 6.13], on time scales is given by

b b AN 1
Ih(g)Z(g)IAgs[ Ih(§)|yA§] [ |Z(g)|”A§] , (11)
S0

S0 <o

where ¢, b€ T, h, z€ Cq(I,R), y > 1, and % + % = 1. The special case y = v =2 in (11)
yields the time scales Cauchy—Schwarz inequality.

Throughout the paper, we assume (without mentioning) that the functions are nonneg-
ative rd-continuous functions on [y, o)t and the integrals considered are assumed to
exist (finite i.e. convergent). We define [co, bl by [0, b]T := [0, 5] N T and call it the time
scale interval. The following lemma is adopted from [11].

Lemma 2.1 Assume that T is a time scale with ¢y, ¢ € T and z € Cyq([5o, 00)T, R*). If
k> 1, then

a(s) k o(s) o(x) k-1
()A>§k ()( ()A) Ax.
(/;o z(x) Ax /go z(x /go z(t)AT x

The following lemmas are needed in Sect. 3.

Lemma 2.2 Assume that ¢, v are nonnegative rd-continuous functions defined on
[60,00). Then

/: <p(§)</:o W(x)Ax) Ag = /: W(§)</g:(g) (p(x)Ax) Ac.

Proof Let Y(c) = f;o ¥ (x) Ax. Applying formula (8) on the term f;)o 0(5)Y(gc)Ag with
R(¢) = T(¢) and w?(¢) = p(c), we see that

/: ¢(§)</§OO w(x)Ax) Ag

- [ eoT@as =T - [T (9as,
S

0 S0

where w(¢) = f;) @(x)Ax. Using w(go) = Y (00) = 0 (recall all integrals are assumed to be
convergent), we obtain that

m(><°° ()A)A: Tt ©ac = [ v (©)a
/gowgfgwxngg[ g]w§§/1/f§w§§

0 S0

= /: 1//(;)(/;@) fp(x)Ax)Ag-

The proof is complete. d

Lemma 2.3 Let ¢,z,v € Cq([50,00)T, RY). If

a(s) a(s)
/ v(s)As < d(s)As  for ¢ € (co,00)T, and
S

0 <o

00 %) (12)
/ v(s)As < P(s)As,
s

0 S0
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then

/ v(c)e(s)Ag < / $(S)z(e) A,
S

0 <o

where z is a nonincreasing function.

Proof Integrating the term f;o v(¢)z(¢)A¢ and using (8) with R(¢) = z(¢) and w?(¢) =
v(c), we have

/ v(s)z(s)Ag = z(s)w(s)% —/ 2(s)e’ (5)As,
50 50
where w(¢) = f;) v(s)As. Using the fact that w(gp) = 0, we get that

00 < 00
/ v(€)2(c)Ac = lim (z(g) / v(s)As)— / A (6)Ac
S g0 S S

0 0 0

L S © a(s)
= §1L1r010<z(g) i U(S)AS) —/;0 z (g)(/;o U(S)AS)Ag.

Using (12) (note that z*(¢) < 0), we obtain
o] S e 9] a(s)
| viertsas < tim (z(g) ¢<s)As> -/ zA(g)( / ¢(s>As)Ag. (13)
50 s 50 1) 50

Applying the integration by parts formula (8) on the term

00 a(s)
f z%g)( ¢(s)As>Ag,
S0 S0

with %2 (¢) =z%(¢) and 0’ (¢) = f;(g) ¢(s)As, we have that
00 a(s) 00
/ z%g)( ¢(s>As> Ag = 2(S)al<)| - / ) (A,
S0 S0 S0
where w(¢) = fgi ¢(s)As. Using the fact that w(gp) = 0, we see that
e o(s) S o0
[P0 ewas)as= tim (s0) [Tawas)- [“eopons.  av
) ) ) )

Substituting (14) into (13), we observe that

/ u())As < [ pe)xc)As.
S

0 <o

The proof is complete. d

Remark 2.1 Note in the above lemma that

lim (z(g) u(s)As) and lim <z(g)/§¢>(s)As>
—>00 G—>00 0

S

S0
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exist since f;o v(s)As and f;)o ¢(s)As are convergent and z € Cq([co, 00)T, R*) is nonde-

creasing.

Lemma 2.4 Assume that , h € Cia([S0, 00)T, R*) and I is nonincreasing and k > 1. Let

o) = —— [ y@hwax and ()= [ yeax
T(g) S0 S0

Then H(c) = h(¢)(h? (¢))*! is nonincreasing on o, 00)r.
Proof Using the quotient rule (7), we get for ¢ € (5o, 00)r that

Y OM)Y(S) =¥ (s) [ ¥ ()h(x) Ax

Re 5
(<) T@T7 (<) =
Since h is nonnegative and nonincreasing, then
13 13
[ venmas=ns) [ vean
) 1)
and then
3
VST - v(s) [ wwhas <o, (16)
)
Substituting (16) into (15), we have that h*(¢) < 0. Since 0%(¢) > o(¢), then h"z(g) <
h?(c) and then
(7)) < [m7 ()] (17)

Using the definition of H and (17), we see that

1

H(¢) = P ()[n ()] < mo) [ ()]
< w1 ()] = H(g),

which shows that H(¢) is nonincreasing. The proof is complete. d

3 Main results
This section is devoted to state and prove our main results.

Theorem 3.1 Assume 1 < k < oo. Furthermore, assume that h is nonincreasing and
fgooo @(c)f(¢)Ac < 0o. Suppose that there is a constant D > 0 with

o o(s)
/ ( - As= (a(g)D— go)k/ ¢(s)As  forall ¢ € (g0, 00)T. (18)
S

o(s) — go)* o

Then

00 1 a(s) k o0
f w(g)(— / h(x)Ax) Ac <KD+ 1) f o)A (19)
0 0(5) =50 Jg S0
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Proof Suppose that (18) holds. Apply Lemma 2.1 with z = 4, and we have that

a(s) k o(s) o(x) k-1
A(x) A <k h A(T)A ) Ax. (20
(/§0 (x) x) /go (x)(/;o T)AT x )

Substituting (20) into the left-hand side of (19), we get that

~ el ([ ‘
/go (0(c) - o)k (/g Mx)“) A

00 a(s) o (%) k=1
<k % [/ F(x) (/ h(r)Ar) Ax]Ag. (21)
S0 <o S0

Applying Lemma 2.2, with

o(x) k-1 X
o (x) = h(®) ( / h(r)Ar) and  y(6) = 9(e)/(o(6) - 0)"
9

0

on the right hand side of (21), we see that

* ¢l ( " )k
-_— A(x)A A
/go (0(5) - o)k /g (max) As
o0 a(s) k=1 o0
o(x) )
h h _—
=k (g)(/;o mAx) </; (U(x)—go)"Ax As

50
a(s) k-1
o IRV 0 )h (fgo h(x)Ax)
_k'/g0 (o(5) - 50) (/; 7(a(x)—go)kAx (¢) o= Ac. (22)

Using the additive property of integrals [5, Theorem 1.77(iv)] on time scales, we have for
s € (G0, 00)r that

[ te-s ([ )

- /:g) (0 - 0) " (/SO@ %Ax) As
) o

+ /go : (o(s) - go)kfl (/0(5) %Ax)As

[l ([ a0
) o

+/§0 ’ (o(s)—go)lH(/g %Ax)As

[ s ([ )

R C)) o(c) .
+<f; mM> /g ) (0() = o) As. 3

Page 8 of 24
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Substituting (18) into the right-hand side of (23), we see that

a(s) 1 00 o)
/go (o(s) - o) </s mAx) As
a(s) 5 a(s) ()
S/go (0(5) - 50)" 1</S ﬁAJOAS
D a(s) a(s) )
+ m (‘/;0 ‘P(x)Ax> lﬂ (O'(S) _ go)k 1AS. (24)

Applying integration by parts formula (8) on the term

a(s) 1 a(s) (%)
/go - ) (/ (o) - go)kA">AS’

with

a(s)
R(s)=T(s) = / ’ &Ax, and v2(s) = (a(s) - go)k_l,

(0(x) = co)*
we get that
a(s) k1 a(s) @(x) o(c) a(s) A .
/go (cr(s) — ;0) (/s mAx) As :T(s)u(s)|§0 - /;0 T2 (s)v?(s)As,

where v(s) = f;o (0(x) = go)* 1 Ax. Using Y (¢) = 0 and v(gp) = 0, we have that

a(s) w1f 79 o(x)
/go - ) </ (a(x)—go)k“)As

o(s)
= f [-T2(s)]v7 (s)As
5

0

o(s) als)
:/g (a(s?(—S)go)k (fg (G(x)_g(’)k_lm)m' )

Substituting (25) into the right-hand side of (24), we get that

a(s) 1 00 go(x)
/g‘o (U (S) - §0) (/S‘ m Ax> As
a(s) &( o(s) o >
: /§0 (0(s) — co)¥ /§0 (6(®)—c0) Ax)As

D o(c) o() ]
+ m (LO ‘P(x)Ax> LO (U(S) _ 5_O)k 1AS. (26)

o(s) k-1 k
/ (00— o) Ax < (0(5) - 0)", 27)
q
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inequality (26) becomes

a(s) 1 0o o(x) a(s)
/go (9~ <o) (fs (0(x) - o)k Ax) As= fgo vAs

a(s)
+ D/ ox)Ax
50

a(s)
=D+ 1)/ ’ o(s)As. (28)
S

0

Applying Lemma 2.2 on the term

e 1 [ ek)
/go (766) = o) ([ WA) as,

we see that
> e [ o)
/go (9~ <o) (/ (o(x)—gwk“)“
00 a(s)
=ng (U(j(f)go)k (fg (U(x)_g")kl“)“ )

From (27) and (29), we have

*© il [ o)
/go (76~ 50) (/ (a(x)—g)k“)“

[e¢]

- /g OO () Ax < (D+1) f o) Ax. (30)

4]

Putting ¥ (x) = 1 in Lemma 2.4, we see that the function

1 a(s) k-1
h h
s I, )

is nonincreasing. Now, by applying Lemma 2.3, with

v(s) = (o(s) - §o)k1<f
S

o]

@(x) ~
mAx> and  ¢(s) = (D + 1)e(s),

and

a(s) k-1
=16 (s [ ax)
S0

we have from (28) and (30) that

> IRET A R C) )h < 1 . )"1
[go (#(6) = 50) (/g o) — o %)) o(g)—gofgo Wax)  As

00 a(s) FL( )A k-1
< (D+1) / w(g)ﬁ(g)[u] ¢
P o(s)—¢o

(31)
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Substituting (31) into the right-hand side of (22), we see that

* els) ols) ,
/go (0(s) - co)k (/;0 Mx)Ax) As

00 a(s)

1 k-1
<k(D+1) / ‘”(g)h(g)[m(/go ﬁ(x)Ax)] Ac

00 1

L z a(s) k-1
k(D +1) wz(g)h(g)[L(g)(/ h(x)Ax)} Ac.

S0 (G(g)_go) S0

Applying Holder’s inequality (11) on the term

o z a(s) k-1
/ [gﬂ(g)h(g)][%([ h(x)Ax)] Ac,
S0 S0

with indices k and k/(k — 1), we get that

> ot (s) (9 T‘l
[CTetona ([ )| as

B

1 k-1
Ak ) ( o )k }k
5</g P (5)“) Ug () soF /g R

Finally substituting (33) into (32), we have that

© e(s) o) g
/go (0(5) - co)f (/g h(x)Ax) As

0 kT poe a(c) k
ko0 [Toort@ac) | [T ([ ) a]
S0 S0 S0

This implies that

0 a(s) k *©
[ &( / : h(x)Ax) As <KD+ 1f [ oo,
. S

» (0(5)=c0)k\Jq, .

which is (19). The proof is complete.

Remark 3.1 In Theorem 3.1 we could replace £ is rd-continuous with 7 is integrable.

Remark 3.2 Suppose that 7 is integrable and also assume that

00 1 o(s) k 00
- - B hk
/go <ﬂ(§)<a(§)_§0 /go (x)Ax) AgEC/gO p(S)(s)Ag

holds for some constant C > 0. Then (34) holds when

{ 1, ifxe[cp,0()]T,
h(x) =
O, lfx é [5‘0,0(5)]%

(32)

(33)

(34)

Page 11 of 24
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for any fixed s € (o, 00)7. For this £, the left-hand side of (34) becomes

> 9(s) ( a(g)h )k (T el9) ( ol )k
/g(, 0 (c) = o /; (ax) As /g 0 (c) = o /; ax) As

~ N[ e(s)
= (06 -5) /g G-l °
> (0(5) - 50)" / %Ag, (35)
and the right-hand side of (34) now becomes
') o(s)
C () (g)ag=C (5)Ag. (36)
/;0 ps S)AG /;0 P\S)AG

From (35) and (36), we obtain

a(s)

k[ es)
(0(5)—5‘0)/S mAS‘SC/gO v(s)Ag,

and then

> @(s) C al(s)
| o= vo-a /g v

For particular cases of Theorem 3.1, we have the following results.

Remark 3.3 In the case when T = R, inequality (19) in Theorem 3.1 reduces to the con-

tinuous inequality (1) of Arino and Muckenhoupt [3].

Remark 3.4 In the case when T = N, inequality (19) in Theorem 3.1 reduces to inequality
(2) of Bennett and Gross—Erdmann [4].

Remark 3.5 If o(¢)=1,k>1,and 0(;)_;();0 < K for ¢ € (go,00)T, we see that inequality (18)
holds with

Kk—l
k-1

37)
Applying the chain rule formula (10), we see that

(6= ™) 2 k= 1D(o ) - 50)
and therefore

% 1 s < 1 o -1 )AA
/g (0(s) — co)f S—k—lfg <(5—§0)k‘1 :

- Kk-1 1
T k=1(0(s) - o)t
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Thus we get the inequality

©/ ] o(s) k Kl Nk poo
- h kk< ) hk )
fgo <O(§)—§o /go (x)Ax> Ag =K\ g7 +1 /go (5)Ag (38)

Remark 3.6 In the case when T =R and ¢y = 0, then K =1 in the previous remark and

from (38) we have

© /1 < k k2 k  poo .
[7(2 [[rmax) as < () [Tt

which is a Hardy-type inequality with constant (k*/(k — 1))* (see [9]).

Theorem 3.2 Assume that k > 1 and ¢ > 0. Furthermore, assume that h is nonincreasing

and

/ P()N ()17 ()] “Ag < 0.
S

0

Suppose that there is a constant D > 0 with

o0 D a(s) .
/ [Ti(:;))]c Ax < W/ (p(x)[T"(x)]k Ax  forall ¢ € (go,00)T; (39)
S S0

here Y(c) = f;i Y (x)Ax. Then

o o(o) k
[, ([, vemens) as
S0 S0

<KD+ 1) / o[ 17 ()] As. (40)

S0
Proof Suppose that (39) holds. Apply Lemma 2.1 with z = /i, and we get that
a(s) k ao(c) o(x) k-1
< w(x)h(x)Ax> < k/ w(x)h(x)[ w(r)h(r)Ar] Ax. (41)
S0 ) S0
Substituting (41) into the left-hand side of (40), we get that

0o als) k
[ recr( [ venmar) ac
<o <o

® 9(c) ( a(s) . ( o (%) . )kl )
<k /g Foop (L vene( [ von@ar ) ax)as. (42)

Applying Lemma 2.2 on the term

) a(s) a(x) k-1
fgo [T‘i(fg))]c<gogvf(x)h(x)(/go wr)h(r)m) Ax)Ag,
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we have that

00 a(s) o(x) k-1
/go [T(i)’((i'))]c</§0 ’ w(x)h(x)( i w(t)h(t)Ar) Ax)Ag

o0 a(s) k-1 00
_ @(x)
- /g w(g)h(g)(/m z/f(r)h(r)m) (/g [Ta(x)]cA">A5' (43)

Substituting (43) into (42), we obtain

) a(s) k
I [Ti((g)nc( Vs e
S0 S0

<[ v (/ VOnoA )H(/gm e &) s

k[ v (fg [Tg(x)]cm)h@)( L Ac. (49)

Using the additive property of integrals [5, Theorem 1.77(iv)] on time scales, we see for

any ¢ € (o, 00)T that

/g RCEl (/ et Ax) ae
:f: volrew)” ( : PG +/ . [Ti((fc))]cm>“
/ o176 (/ [W(’“)C s
. / yE[ 6] ( )s
/g el (/ Tﬁ(f ) )S
+( : [TG(x) )/g vOPrer A )

Integrating the term

a(s) o kel a(s) o(x)
[, vorro T e

using the parts formula (8) with

a(s)
N(s) = D(s) = / (Tﬁ((x}:))c Ax and ?(s) = w(s)(T”(s))k_l,

Page 14 of 24
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we have that

a(s) o k-1 o(s) @(x)
/;0 lﬁ(s)(T (s)) [/s 0" ij|As

a(g)
= D(s)(s)| 7 — / D2 (s)w? (s)As,
S0

where w(s) = f:o V(%) (Y7 ()1 Ax. Using ®°(¢) = w(go) = 0, we get that

a(s) o ko1 o) g(x)
[ oo [ g

a(s)
= f [-D%(s)]w” (s)As
S

0

o(s) o6
- / (T‘i((sz))c ( / W (x) (Y (x))k_le> As. (46)
S0 S0

Substituting (46) into (45), we have that

a(s) o ke ® o(x)
/go verrTe)] (/ [TU(x)]CM)AS

a(s) (p(S) a(s) i .
S'/';0 (TU(S))C< @ 17D(&‘C)(T (x)) Ax)As

00 a(s)
' (/g [Ti(g)]c“> /g O E] T As (47)

Note

o(s) 1
/ ¥ (x) (T" (x)) Ax
S

0

a(s)
:/glp(x)(T"(x))k_le+/ ’ w(x)(T”(x))k_le
s s

0

s k-1 k-1
= | v@(YW) T Ax+ () ()(T(s))

S0
S o(s)

- / Y @) (Y7 (%) Ax+ (T7()) ! / (%) Ax. (48)
S0 S

Since Y2(¢) = ¥(¢) > 0 and o is an increasing function, we have (for x < ¢) that o'(x) <
o(¢), and then Y7 (x) < Y (¢), and then (Y? (x))*! < (T?(¢))*!. Therefore

S S
/ @17 () Ax < (17 () / Y @A, (49)
S0

S0
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Substituting (49) into the right-hand side of (48), we have that

a(s)
/ @) @) ax
S0

IS a(s)
< (r°(e) /g Y Ax+ (1°(c)) /g Vx)Ax

(

o
k-1 k

<)
=(17(s)) Yx)Ax=(T7(s))"

S0

Substituting (50) into (47), we obtain

a(s) o k-1 ® o(x)
[, votreon™ ([ peggees) s

S0

Substituting (39) into (51), we get that

a(s) . 1 ® o(x)
1/f(s)[T (s)] (fS [T“(x)]CAx>AS

S0

a(s) a(s)
= [ el asen [ pmre @) ax

S0 S0

a(s)
~(D+1) / o(s)[ T (5)] " As.
S

0

Applying Lemma 2.2 on the term

> onk1{ [ o)
/go vOrTTe)] (/ [Ta(x)]cM)AS’

we have

* onk-1f [ o)
/go VL] (/ [w(x)]fo>AS

) a(s)
= / [T(’;(Z:)]C ( w(x)[T”(x)]kle) As.
1) S0

From (50) and (53), we see that

* orntk1{ [ o)
/go vorrTe)] (/ [T“(x)]cM)AS

< /g OO pO[T° ()] s

<(D+1) / ~ o(5)[ 17 (5)] " As.
S0

a(s) o ke © p(x) . .
< [ e ) s ([ gEogar) (7))

Page 16 of 24

(50)

(51)

(52)

(53)

(54)
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Since from Lemma 2.4, the function

1 a(s) k-1
n(g)(TU(g) ) w(r)h(r)Ar>

is nonincreasing, then by applying Lemma 2.3 on the term

0

with

[e¢]

v(©) = [T ()] ( | Ax), #() = (D + V([ T°(<)]
S

and

f;(g) Y(T)h(t)AT >k—1

z(c) = h(g)( o)

we get from (52) and (54) that

/go [m)[r ©)] (/ [Tn(x)]cm)}h@)( e Ac

m>klAg

<D+ 1)/ go(g)[T”(g)]k_ch(g)( ()
S0

o(

00 1 ) k-1
—(D+1) / o [T7(5)] “h(;)( w(r)h(r)m) Ac.
q

0 S0

Substituting (55) into the right-hand side of (44), we have that

00 a(s) k
f [T‘i(é))]c( ‘”(x)h(x)Ax) As
S0 S0

00 e a(s) k-1
<kD+1) / o[ ()] h(g)( w(rm(r)m) Ac
S0

S0

© o ([T9v@n@ankt
=k(D+1)/ ¢F (5) Jo ¥ Tk_lr Pk ()T (5)]
S0 (Yo ()%

ke
K Ag.

Applying Holder’s inequality (11) on the term

<o

- o[ ()] T ]Ac,
[Ye ()7 ][ el

* i [C e@ f;‘;%(r)h(r)m)k—l
7 R(o) = )
fg [w(g[r ©)] (fg [Tg(x)]ch)} (g)( i A

(55)

(56)
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with indices k and k/(k — 1), we see that

o (<) k-1

¥ (2)h(r)AT) ) &
/[q)kk o V0 tklr ][wk(g)h(s>[T”(§>]k]A§
S0

[ ()1
(/oo[kk (fgo ¥ (1)h ) >-1]AA§)T
5o [ ()]

x ( / [0} ([ 1" (s >]kk”]kAg)F
S

0

1

o ([T9Dy@n@Aark T e o \}
—(/ oo fa YDA Ag)k (/ w17 ()] Ag)k. (57)
S S

0 (Yo (o)l 0

Finally, substituting (57) into the right-hand side of (56), we obtain

oo o(s) k
/ [T‘i(é))]c< "’(x)h("mx> As
S0 S0

TGV IOV LN
Sk(D”)(/go O Ag)

x (/ w(g)ﬁk(g)[T"(g)]k_CM)k,
S0

and then

/"“ o(s) ( ”(g)w(x)h(x)Ax)kAg<kk(D+1)kfm¢(§)hk(§)[T"(§)]kCAS‘
@ [Ta(g)]c % - S0 ’

which is (40). The proof is complete. g
Remark 3.7 In Theorem 3.2 we could replace 7 is rd-continuous with £ is integrable.

Remark 3.8 Suppose that & is integrable, and also assume that

o o(s) k 00

holds for some constant D > 0. Then (58) holds when

h(x) _ 1’ X € [S‘O:U(S)hr,
0, x¢/[s0,0()r,

for any fixed s € (o, 00)7. For this % in (58), we obtain

* w(s) < o) A)"A 5 a(s) ot .
/;o REGIAVA V(%) Ax g = —/§0 ‘/’(5‘)[ (§)] S. (59)

Page 18 of 24



Saker et al. Journal of Inequalities and Applications (2021) 2021:73

Note
> 9(s) ( o) ) > 9(s) ( o) )k
fgo roor\ ), VWAx) As= / reoF\ ), Veax) as
“ ()
(0 vix )f ro(oF e

- [T”(S)]k/s [Ti(é))]c as

From (59) and (60), we have that

© (s D [ -

As a particular case of Theorem 3.2 when k = ¢, we have the following result.

(60)

Theorem 3.3 Assume that 1 < k < co. Furthermore, assume that h is nonincreasing and

f;o @(c)f(¢)Ac < 0o. Suppose that there is a constant D > 0 with

© o) D o(s) ‘
/g (Y? () Ax = W/;o gx)Ax forall g € (Go,00)T;

here Y(¢) = f;’ ¥ (x)Ax. Then

/Do ﬂ( " I/f(x)h(ac)Ax)kAs‘ <KD+ 1)k/oo‘/’(§)hk(§)A§
o (T, - o

(61)

(62)

Theorem 3.4 Assume that 1 < k < oo and ¢ > 0. Furthermore, assume that h is nonin-

creasing and

~ ek,
/go o) e )As <oo.

Suppose that there is a constant D > 0 with

00 D a(s) Y k
/ 5% Ars m(;»k/ “’(")(@((fc))) Ax Joralls € (o000
¢ [40)

here O(c f Y (x)Ax and Y (¢ fg x)Ax. Then

04(s) 0<(s)

0

00 a(s) k *© 17 ,
/ o(s) ( w(x)ﬁ(x)Ax> Ac Skk(DJr l)k/ gD(g)ﬂhk(g)Ag.
S0 S0 .

Proof Suppose that (63) holds. From (41), the left-hand side of (64) becomes

o0 o(s) k
/ gf(gg)) ( ¥ () h(x) Ax> Ac
S0 S0

* 0(c) a(s) o(x) k-1
§k/§0 @C(g)( i w(x)h(x)< . w(r)h(r)At) Ax)Ag.

(63)

(64)

(65)

Page 19 of 24
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Applying Lemma 2.2 on the term

00 a(s) o(x) k-1
/| s A vt A vonat)  ax)as,

we have that

0 a(g) o(x) k-1
| & [ / w(x)h(ao( w(r)h(r)Ar) Ax}Ag
S0 S0 S0

o a(s) k-1 o0
p(x)
= A M)A
[Cuema( [ vonmar) (/g 4 ax)as

[ o i1 [ e J2 ()h(r) AT\ k1
_/go v()(r7(s)) (/g @C(x)Ax)h(g)(TG—(g)> Ac. (66)

Substituting (66) into (65), we see that

o a(s) k
&S vomene) ac
S0 S0

<k i 1/’(5‘)(T (5‘)) (/; @C(x)Ax>h(g)( T Ac.  (67)

Using the additive property of integrals [5, Theorem 1.77(iv)] on time scales, we obtain

for any ¢ € (¢p, 00)7 that

o(g) o)
) ’ 1#(5)(T"(s))k_1( / (j)”(g) Ax)As

~ o(s) o kel (s) 7e)
_/;0 1/f(s)(T (s)) (/S 0w Ax) As
o ok-1f [T e
R /g P (T°(s) ( / e Ax)As

a(s) o kel a(s) o(x)
§/§0 Y (s)(Y(s)) (/S )Ax>As

O°(x
7 ookt [T 9@
+/§0 Y (s)(Y7(s)) (/g e Ax)As. (68)

Integrating the term

a(s) . k1 a(s) @(x)
/go W(s)(T (s)) (/S o) Ax) As,

using the parts formula (8) with

o(s)
RN(s) = Bs) = / i (:;’6(2) Ax, and ()= p()(T7(5)

Page 20 of 24
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we have that

a(s) a(s) a(s)
/g 0 } w(s)(T”(s))k_l( / : gfz;)) Ax)As=q>(s)w(s)|ggs>— /g O " 05 (907 (5)As,

where w(s) = f;o ¥ (x)(T° (%)) Ax. Using ®°(c) = w(gp) = 0, we get that

a(s) o kel a(s) @(x)
[ vonre) ( [ 8 )
f w?(s)As
/go o) </§O W x) T”(x)) Ax) (69)
Substituting (69) into (68), we obtain
o(g) o)
/ e @) ( / (j)"fz‘)) Ax)As
S0 s
< / o) ( / ¥ () (17 () Ax)As
)

o(x) o(s) o k1
+</§ @C(x)Ax> W(s)(T (s)) As. (70)

S0

2

Substituting (63) into (70), we get that

a(s) . el ® o(x)
o) (|7 &2 ax)as
a(s)
([ )
0

o(s)
<.
D (7 DN 7 e 9) A 71)
+(Tv(g)>k(/;o e ") L YOTE)as

Substituting (50) into (71), we have that

a(s) o ko1 ® p(x)
/go w(s)(T (s)) </; @ Ax)As

a(s) o(s) . X a(s) (Ta(x))k
5/§0 @C()(T (s)) As+D/§O o(x) o) Ax

(D+1)‘/§0

Applying Lemma 2.2 on the term

> o k1 [ o)
/;o vere) (/ @c&)“)“’

[r7(s)]* (72)

Page 21 of 24
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we observe that

* ornk1{ [T o)
/go V) </ @c@)“)m

o] o(s)
T8 ([ et ax)as o)
Y S0

Substituting (50) into (73), we see that

*® okt [ o) ©@S) e, vk
/; ¥ (s)(Y7(s)) (/S @C(x)Ax>As§/; @C(s)[T )] As

0 0

oo

<(D+1) / o) [T (9] As. (74)
S0

Since from Lemma 2.4 the function

1 a(s) k-1
h(§)<Ta(g) ) w(f)h(f)m)

is nonincreasing, then by applying Lemma 2.3 with

v = v @) [T &l o0 -0r 0 E (),
S

and

f;(g) Y(t)h(t)AT >k—1

z(c) = h(;)( o)

we obtain from (72) and (74) that

a(s) _
S A P (O)h(r)AT\ A
¥ (17 ()" 1( / v Ax)h(g)(u) Ac
S

o o) ()
% o) o ko [ JEDWERE) AT
<(D+1) /g S (1) h(g)(w—(g)) Ac. (75)

Substituting (75) into (67), we have that

00 a(s) k
/ —gc((gg)) ( ¥ (x)h(x) Ax) Ag
) S0

a(s) _

o0 (O)h(r) AT\ k1

R T Gl
S0

~T ko), ][ 6% (g) ( 76 )k'l]
= k(D A A .
(D+1) /g [@z(g)T e || L fg yOhoAT)  |As. (76)

Applying Holder’s inequality (11) on the term

oo 1 = a(s) k-1
f [‘”Z(g’ T”(g)ﬁ(g)} [‘”(kil,(g) (/ w(r)h(r)Ar) i|Ag,
s LOK(s) O F (¢) Ve
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with indices k and k/(k — 1), we see that

k-1

sop 1 ki o (s) k=
/ [sok(g) Ta(g)h(g)}[%( w(f)h(f)m) :|A§
O * (¢) \so

1

[ ok(c) - T )k
< C e h A
_</§0 [@k(g) (e)s) | Ag
00 k1 o(c) k=19 25 k-1
X (/ [Lc(kk_l)(g) ( ’ w(r)h(r)m> ]k Ag) ‘
0 £ (c) \Weo

([ 0S) e Nk )
-(/ S @) o)A

> o) ( (9 CONE
X (/;0 @C(g)< : w(r)h(r)At) Ag) . (77)

Finally, substituting (77) into (76), we obtain

©)

00 a(s) k
/ gf(gg)) ( V() Ax) Ac
S0 S0

<k(D+ 1)( / g(f;) (T"(g>)khk(g)Ag) '
S0

* 0(s) ([ «
X (/;0 @C(g)( : w(r)h(r)At> Ag)

This implies that

k-1
k

> () o) ‘ k f 7 0(8) e, Wk
/§0 @C(g)( . W(x)h(x)Ax) Ag <K(D+1) /s‘o @C(g)(T () 1 (s)As,

which is (64). The proof is complete. d

Remark 3.9 In Theorem 3.4 we could replace £ is rd-continuous with % is integrable.

Remark 3.10 Suppose that £ is integrable, and also assume that

oo a(s) k o e k
/ gc((gg))( W(x)h(x)Ax> Ag =D / #(<) (Ec(é ))) ic)Ag (78)
S0 S0 <0

holds for some constant D > 0. Then (78) holds when

B = L x€lso0)lr
O) xé[go;U(S)]T,
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for any fixed s € (o, 00)7. For this %, note

* () (Y )k (”@ )k * (s)
/go ®C(§)(§0 vx)Ax ) Ag /go ¥(x)Ax /S @c(g)A

(TG(S))I(/ ®(s) Ac,

04(s)

A%

SO

oo a(s) o k
/ 90(§)A __D / (T7(s)) Ac

o0 SR ), Y9 e

4 Conclusion

In this paper, sufficient conditions are established to prove the boundedness of Hardy’s op-
erator in a certain class of weights. The results are obtained in general platforms, so the ob-
tained characterizations of the weighted functions contain the characterization of Arino
and Muckenhoupt weights when T = R and the characterizations of Bennett—Erdmann
and Gao weights when T = N.
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