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1 Introduction

The variational inclusion in Hilbert space H can be stated as
Find x € K such that x € (M + F)~}(0), (1)

where K is nonempty closed, convex subset of H, M : K — H is an operator and F : H = H
is a set-valued operator and (M + F)~1(0) is the set of zeros of M + F. If M = 0, then the
inclusion problem (1) reduces to

Find x € K such that x € F71(0). (2)

For a set-valued maximal monotone operator F : H = H in Hilbert spaces, problem (2)
was studied by Rockafellar [20]. The iconic method to solve the inclusion problem (2) is
the proximal point method which was first suggested by Martinet [15] and later general-

ized by Rockafellar [20]. Many mathematical problems arising in nonlinear analysis such
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as optimization, variational inequality problems, economics and partial differential equa-
tions are reduced to the inclusion problem (2). Therefore, in the recent past, many authors
have extended and generalized the inclusion problem (2) in different directions; see, for
example, [1, 3,4, 8,9, 11-14, 22, 24, 26] and the references therein.

The fixed point problem of a nonexpansive self mapping 7": K — K can be stated as

Find x € K such that x € Fix(T). (3)

The common solution of fixed point problem (3) of a nonexpansive self mapping 7" and
variational inclusion problem (1) discussed by Takahashi et al. [24] in Hilbert spaces,
which is defined by

Find x € K such that x € Fix(T) N (M + F)~1(0). (4)

Later, Manaka and Takahashi [14] studied problem (4) with nonspreading mapping T
in Hilbert spaces. Very recently, Al-Homidan et al. [1] extended the work of [14, 24] to
Hadamard manifolds settings. Moudafi [16] introduced the viscosity method to study the
hierarchical variational inequality problem which consists of a contraction mapping f over
a nonempty closed convex subset Fix(T) in Hilbert spaces, that is,

Find x* € Fix(T') such that <x* —f(x*),x* - x) <0, VxeFix(T). (5)

If the set Fix(7T') is a nonempty closed and convex subset of H, then problem (5) reduces
to the following equivalent form:

Find " € Fix(T) such that x* = Pix(nf (x*), (6)

where Prix(r) denotes the projection onto Fix(T').

Xu [27] extended hierarchical variational inequality problem (6) to uniformly smooth
Banach spaces. The advantage of this method is that it allows us to replace the fixed point
set by some nonlinear problems which satisfy various variational inequalities. Very re-
cently, Al-Homidan et al. [2] used this idea to extend the viscosity method for hierarchi-
cal variational inequality problem involving weakly contraction mapping and discussed
its several cases on Hadamard manifolds. During the last ten years, many problems in
nonlinear analysis such as fixed point problems, variational inequality problems, equilib-
rium problems and optimization problems have been transformed from the linear spaces,
namely, Banach spaces, Hilbert spaces to nonlinear spaces because of their applications in
many areas of sciences; see [1-3, 5, 8—13, 18, 25] and the references therein.

Inspired by the work discussed in [1, 2, 14, 16], our motive is to present the viscosity
method for the following hierarchical variational inequality problem (HVIP) involving ¢-
contraction mapping in the framework of Hadamard manifold M:: Find x* € Fix(T) N (M +
F)~1(0) such that

N(expy f(x*),expyt ¥) <0, Vx € Fix(T) N (M + F)7(0), )

where 0 is a zero tangent vector, K is a nonempty, closed and convex subset of Hadamard
manifold M, f : K — K is a ¢-contraction mapping and 7 : K — K is a nonexpansive
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mapping with Fix(T) # ¥, M : K — TM is a single-valued and F : K = TM is a set-valued
vector field such that (M + F)~1(0) # @, %(., -) is a Riemannian metric and exp™ is an inverse
exponential mapping. Equivalently, problem (7) can be written as: Find x* € Fix(T) N (M +
F)7(0)

such that * = Priyrynansr-10)f (x*)

The rest of the paper is organized as follows: The next section consists of some prelim-
inaries and auxiliary results of Riemannian manifolds. In Sect. 3, we propose a viscosity
method to solve considered HVIP and establish a convergence result of the considered
method. Some special cases and an application to nonsmooth optimization problem are
also discussed in the subsequent sections that extend and improve some existing results in
linear spaces and in Hadamard manifolds. In the last section, we analyze the convergence
of the proposed viscosity method by some computational numerical experiments.

2 Preliminaries

Let M be a finite dimensional differentiable manifold. For any element g € M, we denote
the tangent space of M at g by T,M and the tangent bundle by TM = | gem TqM. The
tangent space T,M at g is a vector space and has the same dimension as M. An inner
product N, (-, -) on T,M is the Riemannian metric on T,M. A tensor R(-,-) : g — R,(-,-)
is called a Riemannian metric on M, if for each g € M, 3,(-,-) is a Riemannian metric on
T,M. We assume that M is endowed with the Riemannian metric fi,(-, ) with the corre-

sponding norm || - ||, to be a Riemannian manifold. The angle between 0 # x, y € T, M,
Ny(-)

Nyl
Nq(- ) =N(,-) and Z,(x,y) = Z(x,y), where 0 is a zero tangent vector.

denoted by Z,(x,y) is defined as cos Z,(x,y) = For simplicity, we denote || - ||, = || - II,
For a piecewise smooth curve y : [a,b] — M joining g to r (i.e. y(a) = g and y(b) = r),
the length £ of y is defined as

b
L(y) = / Hy’(s) || ds, where y'(s) € T yM, for all s € [0,1].

The Riemannian distance d(g, r) induces the original topology on M, minimize the length
over the set of all such curves joining g to r.

Let V be the Levi-Civita connection corresponding to Riemannian manifold M.
A smooth mapping U : Ml — TM is said to be single-valued vector field, if for each g € M,
a tangent vector U(q) € T,M is assigned. A vector field U is said to be parallel along a
smooth curve y if AU =0.1f y’ is parallel along y, i.e., V() ¥'(s) = 0, then y is called
geodesic and in this case ||y’|| is constant and if ||y’|| = 1, then y is said to be normalized
geodesic. A geodesic joining g to r in M is called minimal geodesic if its length is equal to
d(g,r).

A Riemannian manifold is said to be (geodesically) complete, if for any g € M, all
geodesics emanating from g, are defined for all s € (=00, 00). We know by the Hopf-Rinow
theorem [23] that, in a Riemannian manifold M, the following are equivalent:

(1) M is complete,

(2) any pair of point in M can be joined by a minimal geodesic,

(3) (M, d) is a complete metric space,

(4) bounded closed subsets are compact.
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Let y : [0,1] — M be a geodesic joining g to r. Then

d(y(s1), 7 (s2)) = Is1 — s2ld(gq,7),  Vs1,82 € [0,1]. 8)

Assuming M is a complete Riemannian manifold, the exponential mapping exp, :
T;M — M at q is defined by exp, () = y»(1,49) for each ¥ € T,M, where y(:) = y5(-,q)
is the geodesic starting at g with velocity 9 (i.e., y(0) = 0 and y’(0) = ¢). We know that
exp,(s?) = y»(s,g) for each real number s. One can easily see that exp, 0 = y» 0;9) = q.
The exponential mapping exp, is differentiable on T, M for any g € M.

A complete, simply connected Riemannian manifold of non-positive sectional curvature
is called Hadamard manifold. From now on, we will suppose that M is a finite dimensional
Hadamard manifold.

Proposition 1 ([23]) Let M be a Hadamard manifold. Then exp, : T,;M — M is diffeo-
morphism for all g € M and for any two points q,r € M, there exists a unique normalized
geodesic y : [0,1] — M joining q = y(0) to r = y(1) which is in fact a minimal geodesic
denoted by

y(s) = expxsexp’ly, Vs € [0,1]. 9)

A subset K C M is said to be convex if for any two points g,r € K, then any geodesic
joining g to r is contained in K, that is, if any y : [4,b] — M geodesic such that g = y (a)
and r = y(b), then y ((1 —s)a + sb) € K for all s € [0, 1]. From now on, K C M will denote a
nonempty, closed and convex subset of a Hadamard manifold M. The projection mapping
onto K is defined by

Pi(q) = {reK:d(q,r) <d(q,p),VpeK}, VqeM. (10)

A function g : K — R is said to be convex if for any geodesic y : [a, b] — M|, the compo-
sition function g o y : [a,b] — R is convex, that is,

(go y)(as +(1 —s)b) <s(goy)a)+(1-s)(goy)bd), Vse[0,1]andVa,beR.

Proposition 2 ([23]) The Riemannian distance d : M x Ml — R is a convex function with
respect to the product Riemannian metric, i.e., given any pair of geodesics y; : [0,1] — M
and y, : [0,1] — M, the following inequality holds for all s € [0,1]:

d(y1(5), v2(s)) < (1 = 5)d(11(0),12(0)) + sd(y1(1), y2(1)). (11)
In particular, for each q € M, the function d(-,q) : Ml — R is a convex function.

If Ml is a finite dimensional manifold with dimension #, then Proposition 1 shows that M
is diffeomorphism to the Euclidean space R”. Thus, we see that M has the same topology
and differential structure as R”. Moreover, Hadamard manifolds and Euclidean spaces
have some similar geometrical properties. We describe some of them in the following
results.
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Recall that a geodesic triangle A(g1,¢5,g3) of Riemannian manifold is a set consisting
of three points g1, g, and g3 and the three minimal geodesics y; joining g; to gj.1, where
j=1,2,3 mod (3).

Lemma 1 ([13]) Let A(q1,92,93) be a geodesic triangle in Hadamard manifold M. Then
there exist gy, qy, qy € R* such that

, o dqug) = |ay - a5l and dlgs.q1) = | a5 - 4} ]|

d(q,92) = |4, - 4>

The points g, q>', q5 are called the comparison points to q, 42, g3, respectively. The triangle
A(g}, g5, q5) is called the comparison triangle of the geodesic triangle A(q1, g2, q3), which is

unique up to isometry of M.
Lemma 2 ([13]) Let A(q1,q2,q3) be a geodesic triangle in Hadamard manifold M and
A(G}, g5, q5) € R? be its comparison triangle.

(i) Let O, @, ¥ (respectively, 0', ¢', ¥') be the angles of A(q1,q2,q3) (respectively,

A(g},q5,q3)) at the vertices (q1,q2,q3) (respectively, 4y, q5, q5). Then the following
inequality holds:

0 >0, o' >0, ¥ >

(i) Let p be a point on the geodesic joining q to g, and p' be its comparison point in the
interval [q, q5). Suppose that d(p,q1) = |p’ — ¢4 || and d(p, q2) = ||lp’ — q5||. Then

dp.q3) < ¥ - 4]
Proposition 3 (Comparison theorem for triangle, [23]) Let A(q1,92,93) be a geodesic tri-
angle. Denote, for each j = 1,2,3 mod (3), by y; : [0,;] — M the geodesic joining q; to gj.1
and set [; = L(y;), ay = 4()//(0), —)/j/_l(lj_l)). Then
o] +oy+a3 <, (12)

112 + lj2+1 — 21j1/+1 COS jy1 < ljz_l. (13)

In terms of distance and exponential mapping, the above inequality can be rewritten as
2 2 g -1 -1 2
d*(g qj1) + d*(Gju1, Gju) — 29 (expy | G eXPy | dji2) < d°(qj-1,4)) (14)
since
m(exp;jil gjs eXp;j1+1 gj+2) = d(j> 4j11)A(qjs15 Gjs2) COS i1 (15)

Proposition 4 ([25]) Let K be a closed convex subset of a Hadamard manifold M. Then
Py (q) is a singleton for each q € M. Also, for any point q € M, the following assertion holds:

f)i(exp;}((q) q, expl_,}((q) r)<0, Vrek. (16)
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The set of all single-valued vector fields M : Ml — TM is denoted by Q2(M) such that
M(g) € T,(M) for all g € M. We denotes y (M) the set of all set-valued vector fields F :
M = TM such that F(g) € T,(M) for all g € D(F), where D(F) is the domain of F defined
as D(F) ={g e M: F(q) # ?}.

Definition 1 ([12, 17]) A single-valued vector field M € (M) is said to be

(i) monotone, if for all ¢,r € M,
SR(M(q), exp;1 r) < ﬂf(M(r), - exp;1 q);

(i) a mapping T': K € M — M is said to be firmly nonexpansive, if for all ¢, € K, the
mapping ¢ : [0, 1] — [0, oo] defined by

o(s) = d(equsexp; T(q),exp,sexp;1 T(r)), Vs € [0,1],
is nonincreasing.

Firmly nonexpansive mappings are nonexpansive; see [12].

Definition 2 ([7]) A set-valued vector field F € x (M) is said to be monotone, if for all
g,r € D(F),

R(u, exp;1 r) <%(v,- exp; ! q), Vu€F(q),VveF({).

Definition 3 ([12]) Let F € x(M). The resolvent of F of order A > 0 is set-valued mapping
JF : M = D(F) defined by

Ji(q)={reM:qeexp,AF(r)}, VYqeM.

Theorem 1 ([12]) Let A > 0 and F € x(M). Then vector field F is monotone if and only if

JE is single-valued and firmly nonexpansive.

The following ¢-contraction mapping was introduced by Boyd and Wong [6] in the set-

ting of metric spaces.

Definition 4 ([6]) A mapping f : M — M is said to be a ¢-contraction, if

d(f(q@).f(r) < ¢(d(q,7)), Vq,reM,

where ¢ : [0, +00) — [0, +00) is called a comparison function; it satisfies the following con-
ditions:
(i) ¢(s)<sforalls>0;

(ii) ¢ is continuous.

Remark 1
(i) ¢(s) =1In(1 + s) for all s > O satisfies the conditions (i)—(ii).
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(ii) If ¢(s) = os for all s > 0, where o € (0, 1), then f is a contraction mapping with
Lipschitz constant g.
(iii) ¢-contraction mappings are nonexpansive.

We recall some facts from [21], which will be used in the sequel.
(a) For any g, € R" and « > 0, following inequality holds:

e + (1 =) * = €2llgll® + (A = i) 171 + 26c(1 = ) (g, 7). (17)

(b) If{a,} S [0,1) is a sequence of real numbers, then

o0 o0
Zay,:+oo & H(lﬂ:ay,):O.
n=1 n=1

3 Main results
We propose the following viscosity method for (HVIP) on Hadamard manifolds.

Algorithm 1 Suppose that K be a nonempty closed and convex subset of Hadamard man-
ifold M. Let M : K — TM be a single-valued vector field and F : M = TM be a set-valued
vector field such that D(F) € K and f,T : K — K are self mappings. For an arbitrary
up € K, a,, € (0,1) and A > 0, compute the sequences {v,} and {u,} as follows:

v =Jf [exp,, (~AM(u,))],

U1 = Xy (1= ) expry, s T(V),
or, equivalently
Uni1 = Vu(l —ay), V>0, (18)

where y, : [0,1] — M is sequence of geodesics joining f(u,) to T(v,), that is, y,,(0) = f (u,,)
and y,(1) = T(v,) forall n > 0.

For the convergence of Algorithm 1, we impose the following conditions on the sequence
{on}:

(A1) limy,_, o0ty = 0;

(Ag) D02 oy = +00;

(A3) Yoo lome — oyl < 00.

We make the following assumption on a single-valued vector field M : K — TM], which
also appeared in [1] in the setting of Hadamard manifolds.

Assumption 1 For any nonempty subset K of Hadamard manifold M. A single-valued
vector field M : K — TM is said to satisfy the contraction type assumption if for any ¢, r €
K and any A > 0, the following holds:

d(exp, (— AM(q)), exp, (- AM(r))) < (1 =n)d(g,r), 1 €[0,1). (19)

Proposition 5 ([1]) For any q € K, the following assertions are equivalent:



Filali et al. Journal of Inequalities and Applications (2021) 2021:66

(i) g€ M +F)H0);
(ii) g :]f[equ(—AM(q))],for all x> 0.

Remark 2 It can be easily seen that, in M, for a nonexpansive mapping 7', the set Fix(7)
is geodesic convex, for more details, (see [1, 12]). Together with the Assumption 1, we see
that J (exp(~AM)) is nonexpansive. By Proposition 5, it follows that Fix(Jf (exp(-AM))) =
(M + F)~1(0). Therefore (M + F)~1(0) is closed and convex in M. Hence, Fix(T) N (M +
F)~1(0) is closed and convex in M.

Theorem 2 Let M be Hadamard manifold and K be a nonempty, closed and convex sub-
set of M. Let T : K — K be a nonexpansive mapping and f : K — K be a ¢-contraction
mapping with the comparison function ¢ : [0, +o0] — [0, +00]. Let M : K — TM be a con-
tinuous vector field satisfying the Assumption 1 and F : Ml =% TM be a set-valued monotone
vector field such that D(F) C K. Suppose {«,} is a sequence in (0, 1), which satisfies (A1)—
(A3). IfFix(T)N(M +F)™1(0) # @ and 0 < o = sup{¢(d(, u*))/d(ths, u*) : 4, #u*,n € N} < 1
Sor all u* € Fix(T) N (M + F)~1(0). Then the sequence obtained by Algorithm 1 converges to
the solution of HVIP (7), which is a fixed point of the mapping Prixrynoa+r)-10)f -

Proof We break the proof into six steps.
Step 1. We show that {u,}, {v,}, {f(un)}, {exp,,(AM ()} and {T'(v,,)} are bounded.
Let u* be a solution of HVIP (7), then u* € Fix(T) and u* € (M + F)~1(0). By Proposi-

tion 5, nonexpansive property of J/ (exp,(—AM)) and Assumption 1, we have

) = d( (0, (~ 200} (exp,e (~ M)
< d(expun ( - AM(un)),expu* ( - AM(u*)))

Since 1 = Yu(1 — @,,), by convexity of the Riemannian distance, we have

d(tps1, u*) = d(yn,(l — o), u*)
< aud(ya(0), %) + (1 — )d (yu(1), u*)

= a,,d(f Uy, ,u*) +(1- a,,)d(T(v,,), u*)

IA

Since 0 < o = sup{¢(d(u,, u*))/d(u,, u*): u, # u*,n € N} < 1, the above inequality yields

A1, ") < o d(t, u*) + (1 = ) (un, u*) + oud(f (u*), u*)

= (1-an(1 - 0))d(tp, u*) + cnd(f (u*), u¥)

Page 8 of 20
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< max{d(uo,u*), L)) }

which implies that {u,} is bounded. By (20), {v,} is also bounded. Since T is nonexpansive
mapping, f is a ¢-contraction and by Assumption 1, we conclude that {T'(v,)}, {f(#,)} and
{exp,,, (=AM (u,))} are also bounded.

Step 2. We show that lim,,_, o (21,41, u,) = 0.

Since T is nonexpansive, and f is a ¢-contraction, by using (8), (11) and Proposition 2,
we obtain

A1, ) = d(Yu(l = o), Yn1 (1 — 1)
< d(yu(1 = @), Va1 (1 = @) + d(Yue1 (1 = @), Y1 (1 = @)
< @ud(Yu(0), ¥u-1(0)) + (1 = ) (v (1), Yu1(1))
+ loty = otpr|d(f (-1, T (V1)
< aud(f (n), f (1)) + (1 = n)d(T(vn), T(V1))
+ oty = @1 | (f (1) T (V1))
< @ (d(thn, n-1)) + (1 = )d(Vyy Vi)

+ oty — an—l|d(f(un—1), T(Vn—l))' (21)
Again, by using the nonexpansive property of /¥ and Assumption 1, we get

AV, Vno1) = d(])}j(expun (_)LM(un))’]f (expun_l (_)LM(un—l)))
<d(exp,, (—AM (1)), exp,, , (—AM (1))
< (1= n)d(up, up-1). (22)

Since {u,} and {f(u,)} are bounded, there exist constants K; and K, such that d(u,, p) < K3
and d(f(u,), u*) < K;. Thus, we have

A(f (1), T(Wno1)) < A(f (o), u*) + d(T (Vo) ™)
< d(f(up), u*) + d(Vr, u*)
< d(f (tp1),u") + (-1, 16%)
<Ky + Ky := K. (23)

By combining this inequality with (21) and (22), we have

A(tns1s ) < u (A, thn-1)) + (1 = ) (1 = )t 1) + 0t — 011Kz
< and(unr Mn—l) + (1 - an)(l - n)d(un: un—l) + |an - an—1|1<3

= (1 - &n)d(um un—l) +68,K3, (24')

Page 9 of 20
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where @, = n(1 -«,) and §,, = |, —a,,_1| for each n > 0. Since {u,} is bounded, there exists

a constant Ky, such that d(u,.,1, 4,,) < Ky. For m < n, from (24), we have

d(un+lx M,,) = l_[(l - O_li)d(um: Z'tm—l) + ]<3 2{8/ 1_[ (1 - &z)}

i=m j=m i=j+l

<1<4]_[1 & +1<32{ ]_[ (1- al} (25)

i=j+1

Taking n — 00, we get

Tim dy, 1) < Ka [ J(1-) +1<3Z{8, [Ta —&i)}. (26)

i=m Jj=m i=j+1

From condition (Az), lim, 38, = 0. Thus, from (A;) and (As), we deduce that
lim,;— 00 Z]‘fm{Sj ]_[ffj+1(l — @;)} = 0 and by condition (Aj), lim,— [[,(1 — @) = 0.
Hence, by taking m — oo, we obtain

lim d(u,41,u,) = 0.
n— o0

Step 3. Next, we show that lim,,_, oo d(u,,, v,) = 0. Since f is a ¢-contraction, by using (18)
and (20), we have

At V) < At u*) + d(vy, u¥)
< d(up,u*) + (1 - n)d(up, u*)
(

= (2—n)d(un, u*)

= d(Ya-1(1 = 0y1), ") |
< 2~ {u1d (yu10),4%) + (1= ) (yuar (1), ) )
< 2= D] @urd(F(tn1),u*) + (1= @ ))d(T(vr), ") }
< @~ @ [d(f ) f (")) + d(f ("), u")]

+ (1= o)A (T (Wnmr), u¥) }
@ = {16 (d(u-1,u7))
+ oty d(f (%), u*) + (1 = o) (1 = n)d (o1, ™)}
< 2 {ap1d (w1, u*) + aprd(f (u*), u*)
+ (1 =)L = n)d (-1, u™) |
= 2-{[1-nQ - ap1)]d(tnr, u*) + aprd(f (u*), u*)}
= 2-m{AQ - ap-)d (w1, u*) + @y d(f (u*), u*)}, (27)
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where @, = n(1 — a,) for each n > 0. Let m < n, then it follows that

n-1
A va) < 2=k [ [1-a)
Jj=m
n-1 n-1
+(2—17)Z{(xj n(l—&i)}d(f(u*),u*). (28)
j=m i=j+1

Taking n — oo implies that

e¢}
Tim d(u,v,) < 2= [ ] -&)

Jj=m
+(2—n)Z!aj H(l—&i)}d(f(u*),u*). (29)
j=m i=j+1

From (A,), it follows that limmqoo]_[;fm(l - @) = 0 and from (A;) and (Ay),
limyy 00 35,0 [ 15541 (1 = @)} = 0. Hence, by taking m — oo, we get

lim d(u,,v,) = 0. (30)

n—00

Step 4. Boundedness of {u,} implies that there exists a sequence {n;} of {n} such
that u, — z as k — oo. Now, we show that z € Fix(T) N (M + F)7}(0). Since v, =
J£ (exp,,, (~AM(u,))), by using the continuity of J (exp.(-~AM)) and (29), we have

0= lim d(uy,vn,)
k— o0

- tim (o9, (~3M(0)
= d(z,]; (exp,(-AM(2)))), (31)
that is, z € (M + F)~1(0).
Again, by using the convexity of the Riemannian distance, we get
d(unﬂ’ T(Vn)) = d(yn(l — ), T(Vn))

= and(yn(0)7 T(Vn)) +(1- an)d(yn(l)v T(Vn))
= and(f(un)’ T(Vn))) + (1 - an)d(T(Vn)’ T(Vn))
< 2 d(f (), T(v). (32)

Since {u,} is bounded and f is a ¢-contraction, therefore

A(f ), T(vs)) < d(f (), f (u*)) +d(u*, T(v,))
< 9(d(u ) + A(f (), 7) + d(T (), )
< d(wu?) + d(f (), u*) + d(v, ")
< A u?) + d(f (), 1) + (1 = )l (s, ")

U
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< d(un, u*) + d(f(u*), u*)
<K +d(f(u*),u*) =K. (33)

This together with the condition (A;) and (32), implies that

lim d(uys1, T(v4)) = lim o, K = 0. (34)

n—00 n—00

Also, from (30) and with a subsequence {v,, } of {v,}, we have
lim d(v,,,z) < lim d(uy,v,)+ lim d(u,,,z) =0, (35)
k— 00 k—o00 k—o00

that is, v, converges to z as k — oo. Then we get

d(T(Z)¢Z) = d(T(Z)¢ T(Vnk)) + d(T(Vnk)¢ Mnk+l) + d(unk+1: Z)

= d(Z; Vnk) + d(T(Vnk)) Mnk+1) + d(unk+1,z) - 01 k— oo, (36)

and so z € Fix(T). Thus we have z € Fix(T) N (M + F)~}(0).

Step 5. We show that limsup,,_, . R(exp,! f(w),exp,! T(v,)) < 0, where w is a fixed point
of the mapping Prix(r)nw1+£)-L(0)f -

Since z € Fix(T) N (M + F)™(0) and z = Pgiy)nu145)-10)f (2), by Proposition 4, we have
N(exp;,! f(w),exp;! z) < 0. Boundedness of {v,} implies that {9 (exp;' f(w),exp,! T(v,))} is
bounded. Then we have

lim sup E}t(expv_vlf(w), expv_v1 v,,) = klim N (exp;/lf(w), exp;,1 T(v,,k)). (37)
—00

n—0o0

Since v, — z as k — oo and by using continuity of T, we obtain
klim N (exp,' f(w),exp, T(vy,)) = R(exp;,' f(w), exp;,! T(z)) <0.
Therefore,

lim sup % (exp;, f(w), exp;,' T(v,,)) <O. (38)
Step 6. Finally, we show that lim,,, o d(u,,, w) = 0.
We fix n > 0 and set v = f(u,), g = T(v,) and consider geodesic triangles A(v,q,w),
A(f(w),q,v) and A(f(w),q,w), and their comparison triangles A(V',q’,w'), A(f(w),q’,V)
and A(f(w),q’,w'). From Lemma 1, we have

’

d(f (u,),w) =d(v,w) = ”V/ - W’H and d(T(V,,),w) =d(qw) = ”q’ -w
d(f(w), w) = Hf(w)/ —_— ” and d(T(v,,),w) =d(q,w) = ||q’ - W’H.

Recall that #,,1 = expy,,)(1 - ozn)expf‘éln) T(v,) = exp,(1 — &) exp;'g. The comparison

point of #,,,1 in R? is x/,,; = o,V + (1 — @,)q’. Let ¢ and ¢’ denote the angles at g and ¢’

in the triangles A(f(w),q, w) and A(f(w)’,q',w'), respectively. Therefore, ¢ < ¢’, and then
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cos ¢’ < cos¢. By Lemma 2(ii) and the nonexpansive property of T and the ¢-contraction
property of f, we have

d2(un+1,w)
<[ -
= ||anv/ +(1-a,)q - w’”2
ol ) 1l )
=ol|v -w ||2 +(1-an)?|q - w’||2 +20,(1 =)V =W, q = w)cos ¢’
< ai ||v/ - W’HZ +(1-ay,)? ||q’ —-w ||2 +20,(1 - a,,)(v’ —fw),q - w’)
+ 200, (1 — ) [f (W) =W, q' —w')cos ¢’
< a2d (f(un),w) + (1= a,)2d*(Twn), w) + 20,1 — ) |V = fw) || |4 = W],

+ 20, (1 — o) (f (W), w)d (T (vs), w) cos .
By the Cauchy—Schwarz inequality, we obtain

A (tty 11, W)

< apd? (f (un), w) + (1= ,)*d* (T(v), w) + 20, (1 = @) (v, f (w))d(q, w)
+20,(1 = ) (f (W), w)d(T (v,), w) cos @

< apd? (f (un), w) + (1 = ) *d* (v, w) + 20, (1 = @, )l (f (1), f W) d (T (v,), w)
+20,(1 — )R (exp;,' f(w), exp;,! T(v,))

< ahd? (f (un), w) + (1= 0, *d? (0, W) + 200, (1 = )b (141, w)) (14, W)
+20,(1 — o) R (exp;,' f(w), exp;,! T(vy))

< (1= a)d* (o, W) + a7 d? (f (1), w) + 20, (d i, W) 14, w)
+ 20,9 (exp;,' f(w), exp;,! T(vy))

< (1 = o)A (W) + a2 ( (), w) + 20,d* (11, W)
+ 20,9 (exp;,' f(w), exp;,! T(v,))

= (1+ @) d (n, W) + @y

where B, = a,d*(f(u,),w) + 2% (exp;! f(w),exp,! T(v,)). By condition (A;) and (38),
lim,,—, 0 By = 0. Let m < n. Then the above inequality becomes

A (unr,w) <Ky [ A + ) + Z[a,- []a +a,-)}ﬁ,. (39)

Jj=m j=m i=j+1

By taking n — oo, it follows that

Tim > (uen, w) <Ky [ J(1+ ) + Z{a, [Ta+ oc,«)}ﬁj. (40)

j=m Jj=m i=j+1
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By condition (A1) and (Ay), limy, o0 []75,, (1 + @) = 0and limy, 00 375, {0y [ T3, (1 + i)} =
0. Since lim,,_, o, 8, = 0 for any & > 0, there exists k € N such that §; < ¢ for all j > k. Thus,
taking the limit as m — oo in the inequality (40), we obtain

lim d(u,,w) = 0.
n—0o0
This completes the proof. O

4 Consequences
Iff is a contraction on K, then a corollary of Theorem 2, which can be seen as the extension
of the work in [22] from Banach spaces to Hadamard manifolds, is mentioned now.

Corollary 1 Let K be a nonempty, closed and convex subset of Hadamard manifold M,
f:K — K be a contraction mapping and T : K — K be a nonexpansive mapping. Let M :
K — TM be a continuous single-valued vector field satisfying Assumption 1 and F : M =
TM be a set-valued monotone vector field such that D(F) C K. IfFix(T) N (M + F)™1(0) # ¢,
then the sequence generated by Algorithm 1 converges to z € Fix(T) N (M + F)™1(0), where

z a fixed point of the mapping Priyrynoasr)-10)f -

If f = I, identity mapping in the Algorithm 1, then the following result is an extension
from Hilbert spaces to Hadamard manifolds, discussed in [14, 24]. Moreover, the following
result is also appeared in [1] on a Hadamard manifold.

Corollary 2 Let K be a nonempty, closed and convex subset of Hadamard manifold M
and T : K — K be a nonexpansive mapping. Let M : K — TM be a continuous vector field
satisfying Assumption 1 and F : Ml = TM be a monotone vector field such that D(F) C K.
IfFix(T) N (M + F)™1(0) # @, then the sequence {u,} generated by Algorithm 1 converges to
z € Fix(T) N (M + F)™(0), where z = lim,_, o0 Prix(rynaas5)-1(0) -

5 Nonsmooth optimization problem

In this section, we study composite minimization of a smooth and a nonsmooth real-
valued functions defined on a Hadamard manifold M. Let ), Z : Ml — R be real-valued
functions such that ) is lower semicontinuous and convex, and Z is differentiable. We

address the following minimization problem: to find
i zZ . 41
%@{ V+2)) (41)

Assume that S is the solution set of the problem (41). The directional derivative of a func-
tion Z:M — R at g in the direction u € T,M is defined by

Z(exp, su) - Z(q)

Z'(q;u) := lim
s—0t S

The gradient of Z at g € M is defined by RV Z(q),u) = Z'(q;u) for all u € T,M. The
subdifferential [23] ) : M = TM of ) at q is defined as

AY(q) = {u e T,M:%(u, exp;lp) <V(p) - V(q),¥p € M}. (42)
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The equivalent relation between minimization problem (41) and the inclusion problem
0 € VZ(q) + 0)Y(q) discussed in [3] is given by

qgesS & 0eVZg +3V(). (43)

Lemma 3 ([11]) Let YV : M — R be a lower semicontinuous and convex function on a
Hadamard manifold M. Then the subdifferential 0Y of Y is a monotone vector field.

By replacing M = VZ and F = 3 in Algorithm 1, we obtain the following algorithm.

Algorithm 2 Suppose that K be a nonempty closed and convex subset of Hadamard man-
ifold ML. Let ), Z : M — R be real-valued functions such that ) is lower semicontinuous
convex and Z is differentiable. For an arbitrary u, € K, and A > 0, compute the sequences
{v,} and {u,} as follows:

Vn :]fy [expun (—kVZ(un))],

Uni1 = €XPriy, (1 — o) CXPf(lun) T(vy),
where «, € (0,1) satisfying the conditions (A;)—(As).

The following result is an extension of the result discussed in [22] from Banach spaces
to Hadamard manifolds, where they assumed f to be a contraction mapping.

Theorem 3 Let K be a nonempty, closed and convex subset of Hadamard manifold M, f
K — K be a ¢-contraction mapping and T : K — K be a nonexpansive mapping. Let Y, Z :
M — R be real-valued functions such that Y is lower semicontinuous and convex, and Z is
differentiable such that Fix(T) NS # @ and V Z satisfy the Assumption 1. Then the sequence
generated by Algorithm 2 converges to a fixed point of the mapping Prirynv z+9y)-10)f
which is in fact a solution of (43).

6 Computational experiment

Let M =R,, = {p €R:p >0} be a Hadamard manifold with the Riemannian metric R(-, )
defined by R(wy, w,) := H(p)ww, for all wi, wy € T,M, where H : R,, — (0, +00) is given
by H(p) = p~2. The tangent space T,M at p € M is equal to R for all p € M. The Riemannian
distance d : Ml x Ml — [0, +00) is given by

dp,q) :=|Inp-Ing|, Vp,qeM.

The unique geodesic y : R — M joining y(0) = p and y (1) = g, is defined as y (¢) := p'~*q".
The inverse of exponential mapping is given by

expyl g =7(0) =pin L.
p
For further details, we refer to [19].
Let K = (0,1] be a closed convex subset of M = R,,. Now, we define a single-valued

vector field M : K — R as

M(p):=p+plhp, Vpek.
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Then M satisfies the Assumption 1. Indeed, for any p,q € K and any 0 < A < 1, we have

d (expp (—AM (p)), exp, (-M(q)))

= d(expp(—k(p +plnp)), equ(—k(q +qlng)))

1-1
lnp_

=d(p"et g e ) = e

=1 -Mdp,q).

A set-valued vector field F : Ml = R with D(F) = K|, is defined by

-p, if0<p<l1,
[0,1], ifp=1.

F(p) =

Notice that F is monotone vector field on K. Clearly, the solution set of the inclusion

problem (M + F)~1(0) is {1}. The resolvent of F, for any p € M and any A > 0, is given by

pet, if0<p<l,

Ji(p) =
1, ifp=1.

Table 1 Computative iterates and error of Algorithm 1 for the choices of different parameters A = %

and ap = /71? different initial points u; = 0.2, u; = 0.5 and the tolerance of error |1 — Up| < 1070
No. iter. A=landa,=-5
ur =02 [Un+1 = Un| ur=05 [Un+1 = Un|
1 0.2 e 0.5 e
2 0429614 0.229614 0.646785 0.146785
3 0.589695 0.160081 0.744659 0.097874
10 0.962285 0.016117 0.976335 0.010127
15 0.993964 0.002721 0.996219 0.001705
20 0.999086 4.230861e-04 0.999428 2.649637e-04
25 0.999865 6.305888e-05 0.999916 3.948375e-05
30 0.999980 9.168267e-06 0.999987 5.740434e-06
31 0.999986 6.220992e-06 0.999991 3.895079e-06

Table 2 Computative iterates and error of Algorithm 1 for the choices of different parameters A = %
and ap = W different initial points u; = 0.2 and u; = 0.5, with the stoping criterion

Uns1 —Un] < 107

No. iter. A=landa,=—1>

(n+'\)3/2
u; =02 [Un+1 = Un| ur=05 [Unt1 = Un|

1 02 . 05 e

2 0401851 0.201851 0641811 0.141811

3 0558448 0.156596 0.742398 0.100587

10 0964051 0.016800 0980325 0.009279

15 0.994939 0.002457 0997246 0.001339

20 0.999309 3.391089e-04 0.999624 1.844173e-04
25 0.999907 4.593534e-05 0.999949 2497333e-05
30 0.999987 6.170685e-06 0.999993 3.354629e-06

31 0.999991 4.127541e-06 0.999995 2.243889%-06
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Figure 1 Computational convergence of Algorithm 1 and error term |up+1 — up| with the choices of scalars
A =1 and a, = -1 and different initial points uy = 0.2 or uy =05

Now, f : K — K be defined as

Then f is a ¢-contraction mapping with the comparison function ¢(s) = ;3. Indeed, for

any p,q € K,

Inp Ing |  |lnp-Ing

- = . 44
1-Inp 1-Ing| (1-Inp)(1-Ing) (44

d(f(v).f(@)) =

Since 0 < p, g <1, we have —00 < Inp, Ing < 0. Therefore, the inequality 1 + [Inp —Ing| <
(1 -Inp)(1 —Ing) holds. This together with (44) shows that we have

[Inp —Ing|
d ?, < - . 1 = d ) )
(o) f@) = 1 np—Ing] ¢(d(.q))
where ¢(s) = ;3 for all s > 0. Clearly, ¢ satisfies all the conditions of Definition 4. Note

that f is not a contraction mapping on K. Let T : K — K be a nonexpansive mapping
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Figure 2 Computational convergence of Algorithm 1 and error term |up+1 — up| with the choices of scalars
A =1 and o, = —L— and different initial points u; = 0.2, u; = 0.5
3 (n+l)3/2

given by T'(p) = p for all p € K. Hence, Fix(T) = (0,1] on K. Therefore, the common so-
lution set of the problem Fix(T) N (M + F)~'(0) is {1}. Then the fixed point of the map-
ping Priyrynnsr)-to)f 1s {1} Indeed, choose p = 1 € Fix(T) N (M + F)™'(0) and for any
g € Fix(T) N (M + F)"1(0), we have

exp;lf([?) =0, and explg1 g=pln ?

N

Hence, we have

?)’f(explglf([o), explg1 q) =0, VqeFix(T)NM +F)~0),
that is, the set of fixed point of the mapping Prir)nar)-1)f is {1}. Let o, = ﬁ or
oy, = m and A = % Then «, satisfies the Assumptions (A;)—(A3) of Algorithm 1. By
choosing the initial points #; = 0.2 and u; = 0.5 the Algorithm 1 converges to a solution of
the (HVIP), which we show in Table 1, Table 2, Fig. 1 and Fig. 2. The computational codes
are run on a PC desktop Intel(R) Core(TM) i5-5200U CPU @ 2.20 GHz, RAM 2.00 GB

under GNU Octave program version 4.2.2-1ubuntul.
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7 Conclusions

In this article, we have introduced the viscosity method for hierarchical variational in-
equalities involving a ¢-contraction mapping defined over the common solution of varia-
tional inclusions and a fixed point problem. Some consequences of the proposed method
are also provided. Furthermore, an application of the proposed viscosity method is pre-
sented to a nonsmooth optimization problem. Moreover, the convergence analysis of
the proposed method is illustrated by some computational numerical experiments on
Hadamard manifolds.
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