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1 Introduction and preliminaries
A mappingf : U — V is called additive iff satis“es the Cauchy functional equation

fx+y)=f(x) +f(y) (1.1)

for all x,y € U. Itis easy to see that the functiof(x) = ax is a solution of functional equa-
tion (1.1) and every solution of functional equation.1) is said to be an additive mapping.
A mappingf : U — V is called quadratic iff satis“es the quadratic functional equation

fx+y)+f(x..y)=2f(x) + 2f (y) 1.2)

for all x,y € U. It is easy to see that the quadratic functiof(x) = ax? is a solution of
functional equation (L.2), and every solution of functional equation(.2) is said to be a
guadratic mapping. Mixed-type functional equation is the advanced development in the
“eld of functional equations. A single functional equation, which has more than one na-
ture, is known as mixed-type functional equation. Further, one can refer t&.[23] for
more information on functional equations and applications.

eLet G be a group andH be a metric group with a metricd(-,-). Given >0, does there
exist >0 such that if a mapping : G — H satis“esd(f (xy),f (X)f (y)) < forall x,y € G,
then there exists a homomorphisna : G — H with d(f(x),a(x)) < for all x e G?Z This
problem for the stability of functional equations was raised by Ulan24] and answered
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by Hyers p5]. Later, it was developed as Hyers...Ulam stability by Ras28f Rassias
[27, 28], and Gavruta R9].

Definition 1.1 (Fuzzy modular spaced0]) Letp be afuzzy setoiX x R*,V be a complex
or real vector space, be azeroonV, andx be a continuous triangular norm. The triple
(V, 1, =) is said to be a fuzzy modular space aipdis said to be a fuzzy modular if it satis“es
the following:
0 Hx1>0
(i) p(x,t)=1ifand onlyifx= ;
(i) p(x,t) =p(xt);
) H(@ax+by,r+t)>pXxr)xuy,t),a,b>0a+b=1

) the function p(X,) : (0,00) — (0, 1]is continuous.

(iv

(v

Example 1.2 Letu be a fuzzy set otV x R*, V be a complex or real vector space, and
be a continuous triangular norm such that = b = a xy b = min{a, b}. Then

t
(k1) = 00 t>0xeV,
0, t<0,xeV,

is a fuzzy modular space. This example holds even if we replaeé with axp b andax_b.

Definition 1.3 Let (V,,*) be afuzzy modular space. Lgt,} be a sequence iV .
(i) {zn} is said to be pL-convergent to z, denoted by z, % 7, if there exists a positive
integer Mo such that p(z, .. x,t)>1... foralln>mg, t>0and €(0,1)
(i) {zn} is said to be a Cauchy sequence if there exists a positive integer mg such that
U(@zn ..Zm,t)>1... foralln,m=>mp,t>0and €(0,1)
(ili) Every p-convergent sequence in an FM-space is a L -Cauchy sequence. In (V, 1, %),
if each p-Cauchy sequence is 1 -convergent sequence, then (V, i, *) is called a

M -complete fuzzy modular space.

Definition 1.4 ([30]) If p ful“lls the property p( z,t) = p(z, #) for some “xedb € (0, 1]
and a nonzero real number , then (V, 1, %) is said to be &-homogeneous fuzzy modular
space.

In 2002, J. M. Rassia8]] studied the Ulam stability of a mixed-type functional equation
3 3
9(2 Xi) +> 000 = D0 g+ x).
i=1 i=1 1<i<j<3

Later, Nakmalachalasint32] generalized the above functional equation and obtained an
n-variable mixed-type functional equation of the form

g(zxi) (2D g0 = Y g0+ )
= =

1<i<j<n

for n> 2 and investigated its Ulam stability.
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In 2005, Jun and Kim 83] introduced a generalized additive-quadratic functional equa-
tion of the form

g(x+ay)+ag(x..y) =g(x..ay) +ag(x +y) (1.3)

foraz0,£1.

Shen and Chen 30] introduced the concept of fuzzy modular spaces in 2013. Fur-
ther, Kumam [34, 35 and Wongkum et al. [36] introduced the “xed point concept
in fuzzy modular spaces and obtained some properties. Wongkum and Kuma87][
investigated the Hyers...Ulam stability of sextic functional equation in fuzzy modular
spaces.

Motivated by the notion of fuzzy modular spaces and by the mixed-type functional
equations, we introduce a new generalizedvariable mixed-type functional equation of
the form

n..1

f(kx; + X)) +f (kxn + X1) (1.4)
> ( )

i=1j=i+1

n..1
..k[ > (Fea+x)) +f(xa +X1)}

i=1j=i+1

LK ke
:(12) Z(f(xi)+f(--xi))+klz o 2 (K 0a) -5 (ki)

i=1 e

for positive integersn,k > 2 and investigate its Hyers...Ulam stability in fuzzy modular
spaces.

This paper is structured as follows: In Sect, we provide necessary introduction of this
paper. In Sect2, we obtain the general solution of functional equatiori(4). In Sect.3, we
investigate the Hyers...Ulam stability df @) in fuzzy modular spaces using the “xed point
theory, and the conclusion is given in Sect.

2 General solution of a mixed-type functional equation
Let U and V be real vector spaces. In this section we obtain the general solution of a
generalizedh-variable mixed-type functional equation.4).

Lemma 2.1 Let a mapping f : U — V satisfy functional equation (1.4). If f is an even
mapping, then f is quadratic.

Proof Let a mappingf : U — V satisfy functional equation {.4). Substituting &1, x>,...,
Xn) by (x,0,...,0) in L.4), we have

f (kx) +f (X) ... Rf (X) (2.1)

_(1..ky?
T2

k2 ..k

[fO0 +F(.x)] + [K2F () ..f (k)]

for all x € U. By the evenness df, equation @.1) leads tof (kx) = k?f (x) for all x e U, and
sof is quadratic. Hence, by the evennessfafthe mixed-type functional equation {.4) is
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reduced to the following quadratic functional equation of the form:

n..1 n..1
D (Fkxi +%7)) +f (KX +Xq) ..k|: D (Fxi+x) +F(xo + xl)] (2.2)
i=1j=i+1 i=1j=i+1

n

= (1K) (F) + 1"1;( > (K% (xi) .. £ (ki)
BN

i=1 k?

for positive integersn,k > 2. O

Lemma 2.2 Letamappingf : U — V satisfy functional equation (1.4). If f is an odd map-
ping, then f is additive.

Proof Let a mappingf : U — V satisfy functional equation {.4). Substituting &1, x>, ...,
Xn) by (X,0,...,0) in 1.4, we get @.1). By the oddness of, equation @.1) leads to
f(kx) = kf (x) for all x € U, and sof is additive. Hence, by the oddness éf the mixed-
type functional equation (.4) is reduced to the following additive functional equation of

the form:
n..1 n..1
> (f(kxi+xj))+f(kxn+x1)..k|: > (f(xi+xj))+f(xn+x1)] (2.3)
i=1j=i+1 i=1j=i+1
kg
_ k12 =Y (x) £ (k1)
=]
forneN. O

Theorem 2.3 Let an even mapping f : U — V satisfy functional equation (2.2), then f is
quadratic.

Proof Suppose that is even and satis“es functional equatior2(2). Settingx; = x; =--- =
Xn =0 and replacing X1,Xz, ... Xn) with (x,0,...,0) in 2.2), we obtainf (0) =0 and

f (kx) = k2 (x), (2.4)

respectively, for alk € U. Replacing X1,X2,Xs, . . . Xn) With (X1,X2,0,...,0) in .2) and us-
ing (2.4), we have

f(kxa + X2) . KF (xq +X2) = (K2 .. K)F (xq) + (1 .. K)f (x2) (2.5)

for all x3,x2 € U. Replacingx, with ..x; in (2.5), using the evenness dfand again adding
the resultant to 2.5), we get

f(kxg +x2) +f(kxy .. X2) (2.6)
= kf (Xg + X2) + Kf (X1 .. X2) + 2(k2 ..k)f (x1) +2(1 ..K)f (x2)
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for all x1,x2 € U. Replacing X1, x2) with (x1,X1 + X2) in (2.6), we get

f((k+1)X1+X2) +f((k oD ..Xz) 2.7)
=kf (2x1 + x2) +f(.x2) + 2(k2 ..k)f (X1) +2(2 ..K)f (X1 + x2)

for all x1,X, € U. Replacing X1, x2) with (X3, . X2) in (2.7) and again adding the resultant to
(2.7), we get

f((k+1)xg +%p) +F((K+ D)Xy .. %2) +F((K... Dy +x2) (2.8)
+f((k oD ...X2) ..k[f(2X1+X2)+f(2X1 ..X2)+2f(X2)]
= 4(K2 . K)F (xa) + 2(1 K[ (xa +X0) + (X1 .. X5)]

for all x3,x2 € U. Now, by €.6) and (2.8) and by assuming di erent values ok ask + 1,
k...1,and 2, we obtairi(2). Hence the mapping is quadratic. O

Theorem 2.4 Let an odd mapping f : U — V satisfy functional equation (2.3). Then f is
additive.

Proof Suppose thaf is odd and satis“es functional equatior®.3). ReplacingXi, Xz, . . . Xn)
with (0,0,...,0) andX,0,...,0) in 2.3), we obtainf (0) =0 and

f(kx) =kf(x), VxeU, (2.9
respectively. Replacingk, X2, X3, X4, . . . Xn) With (x1,X2,0,0,...,0) in2.3), we obtain
f(kxy +X2) .. kf(Xg +x2) = (1 ..K)f (x2) (2.10)

for all x1,x2 € U. Replacingk, with ..x; in (2.10, using the oddness dof and again adding
the resultant to .10, we get

f(kxq +Xo) +f(kXq .. X2) = kf (X1 + X2) + Kkf (X1 .. X2) (2.11)
for all x1,x2 € U. Replacing X1, x2) with (x2,X) in (2.11), we get

f(Xy +kxo) .. F(X1 .. kxo) = kf (X1 +X2) .. kf (X1 .. X2) (2.12)
for all x1,x2 € U. Replacingk, with kx; in (2.11) and using @.9), we get

f Xy +kxo) + (X .. kxo) = f(Xg +X2) +f (X1 ..X2) (2.13)
for all x1,x, € U. Replacingk; with X1 +kxz in (2.12), we get

f(Xq +2kxp) .. f (x1) = kf (X1 +X2) + kxz) .. Kf (X1 .. X2) + kx2) (2.14)



Ramdoss et allournal of Inequalities and Applications  (2021) 2021:61 Page 6 of 14

for all xq,x2 € U. Replacingx, with ..x2 in (2.14), adding the resultant to 2.14) and using
(2.12), we obtain

f(xq + 2kx2) +f (X1 ... RXp) = K2[f (X0 + 2%p) + (X1 ... )] ... R¥F (x1) + 2f (x1)  (2.15)
for all x1,x; € U. Replacingx, with 2 in (2.15 and using .13, we get
f(Xy+X2) +f (X ..X2) = 2f (X1) (2.16)

for all x1,x2 € U. Replacing X1, x2) with (x2,X1) in (2.16 and adding the resultantto2.16),
we obtain (L.1). Hence the mapping is additive. d

Lemma 2.5 ([33]) Let a mapping f : U — V satisfy functional equation (1.3), then f is
additive-quadratic.

Theorem 2.6 Let an odd mapping f : U — V satisfy functional equation (1.4). Then f
satisfies (1.3.

Proof Suppose that an odd mappind satis“es functional equation {.4). Replacing
(X1,X2, . .. Xn) With (X1,X2,0, ...,0) in {.4), we obtain

f (KX + X2) . kF (X + X2) = (L .. K)F (x2) (2.17)

for all x1,x2 € U. Replacingk, with ..x, in (2.17), using the oddness df, and again adding
the resultant to 2.17), we get

f(kxg +X2) +f(kXq .. X2) = Kf (X1 + X2) + Kf (X1 .. X2) (2.18)
for all x1,x2 € U. Replacing X1, X2) with (x2,x1) in (2.18, we get (.3). 0

3 Stability of a mixed-type functional equation

In this section, we obtain the Hyers...Ulam stability of a generalizegtariable mixed-type
functional equation (L.4) in a fuzzy modular space by using the “xed point technique. For
the mappingf : M — (V, ), consider

n...1

S(x1. Xz, Xn) = > (F (kX +X))) +F (Kxa +X1)

i=1j=i+1

n..1
..k|: D (f (i) +f (% +x1)}

i=1j=i+1

k)2 & LKL
WU 2) > (f(Xi)+f(--Xi))"'k12 o 2 (K7 0a) £ (ko)
U=l

i=1

forne N,k > 2.
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Theorem 3.1 Let M be a linear space, V be a real vector space, (V, 4, *) be a p-complete b-
homogeneous fuzzy modular space,and € {...1, Lbe fixed. Suppose that an even mapping
f:M— (V, ,x)satisfies

H(S(X1,X2, -+ - Xn)t) > (X1,X2, ... Xn,t) 3.1)
for all x1,X2, ... Xn € M and a given mapping :M x M —  such that
(K1, k?Xz, . .. K¥%n,K®2Nt) > (X1,Xa, ... Xn,t) (3.2)
for all X1,X%o,... X, € M and

lim  (k¥xq, k2o, . .. K¥™xp,k22Mt) = 1 (3.3)

m—o0

1

for all x1,X2,...Xn € M and a constant 0 <N < Zoap

. Then there exists a unique

quadratic mapping Q : M — (V, ) satisfying (1.4) and”

t
kBN 271 ... E52)pN)

CORE )= 0.0 3.

for all x1,X%o, ... Xn € M.

Proof Letting (X1,X2, ... Xn) by (X,0,...,0) in 8.1), we obtain

kZ2...R+1
u(W(f (kx) .. k% (x)),t) > (x,0,...,0f) (3.5)

for all x e M, and so
f (kx) (K2 R+1 5 k2. R+1\° o
p( 2 ..f(x),t)— (W(f(kx)..kf(x)),(w> k t) (3.6)

k2. R+1\° ,
(w020 i)

for all x e M. Replacingx with k% in (3.6), we obtain

Ll<f(|<---$<)

— ...f(x),t) u(lcli—)z() ...f(k"'%(),%) (3.7)

k2. R+1\° 5 Nt
(k Jx,o,...,o<W> k®N @>

k2. R+1\"
(10022 o ),

From (3.6) and 3.7), we obtain

f (k) _ ~ K2, R+1\° 5 a1
p< 2 ...f(x),t)_ x,t) = (xOO<W> k NTt> (3.8)

A%

v
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for all x e M. ConsiderP :={h: M — (V,pu)|h(0) = 0} and de“ne on P as follows:
(h)=inf{l>0: (h(x),It) > (x,t),vxeM}.

One can easily prove that is modular onN and indulges the -condition with k° =

and the Fatou property. AdditionallyN is -complete (see 38]). Consider the mapping
R:P —P asRQ(x) =X forallQeP .

k2a
Leth,je P andl>0 be an arbitrary constant with (h ..j) < I. From the de“nition of ,
we get

u(h(x) i1 = (x,1)
for all x e M, and so

H(Rh(X) .. Rj(x),NIt)
= p(k2h(k) .. k2j(k®),NIt)
= (h(k?x) ..j(kx),k®2NIt)
(k?x,k?2Nt)

(x,t)

v

v

forallx e M.Hence (Rh..Rj) <N (h..j)forallh,j e P ,whichmeansthaRisan -strict
contraction. Replacing with k?x in (3.8), we get

2a
u (f(EZaX) ¥ (kax),t) > (k1) (3.9)

for all x € M, and therefore

b (k2@ (k*x) .. k2f (k*x), Nt) (3.10)
= p (k- 2f (k) .. f (%), k®2Nt)
(k®x,k®2Nt)

v

v

(x,t) (3.12)

for all x € M. Now

f (k2 k2...R b
p(% ...f(x),(ﬁ) (Nt+t)) (3.12)
f(k2x) f(k? f (k2
> u( |£2(Za))() ...%,Nt) /\p( (kZaX) ...f(x),t)

> (1)
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forall x e M. In (3.12), replacingx with kax and( AEL)P (Nt +1) W|th( K RELPYDA(N 2t +

Nt), we get
f (k%) an o KE. RELNP .
K2(2a) 1 (k). < Kk (N°t+Nt) | = (k®,k®2Nt) (3.13)
> (x1)
for all x € E. Therefore,
f(k®x) fkax) (k2..R+1\°
“( 3@ g ( 7K )(N t+Nt)>Z (x1) (3.14)
for all x e M, and so
f (k32x) LR+1 k2. R+1\°
u( ) LF(X )( " ) (( K ) (N t+Nt)+t>> (3.15)
fk®x) f(kx) (K2..R+1\° f (k2X)
zu( @ K < K )(N t+Nt))Au< .f(x),t>

> (x1)

for all x e M. Generalizing the above inequality, we obtain

(ﬁia:))() -1, (3.16)
(5 () S ) )
> (xt)

for all x e M and a positive integem. Hence we have

(R™ ..f) (3.17)

k2. R+1 bN m.,,1+ k2. R+1 b%]- k2 . R+1 bN i1
k2 .k k.k ) 2\ k

1
2 b m 2 b i1 LR+1\b
S(k k2 Rk+1> Z((k k2 2k+1) N) - ( ¢ R+1)b
. — . 1. 652N

Now, one can easily prove thatR™(f)} is -convergenttoQ € P (see B7]). Therefore,
(3.17) becomes

IA

(k2 R+l)b

L)< — Kk ©
Q-D=17 Ky rlyN

(3.18)

Page 9 of 14
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which implies
(k2 R+l)b
U (Q(x) ), ——— " t> (3.19)
1 ..@kz%)bN
k2. R+1\° , a4
> (X,t): (X,O,,O(W> kZbNTt>
for all x e M, and hence we have
t
LX), S > (x,0,...,0t 3.20
(000109, zk'".‘?k*l)bN)) ( ) (3.20)

for all x € M, and so inequality 8.4) holds. One can easily prove the uniqueness@f(see

[37). O

Theorem 3.2 Let M be a linear space, V be a real vector space, (V, 4, *) be a p-complete b-
homogeneous fuzzy modular space,and € {...1, Lbe fixed. Suppose that an odd mapping
f:M— (V, ,x)satisfies

H(S(X1, X2, ... Xn) ) = (X1, X2, - .. Xn,t) (3.21)
for all xq,X2,... X, € M and a given mapping :M x M —  such that
(K1, k%, ... k¥%n, KPNE) > (X1,%2, .. . Xn, 1) (3.22)
for all x1,X%2, ... Xn € M and

lim  (k*Xq, k2™, ... K¥M%p,kP2Mt) = 1 (3.23)

m—o00

for all x1,X2,... X, € Mand a constant 0<N < ?T)b Then there exists a unique addi-

tive mapping A: M — (V, ) satisfying (1.4) and

t

>
KON (1 ... t—z—j-‘?;l)bN)> -

for all X1,Xo,... Xn € M.

<A(x) LE(X), (x,0,...,0t) (3.24)

Proof Replacing Xi1,Xz, ... Xn) with (x,0,...,0) in 8.21), we obtain

k?...R+
u(kz—f(kx) kf (%), t)z (x,0,...,01) (3.25)

for all x e M, and so

u <f(kx) £(x), t) (%f(kx) . kf (), (W)%) (3.26)

k(k2...R+1)\"
> (X,O,,O(W) t)
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for all x e M. Replacingx with k% in (3.26), we obtain

u(f(k---k) f(x),t>

f(x) t
T p(T (5 1x)W) (3.27)

k(k2...R+1)\" Nt
k~'~3x,0,...,0<7> Ni)
( k2 ..k (2 2Dy,

k(k2...R+1)\"

From (3.26 and (3.27), we obtain

f (k2x) ~ k(k2...R+1)\° a.u
p( a ...f(x),t)z x,t):= (xOO(W) NTt) (3.28)

%

v

for all x e M. ConsiderP :={h:M — (V,u)|h(0) =0} and de“ne on P as follows:
(h)=inf{l>0: (h(x),It) > (x,t),vxeM}.

One can easily prove that is modular onN and indulges the -condition with k° =
and the Fatou property. AdditionallyN is -complete (see 38]). Consider the mapping
R:P — P asRA(X):=2&X forall AcP .

Leth,jeP andl> 0 be an arbitrary constant with (h ..j) < |. From the de“nition of ,
we get

u(h(x) i1 = (1)
for all x e M, and so

H (Rh(x) .. Rj(x), NIt)
= p(k*h(k?) .. k%j(k?x),NIt)
= (h(k?x) ..j(k),k™NIt)
(k®x, k"Nt)
(x.t)

v

v

forallx e M.Hence (Rh..Rj) <N (h..j)forallh,jeP ,whichmeansthaRisan -strict
contraction. Replacing with k?x in (3.28, we have

p<f(|f:X) ...f(kax),t> > (k1) (3.29)

for all x € M, and therefore
u(k"'af (kzax) L keAf (kax),Nt) (3.30)
= (k- (k®x) ..f (k?x), kP2Nt)
> (k®,k"™Nt) > (x,1)
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for all x e M. Now

(M0, (B e ) (331
> u(f(tzzx) ...f (tax) Nt) u(f(tax) F(x), t)
> (xt)

for all x e M. In (3.31), replacingx with k®x and ( )P (Nt +t) with kbf"(k ANt +
Nt), we obtain

f (k3x) ar cpaf K2 R+1NP
u( oz f(k x),kP (W) (N2t+Nt)> (3.32)

> (k% k"Nt) > (x,1)

for all x € E. Therefore,

f(k3x) f(kax) [Kk2...R+1\°
u( T a ( 7 K )(N2t+Nt)>z (x,1) (3.33)

for all x e M, and so

. b
(5 (G (5 o)) o
3a a 2 b kX
- (52 0. (B o) i (2 0o
> (x1)

for all x € M. Generalizing the above inequality, we get

u (f (i::x) LF (), (3.35)
K2 R+1\° \™1 KL R+1\ TR k2L R+ O\
((( k2K )N> +( 2K >.21:<< 2K )N> >t>
> (x1)

for all x e M and a positive integem. Hence we have

(R™ ..f) (3.36)

k2. R+1 b m...1 K2 R+1 bm..1 K2 R+1 b i1
(( k2 ..k )N> +(— K2k ) ;(( K2 Kk _> N)

2 b m 2 b i1 k2...R+1\b
(k k2 Rk+1> Z((k k2 2k+1) N) - s ‘ R+1)b _
. ':l . ...FkZT) N

IA

IA
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Now, one can easily prove thgR™(f)} -convergestoA € P (see B7]). Therefore, 8.3

becomes
(kz 21yp
(A.f)< m (3.37)
which implies
(k2 Ry
p(A(x)...f(x),sz (x, 1) (3.38)

kZ2...R+1 b Bl
- " - v
(o o(EE3) e

for all x € M, and hence we have

t

>
kbN%(l...%)bN)) -

u(A(x) 1), (x,0,...,01)

for all x e M, and hence inequality3.24 holds. One can easily prove the uniguenessAf

(see B7)). O

4 Conclusion

In this paper, we introduced a new-variable mixed-type functional equation which satis-
“es f (x) = x+x2. Mainly, we obtained its general solution and investigated its Hyers...Ulam
stability in fuzzy modular spaces by using the “xed point method, and we hope that this
research work is a further improvement in the “eld of functional equations.
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