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Abstract
This paper is on general methods of convergence and summability. We first present
the general method of convergence described by free filters ofN and study the space
of convergence associated with the filter. We notice that c(X) is always a space of
convergence associated with a filter (the Frechet filter); that if X is finite dimensional,
then �∞(X) is a space of convergence associated with any free ultrafilter ofN; and that
if X is not complete, then �∞(X) is never the space of convergence associated with
any free filter of N. Afterwards, we define a new general method of convergence
inspired by the Banach limit convergence, that is, described through operators of
norm 1 which are an extension of the limit operator. We prove that �∞(X) is always a
space of convergence through a certain class of such operators; that if X is reflexive
and 1-injective, then c(X) is a space of convergence through a certain class of such
operators; and that if X is not complete, then c(X) is never the space of convergence
through any class of such operators. In the meantime, we study the geometric
structure of the setHB(lim) := {T ∈ B(�∞(X),X) : T |c(X) = lim and ‖T‖ = 1} and prove
thatHB(lim) is a face of BL0

X
if X has the Bade property, where L0

X := {T ∈ B(�∞(X),X) :
c0(X) ⊆ ker(T )}. Finally, we study the multipliers associated with series for the above
methods of convergence.
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1 Introduction
Recall that if f : D → X is a function from a set D, endowed with a filter base B, into a
topological space X, then

lim
B

f := lim f (B) (1.1)

=
{

x ∈ X : Nx ⊆ J
(
f (B)

)}
(1.2)

=
{

x ∈ X : ∀U ∈Nx ∃A ∈ B such that f (A) ⊆ U
}

(1.3)

=
{

x ∈ X : ∀U ∈Nx ∃A ∈ B such that A ⊆ f –1(U)
}

(1.4)

=
{

x ∈ X : ∀U ∈Nx f –1(U) ∈ J (B)
}

, (1.5)
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where Nx is the filter of neighborhoods of x, J (f (B)) is the filter of X generated by the
filter base f (B), and J (B) is the filter generated by the filter base B. Notice that if B1 and
B2 are filter bases and B1 ⊆ B2, then f (B1) ⊆ f (B2) and J (f (B1)) ⊆ J (f (B2)), and hence

lim
B1

f = lim f (B1) ⊆ lim f (B2) = lim
B2

f .

The usual convergence of nets is in fact defined in the previous way. Indeed, if f is a net,
then D is a directed set and B is the filter base associated with D, that is, B := {↑d : d ∈ D}.

The convergence given by Equation (1.1) can also be expressed in terms of ideals. Recall
that an ideal is the dual concept of a filter. As a matter of fact, if F is a filter (base) in a
nonempty set D, then IF := {D \ A : A ∈ F} is an ideal (base) on D, and conversely, if I is
an ideal (base) of D, then FI := {D \ A : A ∈ I} is a filter (base) in D. In this sense, the limit
through an ideal base B is defined as the limit through the associated filter base FB. In
other words, if B is an ideal base in D, then

lim
B

f := lim
FB

f

= lim f (FB)

=
{

x ∈ X : Nx ⊆ J
(
f (FB)

)}

=
{

x ∈ X : ∀U ∈Nx ∃A ∈ B such that f (D \ A) ⊆ U
}

=
{

x ∈ X : ∀U ∈Nx ∃A ∈ B such that D \ A ⊆ f –1(U)
}

=
{

x ∈ X : ∀U ∈Nx ∃A ∈ B such that D \ f –1(U) ⊆ A
}

=
{

x ∈ X : ∀U ∈Nx ∃A ∈ B such that f –1(X \ U) ⊆ A
}

=
{

x ∈ X : ∀U ∈Nx f –1(X \ U) ∈ I(B)
}

,

where as expected I(B) is the ideal generated by the ideal base B.
In the case of sequences we obtain the usual notions of convergence. Indeed, in this case

D = N, and if B is a filter base in N, then

lim
B

(xn) =
{

x ∈ X : ∀U ∈Nx {n ∈N : xn ∈ U} ∈ J (B)
}

,

and if B is an ideal base in N, then

lim
B

(xn) =
{

x ∈ X : ∀U ∈Nx {n ∈N : xn /∈ U} ∈ I(B)
}

.

If X is a metric space, then the previous sets can be rewritten as

x = lim
B

(xn) ⇔ ∀ε > 0
{

n ∈N : d(xn, x) < ε
} ∈ J (B)

for B a filter base and

x = lim
B

(xn) ⇔ ∀ε > 0
{

n ∈N : d(xn, x) ≥ ε
} ∈ I(B)

for B an ideal base. Finally, notice that the Frechet filter ofN,FN := {A ⊆ N : N\A ∈ φ0(N)},
is precisely the filter of reduced neighborhoods of ∞ in the one-point compactification of
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N, N := N∪ {∞}, where φ0(N) is the family of finite subsets of N. In other words, N×∞(N) =
FN. This means that the usual convergence of sequences coincides with the convergence
through the Frechet filter of N. On the other hand, it is clear that Fφ0(N) = FN and IFN

=
φ0(N). As a consequence, if F is a filter of N containing the Frechet filter or I is an ideal of
N containing φ0(N), then the usual convergence of a sequence implies the convergence of
that sequence through F or I , respectively.

The uniform convergence of matrices or sequences is described as follows: if A :=
(aij)i,j∈I×J is a matrix of index sets I and J in a topological space X and B is a filter base
in J , then

u lim
B

(aij) :=
{

x ∈ X : ∀U ∈Nx ∃B ∈ B ∀i ∈ I B ⊆ {j ∈ J : aij ∈ U}}.

Observe that u limB(aij) ⊆ limB(aij) for all i ∈ I .
If X is a topological vector space, then an X-sequence space is simply a vector subspace

V of XN endowed with a vector topology for which the coordinate maps δn : V → X are
continuous; in other words, the vector topology of V is finer than the initial topology
σ (V , {δn : n ∈ N}) of V generated by {δn : n ∈ N}. Keep in mind that this initial topology
is precisely the inherited topology from the product topology on XN. Notice that if X is
Hausdorff or locally convex, then XN is Hausdorff or locally convex, respectively, therefore
σ (V , {δn : n ∈N}) is also Hausdorff or locally convex, respectively, and thus V is Hausdorff
or locally convex, respectively.

If (Xi)i∈I is a family of topological vector spaces, then

{∏

i∈I

Ui : Ui ∈N0(Xi)
}

is basis of zero neighborhoods for a vector topology on
∏

i∈I Xi called the uniform con-
vergence topology. This topology is clearly finer than the product topology, which is pre-
cisely the pointwise convergence topology. If X is a topological vector space and V is an
X-sequence space, then the uniform convergence topology on V is the inherited topology
on V from the uniform convergence topology of XN. If X is a normed space, then the sup
norm on �∞(X) precisely induces the uniform convergence topology.

A subset A of a topological vector space X is said to be bounded provided that, for ev-
ery zero neighborhood V of X, there exists α ∈ K such that A ⊆ αV . Note that �∞(X)
and c(X) stand for the vector space of bounded sequences on X and for the vector space
of convergent sequences on X, respectively. It is clear that every convergent sequence in
a Hausdorff topological vector space is bounded (due to the existence of a fundamental
system of balanced and absorbing neighborhoods of zero), therefore c(X) ⊆ �∞(X).

Throughout this manuscript we rely on the categorical concept of injective object. We
recall this concept in the category of Banach spaces.

Let X be a Banach space and k ≥ 1. A subspace Y is said to be k-complemented in X if
there exists a projection P : X → Y such that ‖P‖ ≤ k. We also say that P is a k-projection.

Let k ≥ 1. A Banach space X is called k-injective if it is k-complemented in every Y such
that X ⊆ Y .

In accordance with [9, p. 123], a Banach space X is k-injective if and only if it satisfies
any of the following (for all arbitrary Banach spaces Y , Z):
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• If X ⊆ Y and T : X → Z is linear and continuous, then there exists a continuous linear
extension S : Y → Z with ‖S‖ ≤ k‖T‖.

• If Z ⊆ Y and T : Z → X is linear and continuous, then there exists a continuous linear
extension S : Y → X with ‖S‖ ≤ k‖T‖.

• If T : X → Y is a linear isometry, there exists a continuous linear extension S : Y → X
such that ‖S‖ ≤ k and S ◦ T is the identity.

The 1-injective spaces are exactly the C(K) spaces for K extremely disconnected, that
is, the closure of every open set in K is open (see [17]). As a consequence, the reflexive
1-injective Banach spaces are precisely the spaces �n∞ for n ∈N.

2 Filter convergence
2.1 Simple filter convergence
In this subsection we define the space of convergence associated with a free filter of N and
prove several properties verified by it.

Definition 2.1 Let F be a free filter of N or, equivalently, a filter of N containing the
Frechet filter. Let X be a normed space. We define the space of F -convergence as

cF (X) :=
{

(xn)n∈N ∈ �∞(X) : ∃ lim
F

xn

}
.

The F -limit operator is defined as

F lim : cF (X) → X,

(xn)n∈N �→F lim xn := lim
F

xn.

As nontrivial examples of free filters of N, we can consider the sets with natural density
1, which yield the so-called statistical convergence [11, 20]. Recently, a generalization of
the concept of density was given by means of a modulus function f ; in this case, a free
filter can be obtained by using the complements of sets with null f -density [4, 5].

For the upcoming lemma, it is important to bear in mind the following remark.

Remark 2.2 If F is an ultrafilter in a set A and f : A → B is a map, then J (f (F )) is an
ultrafilter in B.

Theorem 2.3 Let F be a free filter of N. Let X be a normed space. Then:
(1) cF (X) is a subspace of �∞(X) containing c(X) and F lim is linear.
(2) If G is another filter of N containing F , then cF (X) ⊆ cG(X) and G lim |cF (X) = F lim.
(3) c(X) = cFN

(X) and FN lim = lim.
(4) ‖F lim‖ = 1.
(5) If F is a free ultrafilter and X is finite dimensional, then cF (X) = �∞(X).

Proof
(1) Let x := limF xn and y := limF yn. Let U be an open neighborhood of x + y. There are

open neighborhoods Vx and Vy of x and y, respectively, such that Vx + Vy ⊆ U . Note
that {n ∈N : xn ∈ Vx} ∈F and {n ∈N : yn ∈ Vy} ∈F . In particular,

{n ∈N : xn ∈ Vx and yn ∈ Vy} = {n ∈N : xn ∈ Vx} ∩ {n ∈N : yn ∈ Vy} ∈F .
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On the other hand,

{n ∈N : xn ∈ Vx and yn ∈ Vy} ⊆ {n ∈N : xn + yn ∈ U},

which implies that {n ∈N : xn + yn ∈ U} ∈F . This shows that x + y ∈ limF (xn + yn).
Since X is Hausdorff, we have that x + y = limF (xn + yn). Now let λ ∈K. Let U be an
open neighborhood of λx. There is an open neighborhood V of x such that λV ⊆ U .
Observe that {n ∈N : xn ∈ V } ∈F . On the other hand,

{n ∈N : xn ∈ V } ⊆ {n ∈N : λxn ∈ λV } ⊆ {n ∈ N : λxn ∈ U},

which implies {n ∈ N : λxn ∈ U} ∈F . This shows that λx ∈ limF (λxn). Since X is
Hausdorff, we have that λx = limF (λxn). Finally, let us prove that c(X) ⊆ cF (X). Let
(xn)n∈N be a convergent sequence to x ∈ X . We will show that limF xn = x. Let FN

denote the Frechet filter of N. Since FN ⊆F , we know that

lim
n→∞ xn = lim

FN

xn ⊆ lim
F

xn.

Since X is Hausdorff, x = limF xn.
(2) Simply observe that since F ⊆ G , we have that limF xn ⊆ limG xn, which implies that

cF (X) ⊆ cG(X). The Hausdorff character of X implies that G lim |cF (X) = F lim.
(3) By (1) we have that c(X) ⊆ cFN

(X). Let (xn)n∈N ∈ cFN
(X). We know that

limFN
xn = limn→∞ xn, which means that (xn)n∈N ∈ c(X) and FN lim = lim.

(4) Since F lim |c(X) = F lim |FN(X) = FN lim = lim and ‖ lim‖ = 1, we conclude that
‖F lim‖ ≥ 1. Now, let (xn)n∈N ∈ BcF (X). Let x := limF xn. Suppose that ‖x‖ > 1. Let V
be an open neighborhood of x such that V ∩ BX = ∅. Notice that
{n ∈N : xn ∈ V } ∈F . However, {n ∈N : xn ∈ V } = ∅ since ‖xn‖ ≤ 1. This implies the
contradiction that ∅ ∈F .

(5) Let (xn)n∈N ∈ �∞(X). Note that BX(0,‖(xn)n∈N‖∞) is compact and
G := {{xn : n ∈ F} : F ∈F} is a filter base in BX(0,‖(xn)n∈N‖∞) whose induced filter is
an ultrafilter in view of Remark 2.2. The compactness of BX(0,‖(xn)n∈N‖∞) allows
that lim(G) = lim(J (G)) �= ∅. Finally, notice that limF xn = lim(G). �

Theorem 2.4 Let X be a noncomplete normed space. No free filter F of N verifies that
cF (X) = �∞(X).

Proof Fix a nonconvergent Cauchy sequence (xn)n∈N of X. Assume to the contrary that
there exists x := limF xn. We will reach the contradiction that limn→∞ xn = x. Let ε > 0.
Fix n1 ∈ N such that ‖xn – xm‖ < ε

2 for all n, m ≥ n1. Note that {n ∈ N : ‖xn – x‖ < ε
2 } ∈ F .

Furthermore, the previous set has to be infinite because F contains the Frechet filter of N.
Let n2 := min{n ∈ N : ‖xn – x‖ < ε

2 }. Take n0 := max{n1, n2}. If n ≥ n0, then we have two
possibilities:

• ‖xn – x‖ < ε
2 < ε.

• Take m > n sufficiently large such that ‖xm – x‖ < ε
2 < ε. Then ‖xn – x‖ ≤ ‖xn – xm‖ +

‖xm – x‖ < ε.
This shows that limn→∞ xn = x. �
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The last result in this subsection shows the existence of unbounded sequences that are
F -convergent.

Theorem 2.5 Let X be any nonzero normed space. For every free filter F of N containing
strictly the Frechet filter of N, there exists an unbounded sequence (xn)n∈N such that (xn)n∈N
is F -convergent to 0.

Proof Since F contains strictly the Frechet filter of N, there exists A ∈ F infinite whose
complementary N \ A is also infinite. Fix x ∈ X \ {0} and define the sequence

xn :=

⎧
⎨

⎩
0 if n ∈ A,

nx if n ∈ N \ A.

Observe that (xn)n∈N is unbounded. Now observe that if U is any neighborhood of 0, then
{n ∈ N : xn ∈ U} ⊇ A and A ∈ F , which implies that {n ∈ N : xn ∈ U} ∈ F . This shows that
limF xn = 0. �

2.2 Composed filter convergence
The following result is a generalization of [7, Theorem 1].

Theorem 2.6 Let X be a Banach space. Let F be a free ultrafilter in N. Let T : �∞(X∗) →
�∞(X∗) be a linear and continuous operator. The operator

TF : �∞
(
X∗) → X∗,

(
x∗

n
)

n∈N �→ w∗ lim
F

T
((

x∗
n
)

n∈N
)

verifies the following properties:
(1) TF is linear and continuous and ‖TF‖ ≤ ‖T‖.
(2) If T(c(X∗)) ⊆ c(X∗), then TF |c(X∗) = limn→∞ T((x∗

n)n∈N).

Proof
(1) Denote (y∗

n)n∈N := T((x∗
n)n∈N). Note that BX∗ (0,‖T((x∗

n)n∈N)‖∞) is w∗-compact and

G :=
{{(

y∗
n
)

: n ∈ F
}

: F ∈F
}

is an ultrafilter in BX∗ (0,‖T((x∗
n)n∈N)‖∞) in view of Remark 2.2. The

w∗-compactness of BX∗ (0,‖T((x∗
n)n∈N)‖∞) allows that w∗ lim(G) �= ∅. Observe that

w∗ limF T((x∗
n)n∈N) = w∗ lim(G). This shows that TF is well defined. Let us show

now that TF is linear. Let x∗ := w∗ limF T((x∗
n)n∈N) and y∗ := w∗ limF T((y∗

n)n∈N).
Denote (a∗

n)n∈N := T((x∗
n)n∈N) and (b∗

n)n∈N := T((x∗
n)n∈N). Observe that (a∗

n + b∗
n)n∈N =

(a∗
n)n∈N + (b∗

n)n∈N = T((x∗
n)n∈N) + T((y∗

n)n∈N) = T((x∗
n)n∈N + (y∗

n)n∈N) = T((x∗
n + y∗

n)n∈N).
Let U be a w∗-open neighborhood of x∗ + y∗. There are w∗-open neighborhoods Vx∗

and Vy∗ of x∗ and y∗, respectively, such that Vx∗ + Vy∗ ⊆ U . Note that
{n ∈N : a∗

n ∈ Vx∗} ∈F and {n ∈N : b∗
n ∈ Vy∗} ∈F . In particular,

{
n ∈N : a∗

n ∈ Vx∗ and b∗
n ∈ Vy∗

}
=

{
n ∈ N : a∗

n ∈ Vx∗
} ∩ {

n ∈N : b∗
n ∈ Vy∗

} ∈F .
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On the other hand,

{
n ∈N : a∗

n ∈ Vx∗ and b∗
n ∈ Vy∗

} ⊆ {
n ∈ N : a∗

n + b∗
n ∈ U

}
,

which implies that {n ∈N : a∗
n + b∗

n ∈ U} ∈F . This shows that

x∗ + y∗ ∈ w∗ lim
F

T
((

x∗
n
)

n∈N +
(
y∗

n
)

n∈N
)
.

Since the w∗-topology on X∗ is Hausdorff, we have that
x∗ + y∗ = w∗ limF T((x∗

n + y∗
n)n∈N). Now let λ ∈K. Let U be a w∗-open neighborhood

of λx∗. There is a w∗-open neighborhood V of x∗ such that λV ⊆ U . Observe that
{n ∈N : a∗

n ∈ V } ∈F . On the other hand,

{
n ∈N : a∗

n ∈ V
} ⊆ {

n ∈N : λa∗
n ∈ λV

} ⊆ {
n ∈N : λa∗

n ∈ U
}

,

which implies {n ∈ N : λa∗
n ∈ U} ∈F . This shows that

λx∗ ∈ w∗ lim
F

(
λa∗

n
)

= w∗ lim
F

T
(
λ
(
x∗

n
)

n∈N
)
.

Since the w∗-topology on X∗ is Hausdorff,
λx∗ = w∗ limF (λa∗

n) = w∗ limF T(λ(x∗
n)n∈N). Finally, let us show that ‖TF‖ ≤ ‖T‖. In

the first place, notice that if (x∗
n)n∈N ∈ B�∞(X∗), then

T((x∗
n)n∈N) ∈ B�∞(X∗)(0,‖T((x∗

n)n∈N)‖∞) ⊆ B�∞(X∗)(0,‖T‖). Now if we denote
(a∗

n)n∈N := T((x∗
n)n∈N), then

∥∥a∗
n
∥∥ ≤ ∥∥(

a∗
n
)

n∈N
∥∥∞ ≤ ‖T‖

for every n ∈N. This implies that w∗ limF T((x∗
n)n∈N) ∈ BX∗ (0,‖T‖) and hence

‖TF‖ ≤ ‖T‖.
(2) If (x∗

n)n∈N is convergent to some x∗ ∈ X∗, then T((x∗
n)n∈N) is convergent to some

y∗ ∈ X∗. Therefore,

w∗ lim
F

T
(
x∗

n
)

= w∗ lim
FN

T
(
x∗

n
)

= w∗ lim
n→∞ T

((
x∗

n
)

n∈N
)

= lim
n→∞ T

((
x∗

n
)

n∈N
)
. �

Example 2.7 The Cesàro mean operator

T : �∞
(
X∗) → �∞

(
X∗),

(
x∗

n
)

n∈N �→
(

x∗
1 + · · · + x∗

n
n

)

n∈N

is an example of the previous theorem. In fact, in [7, Theorem 1] it was proved that TF is
indeed a Banach limit.

Recall that a sequence (xn)n∈N ⊆ BX is called a supporting sequence for an operator T ∈
B(X, Y ) provided that ‖T(xn)‖ → ‖T‖ as n → ∞.
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Example 2.8 Every continuous linear operator T : X∗ → X∗ induces an operator

T̃ : �∞
(
X∗) �→ �∞

(
X∗),

(
x∗

n
)

n∈N �→ (
T

(
x∗

n
))

n∈N

which verifies that T̃(c(X∗)) ⊆ c(X∗) and lim◦T̃ = T ◦ lim. In fact, ‖T̃F‖ = ‖T̃‖ = ‖T‖.
Indeed, it is easy to verify that ‖T̃‖ = ‖T‖. In view of Theorem 2.6, ‖T̃F‖ ≤ ‖T̃‖. Let
(x∗

n)n∈N ⊆ BX∗ be a supporting sequence for T . Observe that

T̃F
(
x∗

n
)

= w∗ lim
F

T̃
(
x∗

n
)

= T
(
x∗

n
)

for all n ∈N. Thus

∥∥T̃F
(
x∗

n
)∥∥ =

∥∥T
(
x∗

n
)∥∥ → ‖T‖

as n → ∞. This shows that ‖T‖ ≤ ‖T̃F‖.

Theorem 2.6 motivates the following definition.

Definition 2.9 Let F be a free filter of N or, equivalently, a filter of N containing the
Frechet filter. Let X and Y be Hausdorff topological vector spaces, and let V and W be
X- and Y -sequence spaces, respectively. Consider T ∈ CL(V ,W). We define the space of
(F , T)-convergence as

c(F ,T)(X) :=
{

(xn)n∈N ∈ V : ∃ lim
F

T
(
(xn)n∈N

)}
.

The (F , T)-limit operator is defined as

(F , T) lim : c(F ,T)(X) → Y ,

(xn)n∈N �→ (F , T) lim xn := lim
F

T
(
(xn)n∈N

)
.

In the previous definition, if F is the Frechet filter of N, then we remove the symbol F
and simply write cT (X) and T lim. Also, whenever V = W and T is the identity operator,
then we simply write cF (X) and F lim.

Theorem 2.10 Let F be a free filter of N. Let X and Y be Hausdorff topological vec-
tor spaces, and let V and W be X- and Y -sequence spaces, respectively. Consider T ∈
CL(V ,W). Then:

(1) c(F ,T)(X) is a subspace of V and (F , T) lim is linear.
(2) If W is endowed with the uniform convergence topology, then (F , T) lim is continuous.
(3) c(F ,T)(X) = {(xn)n∈N ∈ V : T((xn)n∈N) ∈ cF (Y )} = T–1(cF (Y )).
(4) If G is another filter of N containing F , then c(F ,T)(X) ⊆ c(G,T)(X) and

(G, T) lim |c(F ,T)(X) = (F , T) lim.
(5) If c(X) ⊆ V and T(c(X)) ⊆ c(X), then c(X) ⊆ cT (X) and T lim |c(X) = lim◦(T |c(X)).
(6) If c(X) ⊆W and T–1(c(X)) ⊆ c(X), then cT (X) ⊆ c(X) and lim |cT (X) = T lim.
(7) If X and Y are normed, V ⊆ �∞(X) and W ⊆ �∞(Y ), then ‖(F , T) lim‖ ≤ ‖T‖.
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(8) If F is a free ultrafilter, X is normed, Y is finite dimensional, V = �∞(X), and
W = �∞(Y ), then c(F ,T)(X) = �∞(X).

Proof
(1) Take (xn)n∈N and (wn)n∈N in V . Denote y := limF T((xn)n∈N), z := limF T((wn)n∈N),

(an)n∈N := T((xn)n∈N), and (bn)n∈N := T((wn)n∈N). Let U be an open neighborhood of
y + z in Y . There are open neighborhoods Vy and Vz of y and z, respectively, such
that Vy + Vz ⊆ U . Note that {n ∈N : an ∈ Vy} ∈F and {n ∈N : bn ∈ Vz} ∈F . In
particular,

{n ∈N : an ∈ Vy and bn ∈ Vz} = {n ∈ N : an ∈ Vy} ∩ {n ∈N : bn ∈ Vz} ∈F .

On the other hand,

{n ∈N : an ∈ Vy and bn ∈ Vz} ⊆ {n ∈ N : an + bn ∈ U},

which implies that {n ∈N : an + bn ∈ U} ∈F . Then
y + z ∈ limF T((xn)n∈N + (wn)n∈N). Since Y is Hausdorff, we have that
y + z = limF T((xn)n∈N + (wn)n∈N). Now let λ ∈K. Let U be an open neighborhood of
λy in Y . There is an open neighborhood V of y such that λV ⊆ U . Observe that
{n ∈N : an ∈ V } ∈F . On the other hand,

{n ∈N : an ∈ V } ⊆ {n ∈N : λan ∈ λV } ⊆ {n ∈ N : λan ∈ U},

which implies {n ∈ N : λan ∈ U} ∈F . This shows that
λy ∈ limF (λan) = limF T((λxn)n∈N). Since Y is Hausdorff, we have that
λy = limF T((λxn)n∈N).

(2) Let U be a neighborhood of 0 in Y . Since all topological vector spaces are regular,
we may assume without loss that U is closed. Take W := UN ∩W , which is a
neighborhood of 0 in W . Take V := T–1(W ), which is a neighborhood of 0 in V . We
will show that (F , T) lim(V ) ⊆ U . Let (xn)n∈N ∈ V . Then (yn)n∈N := T((xn)n∈N) ∈ W .
Denote y := limF yn = (F , T) lim xn. Suppose that y /∈ U . Since U is closed, we can
find an open neighborhood A of y such that A ∩ U = ∅. Note that
{n ∈N : yn ∈ A} ∈F . Since (yn)n∈N ∈ W , we have that yn ∈ U for every n ∈N. Since
U ∩ A = ∅, we conclude that {n ∈N : yn ∈ A} = ∅, which implies the contradiction
that ∅ ∈F .

(3) Trivial.
(4) Simply observe that since F ⊆ G , we have that limF T((xn)n∈N) ⊆ limG T((xn)n∈N),

which implies that c(F ,T)(X) ⊆ c(G,T)(X). The Hausdorff character of X implies that
(G, T) lim |c(F ,T)(X) = (F , T) lim.

(5) If (xn)n∈N ∈ c(X), then by hypothesis we have that T((xn)n∈N) ∈ c(X), so

lim
n→∞ T

(
(xn)n∈N

)
= lim

FN

T
(
(xn)n∈N

)
= T lim xn,

which implies that (xn)n∈N ∈ cT (X) and T lim |c(X) = lim◦(T |c(X)).
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(6) If (xn)n∈N ∈ cT (X), then limFN
T((xn)n∈N) exists, but we know that

limFN
T((xn)n∈N) = limn→∞ T((xn)n∈N). As a consequence, T((xn)n∈N) ∈ c(X). Then,

by hypothesis, (xn)n∈N ∈ c(X) and lim |cT (X) = T lim.
(7) If (xn)n∈N ∈ B�∞(X) ∩ V = BV , then

T
(
(xn)n∈N

) ∈ B�∞(Y )
(
0,

∥∥T
(
(xn)n∈N

)∥∥∞
) ⊆ B�∞(Y )

(
0,‖T‖),

which implies that limF T((xn)n∈N) ∈ BY (0,‖T‖), and hence ‖(F , T) lim‖ ≤ ‖T‖.
(8) In the first place, note that if Y is a finite dimensional Hausdorff topological vector

space, then Y is normed. Let (xn)n∈N ∈ �∞(X). Note that BY (0,‖T((xn)n∈N)‖∞) is
compact. Denote (an)n∈N := T((xn)n∈N). Then G := {{an : n ∈ F} : F ∈F} is a filter
base in BY (0,‖T((xn)n∈N)‖∞) whose induced filter is an ultrafilter in view of
Remark 2.2. The compactness of BY (0,‖T((xn)n∈N)‖∞) allows that
lim(G) = lim(J (G)) �= ∅. Finally, notice that lim(F ,T) xn = limF T((xn)n∈N) = lim(G).

�

Theorem 2.10(8) can be in fact proved easily by relying on Theorem 2.3(5). Indeed, by
Theorem 2.10(3),

c(F ,T)(X) =
{

(xn)n∈N ∈ �∞(X) : T
(
(xn)n∈N

) ∈ cF (Y )
}

= T–1(cF (Y )
)
.

In the settings of Theorem 2.10(8), we have that cF (Y ) = �∞(Y ) by virtue of Theo-
rem 2.3(5). As a consequence,

c(F ,T)(X) = T–1(cF (Y )
)

= T–1(�∞(Y )
)

= �∞(X).

Definition 2.9 allows us to describe the vector space of Cauchy sequences.

Example 2.11 Let X be a normed space, and let us denote by X its completion. It is clear
that the vector space of Cauchy sequences on X is described by c(X) ∩ �∞(X). If we let
ιX : �∞(X) → �∞(X) denote the canonical inclusion, then cιX (X) = c(X) ∩ �∞(X).

We will describe now the almost convergence in terms of the (F , T)-convergence.

Example 2.12 Let X be a Hausdorff topological vector space. The general k-Cesàro mean
operator is defined as

Ck : XN → XN,

(xn)n∈N �→ Ck
(
(xn)n∈N

)
:=

(
xk + · · · + xk+n–1

n

)

n∈N
.

Observe that if X is locally convex, then Ck(�∞(X)) ⊆ �∞(X). The general uniform Cesàro
mean operator is defined as

C : XN → (
XN

)N,

(xn)n∈N �→ C
(
(xn)n∈N

)
:=

(
Ck

(
(xn)n∈N

))
k∈N.
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Observe that if X is locally convex and �∞(X) is endowed with the uniform convergence
topology, then C (�∞(X)) ⊆ �∞(�∞(X)).

Connected with the previous example, note that applications of almost convergence to
nonlinear ergodic theory can be found in [8, 19].

Lemma 2.13 Let X be a Hausdorff locally convex topological vector space. If �∞(X) is en-
dowed with the uniform convergence topology, then C (�∞(X)) ⊆ �∞(�∞(X)).

Proof Fix arbitrary (xn)n∈N ∈ �∞(X). We will show first that ( xk +···+xk+n–1
n )n∈N ∈ �∞(X). Let

V be a convex zero neighborhood in X. There exists α ∈ K such that (xn)n∈N ⊆ αV .
Since αV is convex, we have that ( xk +···+xk+n–1

n )n∈N ⊆ αV for all k ∈ N. This shows that
( xk +···+xk+n–1

n )n∈N ∈ �∞(X). Finally, let us show that (( xk +···+xk+n–1
n )n∈N)k∈N ∈ �∞(�∞(X)). Take

U a zero neighborhood in �∞(X). Since �∞(X) is endowed with the uniform conver-
gence topology, we can find a convex zero neighborhood V in X such that VN ∩ �∞(X) ⊆
U . Again, take α ∈ K such that (xn)n∈N ⊆ αV . We know that ( xk +···+xk+n–1

n )n∈N ⊆ αV
for all k ∈ N, that is, ( xk +···+xk+n–1

n )n∈N ∈ αVN ∩ �∞(X) ⊆ αU for all k ∈ N. Therefore,
(( xk +···+xk+n–1

n )n∈N)k∈N ⊆ αU . This shows that (( xk +···+xk+n–1
n )n∈N)k∈N ∈ �∞(�∞(X)). �

Lemma 2.14 Let X be a Hausdorff topological vector space. Let (xn)n∈N be a sequence in X.
If there exists k ∈ N such that Ck((xn)n∈N) is convergent, then Cl((xn)n∈N) is convergent to
the same limit for all l ∈ N. In particular, if C ((xn)n∈N) is pointwise convergent, then the
limit is a constant sequence.

Proof We will assume that k > 1 and show that C1((xn)n∈N) is convergent to the same limit.
Observe that

x1 + · · · + xk+n–1

k + n – 1
=

k – 1
k + n – 1

x1 + · · · + xk–1

k – 1
+

n
k + n – 1

xk + · · · + xk+n–1

n
(2.1)

for all n ∈N. If we let n → ∞, then

k – 1
k + n – 1

x1 + · · · + xk–1

k – 1
→ 0

since k is fixed, which shows that

lim
n→∞

x1 + · · · + xk+n–1

k + n – 1
= lim

n→∞
xk + · · · + xk+n–1

n
.

Now that we know that C1((xn)n∈N) is convergent to the same limit, we will show that
Cl((xn)n∈N) is convergent to the same limit for all l ∈ N. Fix arbitrary l > 1. By relying on
the same expression as in (2.1), we have that

x1 + · · · + xl+n–1

l + n – 1
=

l – 1
l + n – 1

x1 + · · · + xl–1

l – 1
+

n
l + n – 1

xl + · · · + xl+n–1

n
(2.2)

for all n ∈ N. By isolating n
l+n–1

xl+···+xl+n–1
n from (2.2) we conclude that Cl((xn)n∈N) is con-

vergent to the same limit as C1((xn)n∈N). �
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Theorem 2.15 If X is a Hausdorff locally convex topological vector space and �∞(X) is
endowed with the uniform convergence topology, then ac(X) = cC |�∞(X) (X), where C |�∞(X) is
the general Cesàro operator restricted to �∞(X) with range in �∞(�∞(X)).

Proof In the first place, since X is locally convex, we have that Ck(�∞(X)) ⊆ �∞(X) for all
k ∈ N as we remarked in Example 2.12. Also keep in mind that, in view of Lemma 2.14, if
C ((xn)n∈N) is pointwise convergent, then the limit is a constant sequence. Notice also that
�∞(X) is endowed with the uniform convergence topology. With all these ingredients we
conclude that

cC |�∞(X) (X) :=
{

(xn)n∈N ∈ �∞(X) : ∃ lim
FN

C
(
(xn)n∈N

)}

:=
{

(xn)n∈N ∈ �∞(X) : C
(
(xn)n∈N

) ∈ c
(
�∞(X)

)}

:=
{

(xn)n∈N ∈ �∞(X) : ∃x ∈ X such that lim
FN

C
(
(xn)n∈N

)
= x

}

=
{

(xn)n∈N ∈ �∞(X) : ∃x ∈ X such that

lim
n→∞

xk + · · · + xk+n–1

n
= x uniformly in k ∈N

}

= ac(X). �

2.3 Multipliers
The concept of multiplier convergent series has been widely studied since the beginning of
this century and basically allows to describe the behavior of a series through a certain space
of sequences. We refer the reader to the magnificent book [21] on multiplier convergent
series. In [22] the vector-valued version of multipliers was introduced for the first time. For
recent developments on this topic, see [6, 15, 16]. Here we adapt it to our general method
of convergence.

Definition 2.16 Let G be a free filter of N. Let X, Y , and Z be Hausdorff topological vector
spaces. Let U , V , and W be X-, Y -, and Z-sequence spaces, respectively. Consider S ∈
CL(V ,W). Then:

(1) The (G, S)-multiplier space associated with a sequence (Tn)n∈N ⊆ CL(X, Y ) is
defined as

M∞
(G,S)

(
(Tn)n∈N

)
:=

{

(xn)n∈N ∈ U :
∞∑

n=1

Tn(xn) ∈ c(G,S)(Y )

}

and the (G, S)-summing operator associated with (Tn)n∈N is defined as

(G, S)
∞∑

n=1

Tn : M∞
(G,S)

(
(Tn)n∈N

) → Z,

(xn)n∈N �→ (G, S)
∞∑

n=1

Tn(xn).

(2.3)
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(2) The (G, S)-summability space associated with a subspace S ⊆ V is defined as

CL(X, Y )(S) :=
{

(Tn)n∈N ∈ CL(X, Y )N : S ⊆M∞
(G,S)

(
(Tn)n∈N

)}
.

In the previous definition, if G is the Frechet filter of N, then we remove the symbol G
and simply write M∞

S ((Tn)n∈N) and S
∑∞

n=1 Tn. Also, whenever V = W and S is the identity
operator, then we simply write M∞

G ((Tn)n∈N) and G
∑∞

n=1 Tn.

Lemma 2.17 Let Z be a normed space. If (zn)n∈N is a Cauchy sequence in Z which is weakly
convergent to some z ∈ Z, then (zn)n∈N is norm-convergent to z. In other words, cιZ (Z) ∩
c(Zw) = c(Z), where ιZ : �∞(Z) → �∞(Z) denotes the canonical inclusion and Zw stands for
Z endowed with the weak topology.

Proof Notice that (zn)n∈N is also weakly convergent to z in Z. On the other hand, there
exists z0 ∈ Z such that (zn)n∈N converges to z0 in Z. Then z0 = z and so z0 ∈ Z. This proves
the result. �

In the next result of this subsection, G will be the Frechet filter of N, FN, X, Y , and Z
will be normed spaces and U := �∞(X), V := �∞(Y ), and W := �∞(Z), endowed with the
sup norm.

Proposition 2.18 Let X, Y , and Z be normed spaces and S ∈ B(�∞(Y ),�∞(Z)) such that
S(cιY (Y )) ⊆ cιZ (Z). Let Zw denote Z endowed with the weak topology, and let Sw denote S
seen as a continuous linear operator from �∞(Y ) to �∞(Zw). Consider a sequence (Tn)n∈N ⊆
B(X, Y ). If �∞(X) ⊆M∞

ιY
((Tn)n∈N), then M∞

S ((Tn)n∈N) = M∞
Sw ((Tn)n∈N).

Proof Since the weak topology is coarser than the norm topology on Z, we have that
cS(Y ) ⊆ cSw (Y ). Hence M∞

S ((Tn)n∈N) ⊆ M∞
Sw ((Tn)n∈N). Conversely, take (xn)n∈N ∈

M∞
Sw ((Tn)n∈N). By hypothesis,

∑∞
n=1 Tn(xn) ∈ cιY (Y ) so S(

∑∞
n=1 Tn(xn)) ∈ cιZ (Z). However,

S(
∑∞

n=1 Tn(xn)) ∈ c(Zw). Finally, by Lemma 2.17, we conclude that S(
∑∞

n=1 Tn(xn)) ∈ c(Z).
This shows that (xn)n∈N ∈M∞

S ((Tn)n∈N). �

The following final lemma shows that the general Cesàro operator verifies the hypothesis
of the previous proposition.

Lemma 2.19 Let X be a normed space. Consider C |�∞(X) the general Cesàro operator re-
stricted to �∞(X) with range in �∞(�∞(X)). Let (xn)n∈N be a bounded sequence in X. If there
exists k ∈ N such that Ck((xn)n∈N) is Cauchy, then Cl((xn)n∈N) is Cauchy for all l ∈ N. In
particular, if (xn)n∈N is a Cauchy sequence in X, then C ((xn)n∈N) is Cauchy in �∞(X).

Proof Note that Ck((xn)n∈N) is convergent in X . So if we apply Lemma 2.14 in X, then we
conclude that Cl((xn)n∈N) is convergent and thus Cauchy for all l ∈ N. Now if (xn)n∈N is a
Cauchy sequence in X, then (xn)n∈N is convergent in X, so it is almost convergent in X,
that is, C ((xn)n∈N) ∈ c(�∞(X)), which implies that C ((xn)n∈N) is Cauchy in �∞(X). �

3 Convergence through operators
This section is strongly motivated by the vector-valued Banach limit theory, which can be
found in [1, 2, 7, 13, 14].
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3.1 The set HB(lim)
Recall that if X and Y are normed spaces and S ∈ B(W , Y ) where W is a subspace of X,
then we can define the set

HB(S) :=
{

T ∈ B(X, Y ) : T |W = S and ‖T‖ = ‖S‖}.

Following this notation we have that

HB(lim) :=
{

T ∈ B
(
�∞(X), X

)
: T |c(X) = lim and ‖T‖ = 1

}
.

If there is confusion with the space X, then we will use the notation HBX(lim). Notice that
HB(lim) is a convex subset of SB(�∞(X),X) which is closed for the pointwise convergence
topology of B(�∞(X), X), that is, σ (B(�∞(X), X), {δ(xn)n∈N : (xn)n∈N ∈ �∞(X)}).

Let us study the extremal structure of HB(lim). For this, we have to introduce a bit of
notation. We denote

L0
X :=

{
T ∈ B

(
�∞(X), X

)
: c0(X) ⊆ ker(T)

}
.

Notice that L0
X is a vector subspace of B(�∞(X), X) which is closed for the pointwise con-

vergence topology.
Recall that, for every x ∈ X, x stands for the constant sequence of general term x and X

means the space of all xs.
A subset E of a subset C of a real vector space X is said to be extremal if E verifies the

extremal condition with respect to C: if x, y ∈ C and t ∈ (0, 1) and tx + (1 – t)y ∈ E, then
x, y ∈ E. If C is convex and E is convex and extremal in C, then E is called a face of C. We
refer the reader to [3, 9, 10].

Theorem 3.1 Let X be a normed space with the Bade property, that is, BX = co(ext(BX)).
Then HB(lim) is a face of BL0

X
.

Proof Let T , S ∈ BL0
X

and t ∈ (0, 1) such that tT + (1 – t)S ∈ HB(lim). If x ∈ ext(BX), then
x = (tT + (1 – t)S)(x) = tT(x) + (1 – t)S(x), which implies that T(x) = S(x) = x. Since BX =
co(ext(BX)), we conclude that T(x) = S(x) = x for all x ∈ X. Since T , S ∈ L0

X , we conclude
that T , S ∈HB(lim). �

In [14, Theorem 5.1] it was proved that if X has the Bade property, then the set of Banach
limits, BL (X) := HB(lim) ∩NX (see [7, Definition 2]), is a face of BNX , where

NX :=
{

T ∈ B
(
�∞(X), X

)
: T

(
(xn)n∈N

)
= T

(
(xn+1)n∈N

)
for all (xn)n∈N ∈ �∞(X)

}
.

Notice that L0
X is a vector subspace of NX , and NX is a vector subspace of B(�∞(X), X)

which is closed for the pointwise convergence topology. In [1, Lemma 2.2] it was proved
that the vector space of bounded sequences with bounded partial sums,

bps(X) :=

{

(xn)n∈N ∈ XN :

( k∑

n=1

xn

)

k∈N
∈ �∞(X)

}

,
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can be expressed as bps(X) = {(zn+1 – zn)n∈N : (zn)n∈N ∈ �∞(X)}. As a consequence, NX =
{T ∈ B(�∞(X), X) : bps(X) ⊆ ker(T)}. Since c00(X) ⊆ bps(X), c00(X) is dense in c(X) and
ker(T) is closed, we conclude that NX ⊆L0

X .
Now, by bearing in mind the fact that if C is a face of BX and Y is a subspace of X,

then C ∩ Y is a face of BY , we have that [14, Theorem 5.1] is a direct consequence of our
Theorem 3.1.

Corollary 3.2 ([14]) Let X be a normed space with the Bade property. Then BL (X) is a
face of BNX .

Proof By Theorem 3.1 we know that HB(lim) is a face of BL0
X

. Thus BL (X) = HB(lim) ∩
NX is a face of BNX . �

We will prove next that, for certain Banach spaces, NX �L0
X .

Theorem 3.3 Let X be an injective Banach space. Then NX �L0
X .

Proof Fix x ∈ X \ {0} and consider the map

c0(X) ⊕K
(
(–1)nx

)
n∈N → X,

(xn)n∈N + λ
(
(–1)nx

)
n∈N �→ λx.

Notice that

‖λx‖ ≤ sup
k∈N

‖x2k + λx‖ ≤ sup
n∈N

∥∥xn + λ(–1)nx
∥∥ =

∥∥(xn)n∈N + λ
(
(–1)nx

)
n∈N

∥∥∞.

This shows that the above operator has norm 1. By hypothesis, it can be extended to
the whole of �∞(X). This extension is clearly an element of L0

X \ NX since ((–1)nx)n∈N ∈
bps(X). �

A supporting sequence (xn)n∈N for an operator T of norm 1 is called self-supporting if
xn – T(xn) → 0 as n → ∞.

A convex component is a maximal convex subset (see [12]).

Theorem 3.4 Let X be a normed space. If there exists T ∈ GX \ {IX} with a self-supporting
sequence (xn)n∈N ⊆ BX , then HB(lim) is not a convex component of SLX

0
.

Proof Fix arbitrary S ∈ HB(lim). Notice that T ◦ S ∈ SB(�∞(X),X) \ HB(lim). We will show
that HB(lim) � co(HB(lim) ∪ {T ◦ S}) ⊆ SB(�∞(X),X). We already know that HB(lim) �
co(HB(lim)∪{T ◦S}). Let R ∈HB(lim) and t ∈ (0, 1). It is clear that tR+(1– t)(T ◦S) ∈ BL0

X
.

All is left to prove is that ‖tR+(1– t)(T ◦S)‖ = 1. Simply notice that (tR+(1– t)(T ◦S))(xn) =
txn + (1 – t)T(xn) = t(xn – T(xn)) + T(xn) for all n ∈N, which implies that

∣∣∥∥(
tR + (1 – t)(T ◦ S)

)
(xn)

∥∥ –
∥∥T(xn)

∥∥∣∣ ≤ ∥∥(
tR + (1 – t)(T ◦ S)

)
(xn) – T(xn)

∥∥

=
∥∥t

(
xn – T(xn)

)
+ T(xn) – T(xn)

∥∥

= t
∥∥xn – T(xn)

∥∥ → 0.
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Since (‖T(xn)‖)n∈N converges to 1, we conclude that ‖(tR + (1 – t)(T ◦ S))(xn)‖ → 1 as
n → ∞, and hence ‖tR + (1 – t)(T ◦ S)‖ = 1 and (xn)n∈N is a supporting sequence for tR +
(1 – t)(T ◦ S). �

Corollary 3.5 Let X be a Hilbert space of dimension strictly greater than 3. Then HB(lim)
is a nonmaximal face BLX

0
.

Proof It suffices to notice that X enjoys the Bade property and has a surjective linear isom-
etry T : X → X with a nonzero fixed point (and thus a self-supporting sequence). Now we
apply Theorem 3.1 and Theorem 3.4. �

3.2 The space cC(X)
We will study in this subsection the space of convergent sequences through a set of oper-
ators in HB(lim).

Definition 3.6 (Convergence method) Let X be a normed space. Let C be a subset of
HB(lim). A sequence (xn)n∈N ∈ �∞(X) is said to be C-convergent to x ∈ X provided that
T((xn)n∈N) = x for all T ∈ C , where x is called the C-limit of (xn)n∈N and is denoted by
C limn→∞ xn. The space

cC(X) :=
{

(xn)n∈N ∈ �∞(X) : (xn)n∈N is C-convergent
}

is called the space of C-convergent sequences and the map

C lim : cC(X) → X,

(xn)n∈N �→ C lim
n→∞ xn

is called the C-limit operator.

Example 3.7 (Banach limits) It was shown in [7, p. 316] that BL (c0) = ∅ and in [7, Corol-
lary 2] that ac(X) ⊆ cBL (X)(X), where ac(X) is the space of almost convergent X-valued
sequences for X a normed space. In [18] Lorentz proved that ac(R) = cBL (R)(R). In [23]
it was shown that BL (B(H)) �= ∅ and ac(B(H)) � cBL (B(H))(B(H)) for H an infinite di-
mensional complex Hilbert space.

Theorem 3.8 Let X be a normed space. Let C be a subset of HB(lim). Then:
(1) cC(X) =

⋃{Z ⊆ �∞(X) : T , S ∈ C ⇒ T |Z = S|Z} =
⋂{ker(T – S) : T , S ∈ C} =

⋂{ker(T0 – S) : S ∈ C} for each T0 ∈ C . Thus cC(X) is a closed subspace of �∞(X).
(2) If dim(X) = 1 and there exists T0 ∈ C for which span{T0 – S : S ∈ C} is finite

dimensional, then dim(span{T0 – S : S ∈ C}) = codim(cC(X)) in �∞(X).
(3) If C ⊆D ⊆HB(lim), then cD(X) ⊆ cC(X) and C lim |cD (X) = D lim.
(4) cC(X) = ccow(C)(X) and cow(C) lim = C lim, where w stands for the pointwise

convergence topology σ (B(�∞(X), X), {δ(xn)n∈N : (xn)n∈N ∈ �∞(X)}).
(5) c(X) ⊆ cC(X).
(6) C lim |c(X) = lim.
(7) ‖C lim‖ = 1.
(8) cC(X) = �∞(X) if and only if C is a singleton.
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Proof
(1) Let (xn)n∈N ∈ cC(X). If we take Z := {(xn)n∈N}, then T |Z = S|Z for all T , S ∈ C .

Therefore (xn)n∈N ∈ ⋃{Z ⊆ �∞(X) : T , S ∈ C ⇒ T |Z = S|Z}. Now let
(xn)n∈N ∈ ⋃{Z ⊆ �∞(X) : T , S ∈ C ⇒ T |Z = S|Z}. There exists Z ⊆ �∞(X) verifying
that T |Z = S|Z for all T , S ∈ C and (xn)n∈N ∈ Z. Pick any T , S ∈ C . Then
T((xn)n∈N) = S((xn)n∈N) so (xn)n∈N ∈ ker(T – S). The arbitrariness of T and S allows
us to conclude that (xn)n∈N ∈ ⋂{ker(T – S) : T , S ∈ C}. It is trivial that
⋂{ker(T – S) : T , S ∈ C} ⊆ ⋂{ker(T0 – S) : S ∈ C} for every T0 ∈ C . Finally, fix
arbitrary T0 ∈ C , and let (xn)n∈N ∈ ⋂{ker(T0 – S) : S ∈ C}. If S ∈ C , then
S((xn)n∈N) = T0((xn)n∈N) because by hypothesis (xn)n∈N ∈ ker(S – T0). The
arbitrariness of S implies that (xn)n∈N ∈ cC(X) and C limn→∞ xn = T0((xn)n∈N).

(2) Recall first that if {z∗
1, . . . , z∗

k} is a finite linearly independent subset of the dual of a
vector space Z, then codim(

⋂k
i=1 ker(z∗

i )) = k. By relying on this and on the first
isomorphism theorem, if {z∗

j : j ∈ J} is a linearly independent subset of Z∗ such that
codim(

⋂
j∈J ker(z∗

j )) is finite, then card(J) = codim(
⋂

j∈J ker(z∗
j )). However, it does not

hold that dim(F) = codim(
⋂

z∗∈F ker(z∗)) for every vector subspace F of Z∗. Indeed,
assume that Z is an infinite dimensional normed space of countable dimension, and
take F := Z∗, which is a Banach space and thus it has uncountable dimension. Then
F separates points of Z by virtue of the Hahn–Banach theorem, and thus
⋂

z∗∈F ker(z∗) = {0}, so codim(
⋂

z∗∈F ker(z∗)) = dim(Z) < dim(Z∗) = dim(F). Now, if
dim(span{T0 – S : T ∈ C}) = n, then there exist Si ∈ C for i = 1, . . . , n such that
{T0 – Si : i ∈ {1, . . . , n}} is a linear basis. Then
cC(X) =

⋂
S∈C ker(T0 – S) =

⋂n
i=1 ker(T0 – Si) has codimension n in �∞(X).

(3) If (xn)n∈N ∈ cD(X), then there exists x ∈ X such that T((xn)n∈N) = x for all T ∈D, in
particular the previous equality also holds for all T ∈ C , therefore (xn)n∈N ∈ cC(X)
and x = C limn→∞ xn.

(4) By (2), cC(X) ⊇ ccow(C)(X). Let (xn)n∈N ∈ cC(X) and T ∈ cow(C). There exists a net
(Ti)i∈I ⊆ co(C) which is pointwise convergent to T . For every i ∈ I , we can write
Ti = λ1Ti1 + · · · + λki Tiki

, where Tij ∈ C and λj ≥ 0 for all j ∈ {1, . . . , ki} and
λ1 + · · · + λki = 1. Then

T
(
(xn)n∈N

)
= lim

i∈I
Ti

(
(xn)n∈N

)

= lim
i∈I

ki∑

j=1

λjTij
(
(xn)n∈N

)

= lim
i∈I

ki∑

j=1

λjC lim
n→∞ xn

= lim
i∈I

C lim
n→∞ xn

= C lim
n→∞ xn.

This shows that (xn)n∈N ∈ ccow(C)(X) and

cow(C) lim
n→∞ xn = C lim

n→∞ xn.
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(5) Let (xn)n∈N ∈ c(X). For every T ∈ C , since T |c(X) = lim, we have that
T((xn)n∈N) = limn→∞ xn. This shows that (xn)n∈N ∈ cC(X).

(6) Let (xn)n∈N ∈ c(X). Fix any T ∈ C . Then

C lim
n→∞ xn = T

(
(xn)n∈N

)
= lim

n→∞ xn

since T |c(X) = lim.
(7) Since C lim |c(X) = lim, we have that

‖C lim‖ ≥ ‖C lim |c(X)‖ = ‖ lim‖ = 1.

Now fix any T ∈ C and any (xn)n∈N ∈ BcC (X). Then

∥∥∥C lim
n→∞ xn

∥∥∥ =
∥∥T

(
(xn)n∈N

)∥∥ ≤ ‖T‖∥∥(xn)n∈N
∥∥ ≤ 1.

(8) If there exists T ∈HB(lim) such that C = {T}, then by (1) we have that

cC(X) =
⋃{

Z ⊆ �∞(X) : T |Z = T |Z
}

= �∞(X).

Conversely, suppose that there are T , S ∈ cC(X). Then, by using (1) again, we have
that �∞(X) = cC(X) ⊆ ker(T – S), which implies that T = S. �

3.3 c(X) as cC(X)
Recall that if X is a normed space, then we let X denote its completion and if x ∈ X, then
x stands for the constant sequence of general term x.

Theorem 3.9 Let X be a normed space. Let C be a subset of HB(lim). Then X is complete
if and only if so is cC(X).

Proof If X is complete, then so is �∞(X) and hence so is cC(X) because it is closed in �∞(X)
in view of Theorem 3.8(1). Conversely, suppose that cC(X) is complete. Let (xn)n∈N be a
Cauchy sequence in X. Let y ∈ X be the limit of (xn)n∈N. Note that (xn)n∈N is a Cauchy
sequence in cC(X), so there exists a sequence z := (zn)n∈N ∈ cC(X) such that (xn)n∈N con-
verges to (zn)n∈N. Since cC(X) ⊆ cC(X) and (xn)n∈N converges to both y and z in cC(X), we
obtain that z = y, and thus zn = y for all n ∈N concluding that y ∈ X. �

Our next results show that if X is a noncomplete normed space, then there does not
exist C ⊆HB(lim) for which c(X) = cC(X).

Lemma 3.10 c(X) is dense in c(X).

Proof Let (yn)n∈N ∈ c(X) and fix arbitrary ε > 0. For every n ∈N let xn ∈ X such that ‖yn –
xn‖ ≤ ε/2. Take n0 ∈ N such that 1/n0 < ε/2 and ‖yp – yq‖ < ε/2 for all p, q ≥ n0. Then
(x1, x2, . . . , xn0–1, xn0 , xn0 , xn0 , . . . ) ∈ c(X) and

∥∥(x1, x2, . . . , xn0–1, xn0 , xn0 , xn0 , . . . ) – (yn)n∈N
∥∥∞ < ε



García-Pacheco et al. Journal of Inequalities and Applications         (2021) 2021:62 Page 19 of 22

since

‖xn0 – yn‖ ≤ ‖xn0 – yn0‖ + ‖yn0 – yn‖ <
ε

2
+

ε

2
= ε

for all n ≥ n0. �

It is easy to check that c(X) is never dense in �∞(X). When X = R, a separability argu-
ment can be applied. In general, one can see that a sequence like ((–1)nx)n∈N can never be
approximated by convergent sequences in the sup norm if x �= 0.

Theorem 3.11 The following conditions are equivalent for a normed space X:
(1) c(X) ∩ �∞(X) = c(X).
(2) c(X) is a closed subspace of �∞(X).
(3) X is complete.

Proof
1 ⇒ 2 Immediate if taken into account that c(X) is closed in �∞(X) since X is complete.
2 ⇒ 3 Note that c(X) ∩ �∞(X) is a closed subspace of �∞(X) containing c(X). In view

of Lemma 3.10, we have that c(X) is dense in c(X), therefore c(X) ∩ �∞(X) = c(X)
by hypothesis. Consider now a Cauchy sequence (xn)n∈N ⊂ X . It is obvious that
(xn)n∈N ∈ c(X) ∩ �∞(X) = c(X). So (xn)n∈N is convergent in X .

3 ⇒ 1 Obvious since X = X . �

Corollary 3.12 Let X be a noncomplete normed space. There does not exist C ⊆ HB(lim)
for which c(X) = cC(X).

Proof Assume to the contrary that there exists C ⊆ HB(lim) for which c(X) = cC(X). In
view of Theorem 3.8(1), we have that c(X) is a closed subspace of �∞(X). By applying
Theorem 3.11, we obtain that X is complete. �

Lemma 3.13 Let X be a normed space. Let (xn)n∈N ⊆ X be a convergent sequence to x ∈ X
and (an)n∈N ⊆ X be a nonconvergent bounded sequence with a w-convergent subnet (ani )i∈I

to a ∈ X. Then

‖x + λa‖ ≤ sup
n∈N

‖xn + λan‖

for all λ ∈K. As a consequence, the operator

c(X) ⊕K(an)n∈N →K,

(yn)n∈N + λ(an)n∈N �→ lim
n→∞ yn + λa

(3.1)

has norm 1. Also, (an)n∈N cannot be approximated by c(X).

Proof The net (xni + λani )i∈I w-converges to x + λa. The w-lower semicontinuity of the
norm implies that

‖x + λa‖ ≤ lim inf
i∈I

‖xni + λani‖ ≤ sup
i∈I

‖xni + λani‖ ≤ sup
n∈N

‖xn + λan‖.
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This shows that map (3.1) has norm less than or equal to 1. The fact that map (3.1) is
an extension of the limit function forces it to have norm 1. Finally, suppose that (an)n∈N
is approximated by c(X). Then (an)n∈N is convergent in X. As a consequence, (an)n∈N is
convergent in X to a ∈ X, which means that (an)n∈N is convergent in X to a. �

Theorem 3.14 Let X be a reflexive 1-injective Banach space. Then c(X) = cHB(lim)(X).

Proof Suppose to the contrary that there exists (an)n∈N ∈ cHB(lim)(X)\c(X). Since X is finite
dimensional, there are two subsequences (ank )k∈N and (amk )k∈N convergent to different
elements a and b, respectively. Now consider the maps

Sa : c(X) ⊕K(an)n∈N →K,

(xn)n∈N + λ(an)n∈N �→ lim
n→∞ xn + λa

and

Sb : c(X) ⊕K(an)n∈N,→K,

(xn)n∈N + λ(an)n∈N �→ lim
n→∞ xn + λb.

According to Lemma 3.13, ‖Sa‖ = ‖Sb‖ = 1. Also, Sa|c(X) = Sb|c(X) = lim. Since X is 1-
injective, there are Ta, Tb ∈ HB(lim) such that Ta|c(X)⊕K(an)n∈N = Sa and Tb|c(X)⊕K(an)n∈N =
Sb. Now, by hypothesis, we obtain the contradiction that

a = Sa
(
(an)n∈N

)
= Ta

(
(an)n∈N

)
= Tb

(
(an)n∈N

)
= Sb

(
(an)n∈N

)
= b. �

3.4 Multipliers
This final subsection serves to define multipliers for the convergence through operators.

Definition 3.15 Let X and Y be normed spaces. Consider D ⊆HBY (lim). Then:
(1) The D-multiplier space associated with a sequence (Tn)n∈N ⊆ B(X, Y ) is defined as

M∞
D

(
(Tn)n∈N

)
:=

{

(xn)n∈N ∈ �∞(X) :
∞∑

n=1

Tn(xn) ∈ cD(Y )

}

and the D-summing operator associated with (Tn)n∈N is defined as

D
∞∑

n=1

Tn : M∞
D

(
(Tn)n∈N

) → Y ,

(xn)n∈N �→D
∞∑

n=1

Tn(xn).

(3.2)

(2) The D-summability space associated with a subspace S ⊆ �∞(X) is defined as

B(X, Y )(S) :=
{

(Tn)n∈N ∈ B(X, Y )N : S ⊆M∞
D

(
(Tn)n∈N

)}
.
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Recall that in [7, Corollary 2] it was proved that ac(X) ⊆ cBL (X)(X). This result allows
us to conclude the following.

Proposition 3.16 Let X and Y be normed spaces and (Tn)n∈N ⊆ B(X, Y ). Take C |�∞(Y ) :
�∞(Y ) → �∞(�∞(Y )) the general Cesáro operator restricted to �∞(Y ). Then

M∞
BL (Y )

(
(Tn)n∈N

) ⊇M∞
C |�∞(Y )

(
(Tn)n∈N

)
.

Proof Simply observe that by combining [7, Corollary 2] with Theorem 2.15, we obtain

M∞
BL (Y )

(
(Tn)n∈N

)
=

{

(xn)n∈N ∈ �∞(X) :
∞∑

n=1

Tn(xn) ∈ cBL (Y )(Y )

}

⊇
{

(xn)n∈N ∈ �∞(X) :
∞∑

n=1

Tn(xn) ∈ ac(Y )

}

⊇
{

(xn)n∈N ∈ �∞(X) :
∞∑

n=1

Tn(xn) ∈ cC |�∞(Y ) (Y )

}

= M∞
C |�∞(Y )

(
(Tn)n∈N

)
. �
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