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Abstract
For the purpose of this article, we introduce a modified form of a generalized system
of variational inclusions, called the generalized system of modified variational
inclusion problems (GSMVIP). This problem reduces to the classical variational
inclusion and variational inequalities problems. Motivated by several recent results
related to the subgradient extragradient method, we propose a new subgradient
extragradient method for finding a common element of the set of solutions of
GSMVIP and the set of a finite family of variational inequalities problems. Under
suitable assumptions, strong convergence theorems have been proved in the
framework of a Hilbert space. In addition, some numerical results indicate that the
proposed method is effective.
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1 Introduction
Throughout this paper, let H be a real Hilbert space and C be a nonempty closed convex
subset of H with the inner product 〈·, ·〉 and norm ‖ · ‖. Let T : C → C be a mapping. Then
T is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, for all x, y ∈ C. We denote by F(T) the set
of fixed points of T , that is, F(T) = {x ∈ C : Tx = x}. It is well known that F(T) is closed
convex and also nonempty.

Let B : H → H be a mapping and M : H → 2H be a multi-valued mapping. The varia-
tional inclusion problem is to find x ∈ H such that

θ ∈ Bx + Mx, (1)

where θ is the zero vector in H . The set of solutions of (1) is denoted by VI(H , B, M).
This problem has received much attention due to its applications in large variety of prob-
lems arising in convex programming, variational inequalities, split feasibility problems,
and minimization problems. To be more precise, some concrete problems in machine
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learning, image processing, and linear inverse problems can be modeled mathematically
by this formulation.

The variational inequality problem (VIP) is to find a point u ∈ C such that

〈Au, v – u〉 ≥ 0, ∀v ∈ C. (2)

The set of solutions of the variational inequality problem is denoted by VI(C, A). This
problem is an important tool in economics, engineering and mathematics. It includes, as
special cases, many problems of nonlinear analysis such as optimization, optimal control
problems, saddle point problems and mathematical programming; see, for example, [1–4].

It is well known that one of the most popular methods for solving the problem (VIP)
is the extragradient method proposed by Korpelevich [5]. The extragradient method is
needed to calculate two projections onto the feasible set C in each iteration. So, in the
case that the set C is not simple to project on to it, as analyzed in some remarks of the
authors in [6], when the subset is a closed expression as in the case of a ball or a half-
space, the projection onto the feasible subset C can be computed easily. This can affect
the efficiency of the used method. In recent years, the extragradient method has received
great attention by many authors, who improved it in various ways; see, e.g. [7–13] and the
references therein.

In 2011, Censor et al. [12] proposed the subgradient extragradient method for solving
variational inequality problems as follows:

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(xn – λAxn),

Tn = {x ∈ H : 〈xn – λAxn – yn, x – yn〉 ≤ 0},
xn+1 = PTn (xn – λAyn),

(3)

for each n ≥ 1, where λ ∈ (0, 1/L). In this method, they have replaced the second projec-
tion in Korpelevich’s extragradient method by a projection on to a half-space, which is
computed explicitly.

Motivated by the problem (1), in this paper, we introduce a new problem of the system
of variational inclusions in a real Hilbert space as follows:

Let H be a real Hilbert space and let A : H → H be mapping and MA, MB : H → 2H be
set value mapping. We consider the problem for finding x∗ ∈ H such that

θ ∈ Ax∗ + MAx∗ and θ ∈ Ax∗ + MBx∗, (4)

where θ is the zero mapping in H , which is called a generalized system of modified vari-
ational inclusion problems (in short, GSMVIP). The set of solutions of (4) is denoted by
�,i.e., � = {x∗ ∈ H : θ ∈ Ax∗ + MAx∗ and θ ∈ Ax∗ + MBx∗}. In particular, if MA = MB, then
the problem (4) reduces to the problem (1) and if JMA ,λA = JMB ,λB = PC , then the problem
(4) reduces to VIP.

In 2012, Kangtunyakarn [14] modified the set of variational inequality problems as fol-
lows:

VI
(
C, aA + (1 – a)B

)
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=
{

x ∈ C :
〈
y – x,

(
aA + (1 – a)B

)
x
〉 ≥ 0,∀y ∈ C, a ∈ (0, 1)

}
, (5)

where A and B are the mappings of C into H .
In order to develop efficient algorithms for finding solution of a finite family variational

inequalities problem, inspired by problem (5), we define the new half-space Qn = {z ∈ H :
〈(I – λ

∑N
i=1 aiAi)xn – yn, yn – z〉 ≥ 0}, which as a tool to prove the strong convergence

theorem. In particular, if we put i = 1, then Qn reduces to Tn in subgradient extragradient
method (3). However, the sequence {xn} generated by (3) converges weakly to a solution
of the variational inequality problem.

In this paper, motivated by recent research [7, 12] and [14], we introduce a new problem
(4) and the new iterative scheme for finding a common element of the set of a finite family
of variational inequalities problems and the set of solutions of the proposed problem (4) in
a real Hilbert space. Then we establish and prove the strong convergence theorem under
some proper conditions. Furthermore, we also give some various examples to support our
main result.

2 Preliminaries
In this section, we give some useful lemmas that will be needed to prove our main result.

Let C be a nonempty closed convex subset of a real Hilbert space H . We denote strong
convergence and weak convergence by the notations → and ⇀, respectively. For every
x ∈ H , there exists a unique nearest point PCx ∈ C such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

PC is called a metric projection of H onto C. It follows that

‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2, for all x ∈ H , y ∈ C. (6)

Lemma 2.1 ([15]) Given x ∈ H and y ∈ C. Then y = PCx if and only if we have the inequal-
ity

〈x – y, y – z〉 ≥ 0, ∀z ∈ C.

Definition 2.2 Let M : H → 2H be a multi-valued mapping.
(i) The graph G(M) of M is defined by

G(M) :=
{

(x, u) ∈ H × H : u ∈ M(x)
}

,

(ii) the operator M is called a maximal monotone operator if M is monotone, i.e.

〈u – v, x – y〉 ≥ 0 ∀u ∈ M(x), v ∈ M(y),

and the graph G(M) of M is not properly contained in the graph of any other monotone
operator. It is clear that a monotone mapping M is maximal if and only if for any (x, u) ∈
H × H , 〈u – v, x – y〉 ≥ 0 for every (y, v) ∈ G(M) implies that u ∈ M(x).
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Let M : H → 2H be a multi-valued maximal monotone mapping, then the single-valued
mapping JM,λ : H → H defined by

JM,λ(u) = (I + λM)–1(u), ∀u ∈ H ,

is called the resolvent operator associated with M where λ is positive number and I is an
identity mapping; see [16]. Note that JM,λ is a nonexpansive mapping.

Definition 2.3 Let A : C → H be a mapping.
(i) A is called μ-Lipschitz continuous if there exists a nonnegative real number μ ≥ 0

such that

‖Ax – Ay‖ ≤ μ‖x – y‖, ∀x, y ∈ C.

(ii) A is called α-inverse strongly monotone if there exists a nonnegative real number
α ≥ 0 such that

〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖2, ∀x, y ∈ C.

Lemma 2.4 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H and
let A,B: C → H be α- and β-inverse strongly monotone mappings, respectively, with α,β > 0
and VI(C, A) ∩ VI(C, B) �= ∅. Then

VI
(
C, aA + (1 – a)B

)
= VI(C, A) ∩ VI(C, B), ∀a ∈ (0, 1).

Furthermore, if 0 < γ < min{2α, 2β}, we find that I – γ (aA + (1 – a)B) is a nonexpansive
mapping.

Remark 2.5 For every i = 1, 2, . . . , N the mapping Ai : C → H be αi-inverse strongly mono-
tone mappings with η = min1,2,...,N {αi} and

⋂N
i=1 VI(C, Ai) �= ∅. Then

VI

(

C,
N∑

i=1

aiAi

)

=
N⋂

i=1

VI(C, Ai), (7)

where
∑N

i=1 ai = 1 and 0 < ai < 1 for every i = 1, 2, . . . , N . Moreover, we find that
∑N

i=1 aiAi

is monotone and is a μ-Lipschitz continuous mapping.

Proof It easy to see that
∑N

i=k+1
ai

∏k
j=1(1–aj)

Ai is η-inverse strongly monotone mappings with

η = min{βi} for each i = 2, . . . , N and k = 1, 2, . . . , N – 1.
Take N = 3 and let VI(C, A1) ∩ VI(C, A2) ∩ VI(C, A3) �= ∅. By using Lemma 2.4, we have

VI(C, a1A1 + a2A2 + a3A3) = VI
(

C, a1A1 + (1 – a1)
(

a2

1 – a1
A2 +

a3

1 – a1
A3

))

= VI(C, A1) ∩ VI
(

C,
a2

1 – a1
A2 +

a3

1 – a1
A3

)

= VI(C, A1) ∩ VI(C, A2) ∩ VI(C, A3), (8)

where a1, a2, a3 ∈ (0, 1) and
∑3

i=1 ai = 1.
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Take N = 4 and let
⋂4

i=1 VI(C, Ai) �= ∅. By using Lemma 2.4 and (8), we have

VI(C, a1A1 + a2A2 + a3A3 + a4A4)

= VI
(

C, (1 – a4)
(

a1

1 – a4
A1 +

a2

1 – a4
A2 +

a3

1 – a4
A3

)

+ a4A4

)

= VI
(

C,
a1

1 – a4
A1 +

a2

1 – a4
A2 +

a3

1 – a4
A3

)

∩ VI(C, A4)

= VI(C, A1) ∩ VI(C, A2) ∩ VI(C, A3) ∩ VI(C, A4), (9)

where a1, a2, a3, a4 ∈ (0, 1) and
∑4

i=1 ai = 1.
In the same way, if

⋂N
i=1 VI(C, Ai) �= ∅, we obtain

VI

(

C,
N∑

i=1

aiAi

)

=
N⋂

i=1

VI(C, Ai), (10)

where ai ∈ (0, 1), for each i = 1, 2, . . . , N , and
∑N

i=1 ai = 1. �

Lemma 2.6 In real Hilbert spaces H , the following well-known results hold:
(i) For all x, y ∈ H and α ∈ [0, 1],

∥
∥αx + (1 – α)y

∥
∥2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2,

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H .

Lemma 2.7 ([17]) Let C be a nonempty closed and convex subset of a real Hilbert space
H . If T : C → C is a nonexpansive mapping with F(T) �= ∅, then the mapping I – T is
demiclosed at 0, i.e., if {xn} is a sequence in C weakly converging to x ∈ C and if {xn – Txn}
converges strongly to 0, then x ∈ F(T).

Lemma 2.8 ([17]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 – αn)sn + δn, ∀ ≥ 0,

where {αn} is a sequence in (0,1) and {δn} is a sequence such that
(1)

∑∞
n=1 αn = ∞;

(2) lim supn→0
δn
αn

≤ 0 or
∑∞

n=1 |δn| = ∞.
Then limn→0 sn = 0.

Lemma 2.9 ([17]) Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence
{xn} with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈ H with x �= y.
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Lemma 2.10 ([16]) u ∈ H is a solution of variational inclusion (1) if and only if u = JM,λ(u–
λBu), ∀λ > 0, i.e.,

VI(H , B, M) = F
(
JM,λ(I – λB)

)
, ∀λ > 0.

If λ ∈ (0, 2α], then VI(H , B, M) is a closed convex subset in H .

The next lemma presents the association of the fixed point of a nonlinear mapping and
the solution of GSMVIP under suitable conditions on the parameters.

Lemma 2.11 Let H be a real Hilbert space and let AG : H → H be an α-inverse strongly
monotone mapping. Let MA, MB : H → 2H be multi-value maximum monotone mappings
with � �= ∅. x∗ ∈ � if and only if x∗ = Gx∗, where G : H → H is a mapping defined by

G(x) = JMA ,λA (I – λAAG)
(
bx + (1 – b)JMB ,λB (I – λBAG)x

)
,

for all x ∈ H , b ∈ (0, 1) and λA,λB ∈ (0, 2α). Moreover, we see that G is a nonexpansive
mapping.

Proof Let the conditions hold.
(⇒) Let x∗ ∈ �, we have x ∈ H such that θ ∈ AGx∗ + MAx∗ and θ ∈ AGx∗ + MBx∗, that is,

x∗ ∈ VI(H , AG, MA) and x∗ ∈ VI(H , AG, MB).
From Lemma 2.10, we have x∗ ∈ F(JMA ,λA (I – λAAG)) and x∗ ∈ F(JMB ,λB (I – λBAG)).
It implies that

x∗ = JMA ,λA (I – λAAG)x∗ (11)

and

x∗ = JMB ,λB (I – λBAG)x∗. (12)

By the definition of G, (11) and (12), we have

G
(
x∗) = JMA ,λA (I – λAAG)

(
bx∗ + (1 – b)JMB ,λB (I – λBAG)x∗)

= x∗.

(⇐) Let x∗ = G(x∗). Applying the same method of Lemma 2.1 (2) in [16], we find that
JMA ,λA (I – λAAG) and JMB ,λB (I – λBAG) are nonexpansive mappings.

Since x∗ = G(x∗), we have

x∗ = G
(
x∗) = JMA ,λA (I – λAAG)

(
bx∗ + (1 – b)JMB ,λB (I – λBAG)x∗).

Let y ∈ �, we have θ ∈ AGy + MAy and θ ∈ AGy + MBy.
From Lemma 2.10, it implies that
y ∈ F(JMA ,λA (I – λAAG)) ∩ F(JMB ,λB (I – λBAG)). Then

∥
∥x∗ – y

∥
∥2 =

∥
∥JMA ,λA (I – λAAG)

(
bx∗ + (1 – b)JMB ,λB (I – λBAG)x∗) – y

∥
∥2



Kheawborisut and Kangtunyakarn Journal of Inequalities and Applications         (2021) 2021:53 Page 7 of 23

=
∥
∥JMA ,λA (I – λAAG)

(
bx∗ + (1 – b)JMB ,λB (I – λBAG)x∗)

– JMA ,λA (I – λAAG)y
∥
∥2

≤ ∥
∥
(
bx∗ + (1 – b)JMB ,λB (I – λBAG)x∗) – y

∥
∥2

=
∥
∥b

(
x∗ – y

)
+ (1 – b)

(
JMB ,λB (I – λBAG)x∗ – y

)∥
∥2

= b
∥
∥x∗ – y

∥
∥2 + (1 – b)

∥
∥JMB ,λB (I – λBAG)x∗ – y

∥
∥2

– b(1 – b)
∥
∥x∗ – JMB ,λB (I – λBAG)x∗∥∥2

≤ b
∥
∥x∗ – y

∥
∥2 + (1 – b)

∥
∥x∗ – y

∥
∥2 – b(1 – b)

∥
∥x∗

– JMB ,λB (I – λBAG)x∗∥∥2

=
∥
∥x∗ – y

∥
∥2 – b(1 – b)

∥
∥x∗ – JMB ,λB (I – λBAG)x∗∥∥2. (13)

It implies that ‖x∗ – JMB ,λB (I – λBAG)x∗‖ = 0.
That is, x∗ ∈ F(JMB ,λB (I – λBAG)).
Since x∗ = G(x∗) and x∗ ∈ F(JMB ,λB (I – λBAG)), we have

x∗ = JMA ,λA (I – λAAG)
(
bx∗ + (1 – b)JMB ,λB (I – λBAG)x∗)

= JMA ,λA (I – λAAG)
(
bx∗ + (1 – b)x∗)

= JMA ,λA (I – λAAG)x∗.

Therefore x∗ ∈ F(JMA ,λA (I – λAAG)).
From Lemma 2.10, x∗ ∈ F(JMA ,λA (I – λAAG)) and x∗ ∈ F(JMB ,λB (I – λBAG)), we have θ ∈

AGx∗ + MAx∗ and θ ∈ AGx∗ + MBx∗. Then x∗ ∈ �.
Applying (13), we can conclude that G is a nonexpansive mapping. �

We give some examples to support Lemma 2.11 and show that Lemma 2.11 is not true
if some condition fails.

Example 2.12 Let H = R2 be the two dimensional space of real numbers with an inner
product 〈·, ·〉 : R2 × R2 → R defined by 〈x, y〉 = x · y = x1y1 + x2y2, for all x = (x1, x2) ∈
R2, y = (y1, y2) ∈ R2 and a usual norm ‖ · ‖ : R2 ×R2 → R give by ‖x‖ =

√
x2

1 + x2
2 for all

x = (x1, x2) ∈R2 and AG: R2 →R2 defined by AG((x1, x2)) = (x1 – 5, x2 – 5). Let MA : R2 →
2R2 be defined by {(2x1 – 1, 2x2 – 1)} and MB : R2 → 2R2 be defined by {( x1

2 + 2, x2
2 + 2)}.

Show that (2, 2) ∈ F(G).
Solution. It is obvious that � = {(2, 2)}. Choose λA = 1

2 . From MA(x1, x2) = {(2x1 – 1, 2x2 –
1)} and the resolvent of MA, JMA ,λA x = (I + λAMA)–1x for all x = (x1, x2) ∈R2, we have

JMA ,λA (x) =
x
2

+
1
4

, (14)

for all x = (x1, x2) ∈R2. Choose λB = 1. From MB(x1, x2) = {( x1
2 +2, x2

2 +2)} and the resolvent
of MB, JMB ,λB x = (I + λBMB)–1x for all x = (x1, x2) ∈R2, we have

JMB ,λB (x) =
2x
3

–
4
3

, (15)
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for all x = (x1, x2) ∈ R2. It is easy to see that AG is 1-inverse strongly monotone. Choose
b = 1

4 . From (14) and (15), we have

G(x) = JMA , 1
2

(

I –
1
2

AG

)(
1
4

x +
3
4

JMB ,1(I – 1AG)x
)

=
x

16
+

30
16

,

for all x = (x1, x2) ∈R2. By Lemma 2.11, we have (2, 2) ∈ F(G).

Example 2.13 Let H = R2 be the two dimensional space of real numbers with an inner
product 〈·, ·〉 : R2 × R2 → R defined by 〈x, y〉 = x · y = x1y1 + x2y2, for all x = (x1, x2) ∈
R2, y = (y1, y2) ∈ R2 and a usual norm ‖ · ‖ : R2 ×R2 → R give by ‖x‖ =

√
x2

1 + x2
2 for all

x = (x1, x2) ∈R2 and AG: R2 →R2 defined by AG((x1, x2)) = (x1 – 5, x2 – 5). Let MA : R2 →
2R2 be defined by {(2x1 – 1, 2x2 – 1)} and MB : R2 → 2R2 be defined by {( x1

2 + 2, x2
2 + 2)}.

Show that (2, 2) /∈ F(G).
Solution. It is obvious that � = {(2, 2)}. Choose λA = 2. From MA(x1, x2) = {(2x1 – 1, 2x2 –

1)} and the resolvent of MA, JMA ,λA x = (I + λAMA)–1x for all x = (x1, x2) ∈R2, we have

JMA ,λA (x) =
x
5

+
2
5

, (16)

for all x = (x1, x2) ∈R2. Choose λB = 4. From MB(x1, x2) = {( x1
2 +2, x2

2 +2)} and the resolvent
of MB, JMB ,λB x = (I + λBMB)–1x for all x = (x1, x2) ∈R2, we have

JMB ,λB (x) =
x
3

–
8
3

, (17)

for all x = (x1, x2) ∈ R2. Choose b = 1
4 . From (16), (17) and AG being 1-inverse strongly

monotone, we have

G(x) = JMA ,2(I – 2AG)
(

1
4

x +
3
4

JMB ,4(I – 4AG)x
)

=
x

10
+

9
5

,

for all x = (x1, x2) ∈R2. By Lemma 2.11, we have (2, 2) /∈ F(G).

Lemma 2.14 ([18]) Let {�n} be a sequence of real numbers that do not decrease at infinity,
in the sense that there exists a subsequence {�nj} of {�n} such that �nj < �nj+1 for all j ≥ 0.
Also we consider the sequence of integers {τ (n)}n≥n0 defined by

τ (n) = max{k ≤ n : �k < �k+1}.

Then {τ (n)}n≥n0 is a nondecreasing sequence verifying limn→∞ τ (n) = ∞ and, for all n ≥ n0,

max{�τ (n),�n} ≤ �τ (n)+1.



Kheawborisut and Kangtunyakarn Journal of Inequalities and Applications         (2021) 2021:53 Page 9 of 23

Lemma 2.15 Let H be a real Hilbert space, for every i = 1, 2, . . . , N , let Ai : H → H be αi-
inverse strongly monotone mappings with η = min{αi}. Let {xn}∞n=1 and {yn}∞n=1 be a sequence
generated by yn = PC(I – λ

∑N
i=1 aiAi)xn, Qn = {z ∈ H : 〈(I – λ

∑N
i=1 aiAi)xn – yn, yn – z〉 ≥ 0}

and x∗ ∈ ⋂N
i=1 VI(C, Ai) for all i = 1, 2, . . . , N . Then the following inequality is fulfilled:

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– x∗
∥
∥
∥
∥
∥

2

≤ ∥
∥xn – x∗∥∥2 –

(

1 –
λ

η

)∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

–
(

1 –
λ

η

)

‖xn – yn‖2,

where
∑N

i=1 ai = 1, 0 < ai < 1 and λ ∈ (0,η) with η = mini=1,2,...,N {αi} for every i = 1, 2, . . . , N .

Proof Since x∗ ∈ ⋂N
i=1 VI(C, Ai), we have x∗ ∈ VI(C, Ai) for every i = 1, 2, . . . , N and (6), we

obtain

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– x∗
∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥

xn – λ

N∑

i=1

aiAiyn – x∗
∥
∥
∥
∥
∥

2

–

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

–

(

xn – λ

N∑

i=1

aiAiyn

)∥
∥
∥
∥
∥

2

=
∥
∥xn – x∗∥∥2

– 2λ

〈

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– x∗,
N∑

i=1

aiAiyn

〉

–

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– xn

∥
∥
∥
∥
∥

2

. (18)

From the monotonicity of
∑N

i=1 aiAi, we have

0 ≤
〈 N∑

i=1

aiAiyn –
N∑

i=1

aiAix∗, yn – x∗
〉

=

〈 N∑

i=1

aiAiyn, yn – x∗
〉

–

〈 N∑

i=1

aiAix∗, yn – x∗
〉

≤
〈 N∑

i=1

aiAiyn, yn – x∗
〉

=

〈 N∑

i=1

aiAiyn, yn – PQn

(

xn – λ

N∑

i=1

aiAiyn

)〉
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+

〈 N∑

i=1

aiAiyn, PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– x∗
〉

.

It implies that

〈

x∗ – PQn

(

xn – λ

N∑

i=1

aiAiyn

)

,
N∑

i=1

aiAiyn

〉

≤
〈 N∑

i=1

aiAiyn, yn – PQn

(

xn – λ

N∑

i=1

aiAiyn

)〉

. (19)

From (18) and (19), we have

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– x∗
∥
∥
∥
∥
∥

2

≤ ∥
∥xn – x∗∥∥2 + 2λ

〈 N∑

i=1

aiAiyn, yn – PQn

(

xn – λ

N∑

i=1

aiAiyn

)〉

–

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– xn

∥
∥
∥
∥
∥

2

=
∥
∥xn – x∗∥∥2 –

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

– ‖yn – xn‖2

– 2

〈

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn, yn – xn

〉

+ 2λ

〈 N∑

i=1

aiAiyn, yn – PQn

(

xn – λ

N∑

i=1

aiAiyn

)〉

=
∥
∥xn – x∗∥∥2 –

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

– ‖yn – xn‖2

+ 2

〈

xn – yn – λ

N∑

i=1

aiAiyn, PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

〉

=
∥
∥xn – x∗∥∥2 –

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

– ‖yn – xn‖2

+ 2

〈(

I – λ

N∑

i=1

aiAi

)

xn – yn, PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

〉

+ 2

〈

λ

N∑

i=1

aiAixn – λ

N∑

i=1

aiAiyn, PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

〉

≤ ∥
∥xn – x∗∥∥2 –

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

– ‖yn – xn‖2
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+ 2λ

∥
∥
∥
∥
∥

N∑

i=1

aiAixn –
N∑

i=1

aiAiyn

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

≤ ∥
∥xn – x∗∥∥2 –

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

– ‖yn – xn‖2

+ 2
λ

η
‖xn – yn‖

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

=
∥
∥xn – x∗∥∥2 –

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

– ‖yn – xn‖2

+
λ

η

(

‖xn – yn‖2 +

∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2)

=
∥
∥xn – x∗∥∥2 –

(

1 –
λ

η

)∥
∥
∥
∥
∥

PQn

(

xn – λ

N∑

i=1

aiAiyn

)

– yn

∥
∥
∥
∥
∥

2

–
(

1 –
λ

η

)

‖yn – xn‖2. (20)
�

3 Main result
In this section, we prove the strong convergence of the sequence acquired from the pro-
posed iterative methods for finding a common element of the set of finite family variational
inequalities problems and the set of solutions of the proposed problem.

Theorem 3.1 Let H be a real Hilbert space. For i = 1, 2, . . . , N , let Ai : H → H be αi-
inverse strongly monotone mappings and let AG : H → H be αG-inverse strongly monotone
mappings. Define the mapping G : H → H by G(x) = JMA ,λA (I – λAAG)(bx + (1 – b)JMB ,λB (I –
λBAG)x) for all x ∈ H , b ∈ (0, 1) and λA,λB ∈ (0, 2αG). Assume that � =

⋂N
i=1 VI(C, Ai) ∩

F(G) �= ∅. Let the sequence {yn} and {xn} be generated by x1, u ∈ H and

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(I – λ
∑N

i=1 aiAi)xn,

Qn = {z ∈ H : 〈(I – λ
∑N

i=1 aiAi)xn – yn, yn – z〉 ≥ 0},
xn+1 = αnu + βnPQn (xn – λ

∑N
i=1 aiAiyn) + γnGxn,

(21)

where
∑N

i=1 ai = 1, 0 < ai < 1, {αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1, λ ∈ (0,η) with
η = mini=1,2,...,N {αi}.

Suppose the following conditions hold:
(i)

∑∞
n=0 αn = ∞, limn→∞ αn = 0,

(ii) 0 < c < βn, γn ≤ d < 1.
Then {xn} converges strongly to x∗ ∈ � where x∗ = P�u.

Proof We must show that {xn} is bounded. Let zn = PQn (xn – λ
∑N

i=1 aiAiyn).
We consider

xn+1 = αnu + βnzn + γnGxn
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= αnu + (1 – αn)
(

βnzn + γnGxn

1 – αn

)

= αnu + (1 – αn)tn,

where tn = βnzn+γnGxn
1–αn

. Letting x∗ ∈ � =
⋂N

i=1 VI(C, Ai) ∩ F(G), we have

∥
∥tn – x∗∥∥2 =

∥
∥
∥
∥
βnzn + γnGxn

1 – αn
– x∗

∥
∥
∥
∥

2

=
∥
∥
∥
∥
βnzn + γnGxn – (1 – αn)x∗

1 – αn

∥
∥
∥
∥

2

=
βn

1 – αn

∥
∥zn – x∗∥∥2 +

γn

1 – αn

∥
∥Gxn – x∗∥∥2

–
βnγn

(1 – αn)2 ‖zn – Gxn‖2. (22)

From definition of xn+1 and (22), we consider

∥
∥xn+1 – x∗∥∥2 =

∥
∥αnu + (1 – αn)tn – x∗∥∥2

=
∥
∥αn

(
u – x∗) – (1 – αn)

(
tn – x∗)∥∥2

= αn
∥
∥u – x∗∥∥2 + (1 – αn)

∥
∥tn – x∗∥∥2 – αn(1 – αn)‖u – tn‖2

= αn
∥
∥u – x∗∥∥2 + (1 – αn)

[
βn

1 – αn

∥
∥zn – x∗∥∥2

+
γn

1 – αn

∥
∥Gxn – x∗∥∥2 –

βnγn

(1 – αn)2 ‖zn – Gxn‖2
]

– αn(1 – αn)‖u – tn‖2

= αn
∥
∥u – x∗∥∥2 + βn

∥
∥zn – x∗∥∥2 + γn

∥
∥Gxn – x∗∥∥2

–
βnγn

1 – αn
‖zn – Gxn‖2 – αn(1 – αn)‖u – tn‖2

≤ αn
∥
∥u – x∗∥∥2 + βn

∥
∥zn – x∗∥∥2 + γn

∥
∥xn – x∗∥∥2

–
βnγn

1 – αn
‖zn – Gxn‖2 – αn(1 – αn)‖u – tn‖2. (23)

By Lemma 2.15 and λ ∈ (0, 1), we have

∥
∥zn – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2. (24)

From (23) and (24), we get

∥
∥xn+1 – x∗∥∥2 ≤ αn

∥
∥u – x∗∥∥2 + βn

∥
∥zn – x∗∥∥2 + γn

∥
∥xn – x∗∥∥2

–
βnγn

1 – αn
‖zn – Gxn‖2 – αn(1 – αn)‖u – tn‖2

≤ αn
∥
∥u – x∗∥∥2 + βn

∥
∥xn – x∗∥∥2 + γn

∥
∥xn – x∗∥∥2
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–
βnγn

1 – αn
‖zn – Gxn‖2 – αn(1 – αn)‖u – tn‖2

= αn
∥
∥u – x∗∥∥2 + (1 – βn)

∥
∥xn – x∗∥∥2

–
βnγn

1 – αn
‖zn – Gxn‖2 – αn(1 – αn)‖u – tn‖2

≤ αn
∥
∥u – x∗∥∥2 + (1 – βn)

∥
∥xn – x∗∥∥2

...

≤ max
{∥
∥u – x∗∥∥2 +

∥
∥x1 – x∗∥∥2}. (25)

By induction,

∥
∥xn+1 – x∗∥∥2 ≤ max

{∥
∥u – x∗∥∥2 +

∥
∥x1 – x∗∥∥2},

then {xn} is a bounded sequence.
We use

∥
∥xn+1 – x∗∥∥2 ≤ αn

∥
∥u – x∗∥∥2 + βn

∥
∥zn – x∗∥∥2 + γn

∥
∥xn – x∗∥∥2

–
βnγn

1 – αn
‖zn – Gxn‖2

≤ αn
∥
∥u – x∗∥∥2 + βn

[
∥
∥xn – x∗∥∥2 –

(

1 –
λ

η

)

‖zn – yn‖2

–
(

1 –
λ

η

)

‖xn – yn‖2
]

+ γn
∥
∥xn – x∗∥∥2 –

βnγn

1 – αn
‖zn – Gxn‖2

= αn
∥
∥u – x∗∥∥2 + (1 – αn)

∥
∥xn – x∗∥∥2 – βn

(

1 –
λ

η

)

‖zn – yn‖2

– βn

(

1 –
λ

η

)

‖xn – yn‖2 –
βnγn

1 – αn
‖zn – Gxn‖2

≤ αn
∥
∥u – x∗∥∥2 +

∥
∥xn – x∗∥∥2 – βn

(

1 –
λ

η

)

‖zn – yn‖2

– βn

(

1 –
λ

η

)

‖xn – yn‖2 –
βnγn

1 – αn
‖zn – Gxn‖2.

It implies that

βn

(

1 –
λ

η

)

‖zn – yn‖2 + βn

(

1 –
λ

η

)

‖xn – yn‖2 +
βnγn

1 – αn
‖zn – Gxn‖2

≤ αn
∥
∥u – x∗∥∥2 +

∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2. (26)

Let Sn := βn(1 – λ
η

)‖zn – yn‖2 + βn(1 – λ
η

)‖xn – yn‖2 + βnγn
1–αn

‖zn – Gxn‖2.
Then we have

Sn ≤ αn
∥
∥u – x∗∥∥2 +

∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2. (27)

Now, we consider two possible cases:
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Case 1. Put �n := ‖xn – x∗‖2 for all n ∈N .
Assume that there is n0 ≥ 0 such that, for each n ≥ n0, �n+1 ≤ �n.
In this case, limn→∞ �n exists and limn→∞(�n – �n+1) = 0.
Since limn→∞ αn = 0, it follows from (27) that limn→∞ Sn = 0.
Therefore, we have limn→∞ βn(1 – λ

η
)‖zn – yn‖2 = 0, limn→∞ βn(1 – λ

η
)‖xn – yn‖2 = 0 and

limn→∞ βnγn
1–αn

‖zn – Gxn‖2 = 0.
From the assumptions i), ii), we obtain

lim
n→∞‖zn – yn‖ = lim

n→∞‖xn – yn‖ = lim
n→∞‖zn – Gxn‖ = 0. (28)

Hence, we obtain

‖xn – Gxn‖ ≤ ‖xn – yn‖ + ‖yn – zn‖ + ‖zn – Gxn‖.

From (28), we have

lim
n→∞‖xn – Gxn‖ = 0. (29)

We now show that lim supn→∞〈u – x∗, xn – x∗〉 ≤ 0.
We can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
u – x∗, xn – x∗〉 = lim

i→∞
〈
u – x∗, xni – x∗〉. (30)

Because {xn} is a bounded sequence in H , there exists a subsequence of {xn} that converges
weakly to an element in H . Without loss of generality, we can assume that xni ⇀ w where
w ∈ H . Since limn→∞ ‖xn – zn‖ = 0, we have zni ⇀ w.

Since limn→∞ ‖xn – yn‖ = 0, yni ⇀ w.
Assume that w /∈ ⋂N

i=1 VI(C, Ai). So, we have w /∈ F(PC(I – λ
∑N

i=1 aiAi)).
Then we have w �= PC(I – λ

∑N
i=1 aiAi)w. By the nonexpansiveness of PC(I – λ

∑N
i=1 aiAi),

(28) and Opial’s property, we have

lim inf
n→∞ ‖xni – w‖

< lim inf
n→∞

∥
∥
∥
∥
∥

xni – PC

(

I – λ

N∑

i=1

aiAi

)

w

∥
∥
∥
∥
∥

≤ lim inf
n→∞

(

‖xni – yni‖ +

∥
∥
∥
∥
∥

yni – PC

(

I – λ

N∑

i=1

aiAi

)

w

∥
∥
∥
∥
∥

)

≤ lim inf
n→∞

(

‖xni – yni‖

+

∥
∥
∥
∥
∥

PC

(

I – λ

N∑

i=1

aiAi

)

xni – PC

(

I – λ

N∑

i=1

aiAi

)

w

∥
∥
∥
∥
∥

)

≤ lim inf
n→∞ ‖xni – w‖.
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This is a contradiction; we have w ∈ VI(C,
∑N

i=1 aiAi). From Remark 2.5, we have

w ∈
N⋂

i=1

VI(C, Ai). (31)

Assume that w /∈ F(G). Then we have w �= Gw. From (29) and Opial’s property, we have

lim inf
n→∞ ‖xni – w‖ < lim inf

n→∞ ‖xni – Gw‖

≤ lim inf
n→∞

(‖xni – Gxni‖ + ‖Gxni – Gw‖)

≤ lim inf
n→∞

(‖xni – Gxni‖ + ‖xni – w‖)

≤ lim inf
n→∞ ‖xni – w‖.

This is a contradiction; we have

w ∈ F(G). (32)

From (31) and (32), we have w ∈ ⋂N
i=1 VI(C, Ai) ∩ F(G).

Therefore, we get

lim sup
n→∞

〈
u – x∗, xn – x∗〉 = lim

i→∞
〈
u – x∗, xni – x∗〉 =

〈
u – x∗, w – x∗〉 ≤ 0, (33)

where x∗ = P�u.
Next, we show that {xn} converges strongly to x∗, where x∗ = P�u.
From the nonexpansiveness of G, (22) and (24), we have

∥
∥tn – x∗∥∥2 =

βn

1 – αn

∥
∥zn – x∗∥∥2 +

γn

1 – αn

∥
∥Gxn – x∗∥∥2

–
βnγn

(1 – αn)2 ‖zn – Gxn‖2

≤ βn

1 – αn

∥
∥zn – x∗∥∥2 +

γn

1 – αn

∥
∥Gxn – x∗∥∥2

≤ βn

1 – αn

∥
∥xn – x∗∥∥2 +

γn

1 – αn

∥
∥xn – x∗∥∥2

=
∥
∥xn – x∗∥∥2. (34)

From the definition of xn, (34) and x∗ = P�u, we have

∥
∥xn+1 – x∗∥∥2 =

∥
∥αn

(
u – x∗) – (1 – αn)

(
tn – x∗)∥∥2

≤ (1 – αn)
∥
∥tn – x∗∥∥2 + 2αn

〈
u – x∗, xn+1 – x∗〉

≤ (1 – αn)
∥
∥xn – x∗∥∥2 + 2αn

〈
u – x∗, xn+1 – x∗〉. (35)

By applying Lemma 2.8 to (35), we find that the sequence {xn} converges strongly to x∗.
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Case 2. Assume that there exists a subsequence {�ni} ⊂ {�n} such that �ni ≤ �ni+1 for all
i ∈N . In this case, we can define τ : N →N by τ (n) = max{k ≤ n : �k < �k+1}.

Then we have τ (n) → ∞ as n → ∞ and �τ (n) < �τ (n)+1. So, we have from (26)

βτ (n)

(

1 –
λ

η

)

‖zτ (n) – yτ (n)‖2 + βτ (n)

(

1 –
λ

η

)

‖xτ (n) – yτ (n)‖2

+
βτ (n)γτ (n)

1 – ατ (n)
‖zτ (n) – Gxτ (n)‖2

≤ ατ (n)
∥
∥u – x∗∥∥2 +

∥
∥xτ (n) – x∗∥∥2 –

∥
∥xτ (n)+1 – x∗∥∥2.

Arguing as in Case 1, we have

lim
n→∞‖zτ (n) – yτ (n)‖ = lim

n→∞‖xτ (n) – yτ (n)‖ = lim
n→∞‖zτ (n) – Gxτ (n)‖ = 0. (36)

Because {xτ (n)} is a bounded sequence, there exists a subsequence {xτ (nj)} such that

lim sup
n→∞

〈
u – x∗, xτ (n) – x∗〉 = lim

i→∞
〈
u – x∗, xτ (n)+1 – x∗〉.

Following the same argument as the proof of Case 1 for {xτ (nj)}, we have

lim sup
n→∞

〈
u – x∗, xτ (n)+1 – x∗〉 ≤ 0

and

∥
∥xτ (n)+1 – x∗∥∥2 ≤ (1 – ατ (n))

∥
∥xτ (n) – x∗∥∥2 + 2ατ (n)

〈
u – x∗, xτ (n)+1 – x∗〉,

where ατ (n) → 0,
∑∞

n=1 ατ (n) = ∞ and lim supn→∞〈u – x∗, xτ (n)+1 – x∗〉 ≤ 0.
Hence, by Lemma 2.8, we have limn→∞ ‖xτ (n) – x∗‖ = 0 and limn→∞ ‖xτ (n)+1 – x∗‖ = 0
Therefore, by Lemma 2.14, we have

0 ≤ ∥
∥xn – x∗∥∥ ≤ max

{∥
∥xτ (n) – x∗∥∥,

∥
∥xn – x∗∥∥} ≤ ∥

∥xτ (n)+1 – x∗∥∥.

Hence, {xn} converge strongly to x∗ = P�u. This completes the proof of the main theo-
rem. �

4 Application
In 2013, Kangtunyakarn [14] introduced a modification of the system of variational in-
equalities as follows: finding (x∗, z∗) ∈ C × C such that

⎧
⎨

⎩

〈x∗ – (I – λ1D1)(ax∗ + (1 – a)z∗), x – x∗〉 ≥ 0, ∀x ∈ C,

〈z∗ – (I – λ2D2)x∗, x – z∗〉 ≥ 0, ∀x ∈ C,
(37)

where D1, D2 : C → H be two mappings, for every λ1,λ2 ≥ 0 and a ∈ [0, 1].
Let h be a proper lower semicontinuous convex function of H into (–∞, +∞]. The sub-

differential ∂h of h is defined by

∂h(x) =
{

z ∈ H : h(x) + 〈z, u – x〉 ≤ h(u),∀u ∈ H
}
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for all x ∈ H . From Rockafellar [19], we find that ∂h is a maximal monotone operator. Let
C be a nonempty closed convex subset of H and iC be the indicator function of C, i.e.,

iC =

⎧
⎨

⎩

0; if x ∈ C,

+∞; if x /∈ C,

Then iC is a proper, lower semicontinuous and convex function on H and so the subdiffer-
ential ∂iC of iC is a maximal monotone operator. The resolvent operator J∂iC ,r of iC for λ > 0,
can be defined by J∂iC ,r(x) = (I + λ∂iC)–1(x), x ∈ H . We have J∂iC ,r(x) = PCx, for all x ∈ H and
λ > 0. As a special case, if MA = MB = ∂iC in Lemma 2.11, we find that JMA ,λA = JMB ,λB = PC .
So we obtain the following result.

Lemma 4.1 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H and
let D1, D2 : C → H be mappings. For every λ1,λ2 > 0 and b ∈ [0, 1], the following statements
are equivalent:

(a) (x∗, z∗) ∈ C × C is a solution of problem (37),
(b) x∗ is a fixed point of the mapping Ĝ : C → C, i.e., x∗ ∈ F(T), defined by

Ĝ(x) = PC(I – λ1D1)
(
bx + (1 – b)PC(I – λ2D2)x

)
, (38)

where z∗ = PC(I – λ2D2)x∗

Theorem 4.2 Let H be a real Hilbert space. For i = 1, 2, . . . , N , let Ai : H → H be αi-inverse
strongly monotone mappings and let AG : H → H be αG-inverse strongly monotone map-
pings. Define the mapping Ĝ : H → H by (38). Assume that � =

⋂N
i=1 VI(C, Ai) ∩ F(T) �= ∅.

Let the sequence {yn} and {xn} be generated by x1, u ∈ H and

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(I – λ
∑N

i=1 aiAi)xn,

Qn = {z ∈ H : 〈(I – λ
∑N

i=1 aiAi)xn – yn, yn – z〉 ≥ 0},
xn+1 = αnu + βnPQn (xn – λ

∑N
i=1 aiAiyn) + γnTxn,

(39)

where
∑N

i=1 ai = 1, 0 < ai < 1, {αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1, λ ∈ (0,η) with
η = mini=1,2,...,N {αi}.

Suppose the following conditions hold:
(i)

∑∞
n=0 αn = ∞, limn→∞ αn = 0.

(ii) 0 < c < βn, γn ≤ d < 1.
Then {xn} converges strongly to x∗ ∈ � where x∗ = P�u.

Proof Taking JMA ,λA = JMB ,λB = PC in Theorem 3.1, we obtain the desired conclusion. �

In order to apply our main result, we give the following lemma.

Lemma 4.3 ([14]) Let C be a nonempty closed convex subset of real Hilbert space H . Let
T , S : C → C be nonexpansive mappings. Define a mapping BA : C → C by BAxj = T(aI +
(1a)S)x for every x ∈ C and a ∈ (0, 1). Then F(BA) = F(T) ∩ F(S) and BA is a nonexpansive
mapping.
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We apply our Theorem 3.1, by using with Lemma 4.3 ([14]), to find a solution of the
variational inclusion problem.

Lemma 4.4 Let H be a real Hilbert space and let AG : H → H be αG-inverse strongly mono-
tone mappings. Let MA, MB : H → 2H be a multi-value maximum monotone mapping with
VI(H , AG, MA) ∩VI(H , AG, MB) �= ∅. Define a mapping G : H → H as in Lemma 2.11 for all
x ∈ H , a ∈ (0, 1) and λA,λB ∈ (0, 2αG). Then F(G) = VI(H , AG, MA) ∩ VI(H , AG, MB).

Proof Let x, y ∈ C. From Lemma 2.11, we find that G is nonexpansive and JMA ,λA (I –λAAG)
and JMB ,λB (I – λBAG) are nonexpansive. Since

G(x) = JMA ,λA (I – λAAG)
(
bx + (1 – b)JMB ,λB (I – λBAG)x

)

and Lemma 4.3, we have

F(G) = F
(
JMA ,λA (I – λAAG)

) ∩ F
(
JMB ,λB (I – λBAG)

)
.

By Lemma 2.10, we have

F(G) = VI(H , AG, MA) ∩ VI(H , AG, MB). �

Theorem 4.5 Let H be a real Hilbert space. For i = 1, 2, . . . , N , let Ai : H → H be αi-inverse
strongly monotone mappings and let AG : H → H be αG-inverse strongly monotone map-
pings. Define the mapping G : H → H by G(x) = JMA ,λA (I – λAAG)(bx + (1 – b)JMB ,λB (I –
λBAG)x) for all x ∈ H , b ∈ (0, 1) and λA,λB ∈ (0, 2αG). Assume that � =

⋂N
i=1 VI(C, Ai) ∩

VI(H , AG, MA)∩VI(H , AG, MB) �= ∅. Let the sequence {yn} and {xn} be generated by x1, u ∈ H
and

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(I – λ
∑N

i=1 aiAi)xn,

Qn = {z ∈ H : 〈(I – λ
∑N

i=1 aiAi)xn – yn, yn – z〉 ≥ 0},
xn+1 = αnu + βnPQn (xn – λ

∑N
i=1 aiAiyn) + γnGxn,

(40)

where
∑N

i=1 ai = 1, 0 < ai < 1, {αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1, λ ∈ (0,η) with
η = mini=1,2,...,N {αi}.

Suppose the following conditions hold:
(i)

∑∞
n=0 αn = ∞, limn→∞ αn = 0.

(ii) 0 < c < βn, γn ≤ d < 1.
Then {xn} converges strongly to x∗ ∈ � where x∗ = P�u.

Proof From Lemma 4.4, and Theorem 3.1, we obtain the desired conclusion. �

Remark 4.6 if VI(H , AG, MA) ∩ VI(H , AG, MB) �= ∅, then observe that VI(H , AG, MA) ∩
VI(H , AG, MB) = �.

5 Example and numerical results
In this section, we give an example supporting Theorem 3.1.
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Example 5.1 Let H = R2 be the two dimensional space of real numbers with an inner
product 〈·, ·〉 : R2 × R2 → R defined by 〈x, y〉 = x · y = x1y1 + x2y2 and the usual norm
‖ · ‖ : R2 × R2 → R given by ‖x‖ =

√
x2

1 + x2
2 for all x = (x1, x2) ∈ R2. Let C1 = {(x1, x2) ∈

H| – 2x1 + x2 ≤ 1} and C2 = {(x1, x2) ∈ H|4x1 – 2x2 ≤ 3}. Define the mapping A1 : C1 →R2

by A1(x1, x2) = ( 3x1
2 , 3x2

2 ). Define the mapping A2 : C2 → R2 by A2(x1, x2) = (2x1, 2x2). Let
the mapping AG : R2 →R2 be defined by AG(x1, x2) = (x1 + 1, x2 + 1). Let C = C1 ∩ C2. We
have

PC(x1, x2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(–1999x1 + 1000x2 + 750, 4000x1 – 1999x2 – 1500);

if – 40x1 + 20x2 < –15,

(x1, x2);

if – 15 ≤ –40x1 + 20x2 ≤ 5,

(–1999x1 + 1000x2 – 250, 4000x1 – 1999x2 – 500);

if – 40x1 + 20x2 > 5.

Let x1, u ∈R2, {xn}∞n=0 and {yn}∞n=0 be generated by

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(I – λ
∑2

i=1 aiAi)xn,

Qn = {z ∈ H : 〈(I – λ
∑2

i=1 aiAi)xn – yn, yn – z〉 ≥ 0},
xn+1 = αnu + βnPQn (xn – λ

∑2
i=1 aiAiyn) + γnGxn,

(41)

where {αn} = 1
12n , {βn} = 5n–2

12n , {γn} = 7n+1
12n ⊂ [0, 1] and a = 0.5 ∈ (0, 1). Show that {xn} and

{yn} converge strongly to (0, 0).
Solution. Since A1, A2 and AG are 2

3 , 1
2 and 1-inverse strongly monotone mappings, re-

spectively, η = 1
2 . Choose λA = 1

2 ,λB = 1 ∈ (0, 2αG) and b = 1
4 , we obtain G(x1, x2) = ( x1

16 , x2
16 ).

Choose λ = 1
4 ∈ (0,η). It is easy to see that the sequences {αn}, {βn} and {γn} satisfy all con-

ditions in Theorem 3.1 and (0, 0) ∈ VI(C, A1) ∩ VI(C, A2) ∩ F(G). From Theorem 3.1, we
can conclude that the sequence {xn} and {yn} converge strongly to (0, 0).

Example 5.2 Let H = L2([–1, 1]) with product 〈f , g〉 =
∫ 1

–1 f (t)g(t) dt and the associated

norm given as ‖f ‖ :=
√∫ 1

–1 f (t)g(t) dt for all f , g ∈ L2([–1, 1]). Take C = {x ∈ H : ‖x‖ ≤ 2}.
Define the mapping A1 : L2([–1, 1]) → L2([–1, 1]) by A1(h(t)) = h(t) – 2t for all t ∈ [–1, 1].
Define the mapping A2 : L2([–1, 1]) → L2([–1, 1]) by A2(h(t)) = 3

2 h(t) – 3t for all t ∈ [–1, 1].
Let the mapping AG : L2([–1, 1]) → L2([–1, 1]) be defined by AG(h(t)) = h(t) – 5t for all
t ∈ [–1, 1]. We have

PC
(
f (t)

)
=

⎧
⎨

⎩

f (t); if ‖f (t)‖ ≤ 2,
2f (t)
‖f (t)‖ ; if ‖f (t)‖ > 2.

Let i = 1, 2, x1, u ∈ R2, {xn}∞n=0 and {yn}∞n=0 be generated by (21) where {αn} = 1
12n , {βn} =

5n–2
12n , {γn} = 7n+1

12n ⊂ [0, 1] and a = 0.4 ∈ (0, 1). Show that {xn} and {yn} converge strongly to
2t.
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Table 1 Detailed analysis of computational methods (21) and (3) for Example 1 with u = (5, 5),
N = 15, E(xn1 ) = ‖xn+11 – xn1‖,n ∈ N0 and E(xn2 ) = ‖xn+12 – xn2‖,n ∈ N0

Iterative (21) Iterative (3)

n E(xn1) E(xn2) E(xn1) E(xn2)

1 1.0000 2.0000 1.0000 2.0000
2 0.6468 0.8770 0.6497 0.8828
3 0.3961 0.4630 0.3995 0.4681
4 0.2619 0.2826 0.2646 0.2862
...

...
...

...
...

15 0.0472 0.0457 0.0476 0.0476

Table 2 Detailed analysis of computational methods (21) and (3) for Example 1 with u = 3t, N = 15
and E(xn) = ‖xn+1 – xn‖,n ∈ N0

n E(xn): Algorithm (21) E(xn): Algorithm (3)

1 0.7626 0.7626
2 0.1291 0.1221
3 0.0480 0.0492
4 0.0208 0.0226
...

...
...

15 0.0006 0.0007

Solution. Since A1, A2 and AG are 1
2 , 1

3 and 1-inverse strongly monotone mappings, re-
spectively, η = 1

2 . Choose λA = 1
2 ,λB = 1 ∈ (0, 2αG) and b = 1

4 , we obtain G(h(t)) = h(t)
16 .

Choose λ = 1
4 ∈ (0,η). It is easy to see that the sequences {αn}, {βn} and {γn} satisfy all

conditions in Theorem 3.1 and 2t ∈ VI(C, A1) ∩ VI(C, A2) ∩ F(G). From Theorem 3.1, we
can conclude that the sequences {xn} and {yn} converge strongly to 2I .

Example 5.3 Let f : H → R be a convex function. Consider the following convex opti-
mization problem:

min
x∈H

f (x) (42)

and

min
x∈H

g(x) (43)

It is well known that x∗ ∈ C solves (42) and (43) if and only if x∗ ∈ C satisfies the following
variational inequalities:

〈∇f
(
x∗), x – x∗〉 ≥ 0, ∀x ∈ C, (44)

and

〈∇g
(
x∗), x – x∗〉 ≥ 0, ∀x ∈ C, (45)

that is, x∗ ∈ VI(C,∇f ) ∩ VI(C,∇g). Let H = R. Take C = [1, 10]. Define the mapping f :
[1, 10] →R by f (x) = (x–1)2

3 + 1. Define the mapping g : [1, 10] →R by g(x) = x2

2 – ln x – 1
2 .
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Table 3 Detailed analysis of computational methods (21) and (3) for Example 1 with u = 3, N = 15
and E(xn) = ‖xn+1 – xn‖,n ∈ N0

n E(xn): Algorithm (21) E(xn): Algorithm (3)

1 2.9044 2.7500
2 0.7088 0.7428
3 0.2200 0.2681
4 0.0762 0.1082
...

...
...

15 0.0012 0.0015

Figure 1 Comparison between Algorithms (21) and (3) for Example 1 with u = (5, 5) and N = 15

Let x1, u ∈R2. From (21), we find that {xn}∞n=0 and {yn}∞n=0 are generated by

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(I – λ(a1∇f + a2∇g))xn,

Qn = {z ∈ H : 〈(I – λ(a1∇f + a2∇g))xn – yn, yn – z〉 ≥ 0},
xn+1 = αnu + βnPQn (xn – λ(a1∇f + a2∇g)yn) + γnGxn,

(46)

where {αn} = 1
12n , {βn} = 5n–2

12n , {γn} = 7n+1
12n ⊂ [0, 1] and a = 0.5 ∈ (0, 1). Show that {xn} and

{yn} converge strongly to 1.
Solution. Since f and g are convex and differentiable with f ′(x) = 2(x–1)

3 and g ′(x) = x – 1
x .

It implies that ∇f and ∇g are 2
3 and 1-inverse strongly monotone mappings, respectively.

Choose η = 1
2 , λA = 1

2 ,λB = 1 ∈ (0, 2αG) and b = 1
4 , we obtain G(x) = x

12 + 11
12 . Choose λ =

1
4 ∈ (0,η). It is easy to see that the sequences {αn}, {βn} and {γn} satisfy all conditions in
Theorem 3.1 and 1 ∈ VI(C,∇f ) ∩ VI(C,∇g) ∩ F(G). From Theorem 3.1, we can conclude
that the sequences {xn} and {yn} converge strongly to 1.

Remark 5.4 According to Tables 1–3 and Figs. 1–3, it is shown that our Algorithm (21)
converges to an element of the set

⋂N
i=1 VI(C, Ai)∩F(G) at a faster rate than Algorithm (3).

Therefore, our algorithm is more efficient.
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Figure 2 Comparison between Algorithms (21) and (3) for Example 2 with u = 3t and N = 15

Figure 3 Comparison between Algorithms (21) and (3) for Example 3 with u = 3 and N = 15

6 Conclusion
In this paper, we have proposed a new problem, called a generalized system of modified
variational inclusion problems (GSMVIP). This problem can be reduced to a classical vari-
ational inclusion problem and a classical variational inequalities problem. Moreover, we
study the half-space

Qn =

{

z ∈ H :

〈(

I – λ

N∑

i=1

aiAi

)

xn – yn, yn – z

〉

≥ 0

}

,
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which can be reduced to Tn in Algorithm (3). In order to solve the GSMVIP and the set
of a finite family of variational inequalities problem, we have presented a new subgradi-
ent extragradient algorithm which uses Qn and show that it converges to a solution of the
GSMVIP and the set of a finite family of variational inequalities problem under suitable
conditions. Therefore, our algorithm improves the algorithm proposed by Censor et al.
[12]. The efficiency of the proposed algorithm has also been illustrated by several numer-
ical experiments.
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