
Peng and Zhao Journal of Inequalities and Applications         (2021) 2021:56 
https://doi.org/10.1186/s13660-021-02581-3

R E S E A R C H Open Access

Empirical likelihood inference for threshold
autoregressive conditional heteroscedasticity
model
Cuixin Peng1* and Zhiwen Zhao2

*Correspondence:
pengcuixin@126.com
1School of Foreign Languages, Jilin
Normal University, Siping, 136000,
P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper considers the parameter estimation problem of a first-order threshold
autoregressive conditional heteroscedasticity model by using the empirical likelihood
method. We obtain the empirical likelihood ratio statistic based on the estimating
equation of the least squares estimation and construct the confidence region for the
model parameters. Simulation studies indicate that the empirical likelihood method
outperforms the normal approximation-based method in terms of coverage
probability.
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1 Introduction
Consider the following first-order threshold autoregressive conditional heteroscedasticity
model:

Xt = θ1X+
t–1 + θ2X–

t–1 + εt , (1)

where X+
t = max(Xt , 0), X–

t = min(Xt , 0), εt =
√

htet , ht = α0 + α1(ε+
t–1)2 + α2(ε–

t–1)2, et is a
sequence of independent and identically distributed random variables satisfying Eet = 0
and Var(et) = 1. θ1, θ2, α0, α1, and α2 are the model parameters with α0 > 0, 0 ≤ αj < 1,
j = 1, 2.

When θ1 = θ2, model (1) becomes the usual autoregressive model whose innovation is
a conditional heteroscedasticity process. Threshold autoregressive model is a nonlinear
time series model. Because the threshold autoregressive model can explain nonlinear fea-
tures such as asymmetry and limit cycles, it is widely used in time series modeling (see
Tong [1]). Petruccelli and Woolford [2] first defined model (1) and investigated its prop-
erties and the parameter estimation problems, but they assumed that the error sequence
is a sequence of independent and identically distributed random variables. Brockwell et
al. [3] and Hwang and Basawa [4] further generalized the model coefficients to be random
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variables. Hwang and Woo [5] first considered the parameter estimation problems when
the error sequence is a conditional heteroscedasticity process and proposed to use the
conditional least squares method to estimate the model parameters. In this paper, we use
the empirical likelihood method to estimate the model parameters.

Similar to the parametric likelihood, Owen [6–8] introduced empirical likelihood
method. It is a nonparametric likelihood method which establishes a likelihood function
through placing positive probability on every one of the observed data values, but often
makes no assumptions on the data-generating mechanism. Empirical likelihood has many
advantages compared with the normal approximation method. For example, the limiting
distribution of empirical likelihood ratio statistic is a chi-squared distribution. Therefore,
we need not estimate the asymptotic variance when we construct the confidence region.
Moreover, the confidence region is completely decided by the data themselves because we
make no assumptions on the probability distribution of the data. These attract the atten-
tion of statisticians to make inference for all kinds of statistical models using the empirical
likelihood method, such as linear regressive model [9–13], generalized linear models [14–
17], and partially linear models [18–21]. In recent years, empirical likelihood method is
also applied to make statistical inference about time series models, such as autoregres-
sive model [22–24], random coefficient autoregressive model [25–28], and integer-valued
autoregressive model [29–32].

In this paper, we obtain the limiting distribution of empirical log-likelihood ratio statis-
tic and construct the confidence region for the parameters in model (1) by using the
empirical likelihood method. Some simulation studies indicate that the empirical likeli-
hood method has a higher coverage probability compared with the normal approximation-
based method.

This paper is organized as follows. In Sect. 2, we present the main methods and results.
Some simulation results and real data analysis are given in Sect. 3. Section 4 is concerned

with the proofs of the main results. Moreover, the symbols “
d−→” and “

p−→” denote con-
vergence in distribution and convergence in probability, respectively. Op(1) means a term
which is bounded in probability. op(1) means a term which converges to zero in probabil-
ity. “Almost surely” and “independent identical distributed” are denoted by “a.s.” and “i.i.d.”,
respectively.

2 Methods and main results
For model (1), Hwang and Woo [5] obtained the least square estimation of the model pa-
rameters and its limiting properties. Now we use the empirical likelihood method to esti-
mate the model parameters. Before giving the main results, we assume that the following
conditions are true:

(A1) Probability density function f (·) of et has its support on (–∞, +∞). θmax +√
αmax < 1,

where θmax = max{|θ1|, |θ2|}, αmax = max{α1,α2}.
(A2) E(X6

t ) < ∞.
According to Theorem 1 in Hwang and Woo [5], if (A1) holds, then {Xt , t ≥ 1} is geo-

metrically ergodic, and the sequence {Xt} has a unique stationary distribution.
Hwang and Woo [5] used the least square method to estimate the model parameters. Let

θ = (θ1, θ2)τ . Based on the observation data {X0, X1, . . . , Xn}, the least square estimation θ∗

of θ can be obtained by minimizing Q(θ ) =
∑n

t=1(Xt – E(Xt | Ft–1))2 =
∑n

t=1(Xt – θ1X+
t–1 –
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θ2X–
t–1)2 with respect to θ . Solving

∂Q(θ )
∂θ

= –2
n∑

t=1

(
Xt – θ1X+

t–1 – θ2X–
t–1

)
(

X+
t–1

X–
t–1

)

= 0 (2)

for θ , we know that

θ∗ =

(∑n
t=1 XtX+

t–1/
∑n

t=1(X+
t–1)2

∑n
t=1 XtX–

t–1/
∑n

t=1(X+
t–1)2)

)

.

Let Xt = (X+
t–1, X–

t–1)τ . Then the estimating equation (2) can be written as

n∑

t=1

(
Xt – Xτ

t θ
)
Xt = 0. (3)

Further, let Ht(θ ) = (Xt – Xτ
t θ )Xt . By (3), we can obtain the following empirical likelihood

ratio statistic:

L(θ ) = max

{ n∏

t=1

npt :
n∑

t=1

ptHt(θ ) = 0, pt ≥ 0,
n∑

t=1

pt = 1

}

. (4)

By using the Lagrange multiplier method, it is easy to know that

pt =
1
n

1
1 + bτ (θ )Ht(θ )

, (5)

where the Lagrange multiplier b(θ ) satisfies

1
n

n∑

t=1

Ht(θ )
1 + bτ (θ )Ht(θ )

= 0. (6)

Therefore, we have

–2 log
(
L(θ )

)
= 2

n∑

t=1

log
(
1 + bτ (θ )Ht(θ )

)
. (7)

The following theorem indicates that the limiting distribution of –2 log(L(θ )) is a chi-
squared distribution.

Theorem 2.1 If (A1) and (A2) hold, then when n → ∞,

–2 log
(
L(θ )

) d−→ χ2(2), (8)

where χ2(2) is the chi-squared distribution with two degrees of freedom.

Using the above theorem, we can construct the empirical likelihood ratio confidence
region for the parameter θ . For 0 < δ < 1, the 100(1 – δ)% asymptotic confidence region
for the parameter θ is

C{δ} =
{
θ : L(θ ) ≤ χ2

δ (2)
}

, (9)
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where χ2
δ (2) is the upper δ quantile of chi-squared distribution with two degrees of free-

dom.

3 Simulation studies
In this section, we carry out some simulation studies to compare the performances of our
empirical likelihood (EL) method with the least square (LS) method proposed by Hwang
and Woo [5] through random simulation. Consider the simulation results of model (1) in
the following error sequence:

Sequence I: {et} is a sequence of independent and identically distributed (i.i.d.) standard
normal distribution N(0, 1) random variables.

Sequence II: {et} is an independent noise sequence with ε-contamination distribution,
and the distribution function of {et} is

Fet (x) = ε


(
x
σ1

)

+ (1 – ε)

(

x
σ2

)

,

where σi > 0 (i = 1, 2), ε is a fixed constant satisfying 0 < ε < 1 and 
(x) is the distribution
function of the standard normal random variable.

Sequence III: {et} is a sequence of independent and identically distributed (i.i.d.) mixing
random variable sequence, and the distribution function of {et} is

Fet (x) = ε


(
x
σ

)

+ (1 – ε)Tk(x),

where σ > 0, 0 < ε < 1, Tk(x) is the distribution function of T distribution with k degrees
of freedom, 
(x) is the distribution function of standard normal random variable.

We calculate the coverage probabilities of the empirical likelihood and the least square
methods for different model parameters. The nominal confidence level 1 – δ is chosen
to be 0.90. All simulation studies are based on 1000 repetitions, and the sample sizes
considered in these simulations are n = 100, 300, and 500. The simulation results for se-
quence I are presented in Table 1. For sequence II, we simulate (ε,σ1,σ2) = (0.9, 1, 3) and
(ε,σ1,σ2) = (0.75, 1,

√
7), and the simulation results are presented in Table 2 and Table 3,

respectively. For sequence III, we simulate (ε,σ , k) = (0.2, 1, 6) and (ε,σ , k) = (0.5, 1, 3), and
the simulation results are presented in Table 4 and Table 5, respectively. The first figures in
parentheses are the simulation results obtained by the empirical likelihood method, and
the second figures are the simulation results obtained by the least square method.

From the simulation results in Tables 1–5, it can be seen that, for different error distri-
bution, the confidence region constructed by the empirical likelihood method has a higher
coverage probabilities for different parameters, sample sizes, pollution levels, and pollu-
tion distributions. Moreover, the confidence region constructed by the empirical likeli-
hood method is closer to the confidence level 0.90. This shows that the empirical likeli-
hood method is more robust than the least square method.

4 Real data analysis
In this section, we use our method to fit student teacher ratio (number of teachers = 1) data
in Chinese universities, which are provided by the website of China National Bureau of
Statistics (http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A060E01&sj=2019). Stu-
dent teacher ratio is an important index to measure the level of universities. There are

http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A060E01&sj=2019
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Table 1 The simulation results for sequence I

(θ1,θ2,α0,α1,α2) n = 100 n = 300 n = 500

(0.1, 0.1, 1, 0.1, 0.1) (0.9520, 0.3140) (0.9410, 0.4710) (0.9330, 0.6950)
(0.1, 0.1, 3, 0.3, 0.3) (0.9570, 0.3170) (0.9440, 0.4890) (0.9360, 0.6870)
(0.1, 0.1, 5, 0.5, 0.5) (0.9520, 0.3170) (0.9450, 0.4890) (0.9330, 0.6880)
(0.1, 0.1, 7, 0.7, 0.7) (0.9530, 0.3000) (0.9350, 0.4850) (0.9260, 0.7110)
(–0.1, –0.1, 1, 0.1, 0.1) (0.9630, 0.3210) (0.9330, 0.4870) (0.9350, 0.7020)
(–0.1, –0.1, 3, 0.3, 0.3) (0.9360, 0.3110) (0.9510, 0.5020) (0.9290, 0.6860)
(–0.1, –0.1, 5, 0.5, 0.5) (0.9420, 0.3330) (0.9370, 0.5100) (0.9510, 0.7310)
(–0.1, –0.1, 7, 0.7, 0.7) (0.9420, 0.3200) (0.9480, 0.5250) (0.9220, 0.6890)
(0.2, 0.2, 1, 0.1, 0.1) (0.9580, 0.3290) (0.9430, 0.5140) (0.9330, 0.7120)
(0.2, 0.2, 3, 0.3, 0.3) (0.9480, 0.3490) (0.9310, 0.4920) (0.9380, 0.7110)
(0.2, 0.2, 5, 0.5, 0.5) (0.9540, 0.3540) (0.9420, 0.4890) (0.9290, 0.6900)
(–0.2, –0.2, 1, 0.1, 0.1) (0.9530, 0.3290) (0.9570, 0.5080) (0.9220, 0.6860)
(–0.2, –0.2, 3, 0.3, 0.3) (0.9590, 0.3640) (0.9440, 0.5210) (0.9350, 0.7020)
(–0.2, –0.2, 5, 0.5, 0.5) (0.9550, 0.3400) (0.9350, 0.5000) (0.9280, 0.7130)
(0.3, 0.3, 1, 0.1, 0.1) (0.9400, 0.3420) (0.9440, 0.5250) (0.9290, 0.6910)
(0.3, 0.3, 3, 0.3, 0.3) (0.9530, 0.3470) (0.9310, 0.5170) (0.9390, 0.7440)
(–0.3, –0.3, 1, 0.1, 0.1) (0.9410, 0.3610) (0.9380, 0.5090) (0.9360, 0.7050)
(–0.3, –0.3, 3, 0.3, 0.3) (0.9460, 0.3840) (0.9330, 0.5300) (0.9320, 0.7010)
(0.4, 0.4, 1, 0.1, 0.1) (0.9740, 0.3100) (0.9530, 0.4120) (0.9430, 0.7210)
(0.4, 0.4, 1, 0.3, 0.3) (0.9580, 0.3700) (0.9440, 0.5260) (0.9370, 0.7090)
(–0.4, –0.4, 1, 0.1, 0.1) (0.9540, 0.3850) (0.9290, 0.7360) (0.9120, 0.6950)
(–0.4, –0.4, 1, 0.3, 0.3) (0.9530, 0.3870) (0.9320, 0.7260) (0.9310, 0.7170)
(0.5, 0.5, 1, 0.1, 0.1) (0.9580, 0.4140) (0.9380, 0.7350) (0.9330, 0.7270)
(–0.5, –0.5, 1, 0.1, 0.1) (0.9510, 0.3950) (0.9420, 0.7280) (0.9290, 0.7350)

Table 2 The simulation results for sequence II (ε ,σ1,σ2) = (0.9, 1, 3)

(θ1,θ2,α0,α1,α2) n = 100 n = 300 n = 500

(0.1, 0.1, 1, 0.1, 0.1) 0.9770 (0.4330) 0.9510 (0.8740) 0.9490 (0.8620)
(0.1, 0.1, 3, 0.3, 0.3) 0.9820 (0.4590) 0.9370 (0.8530) 0.9410 (0.8500)
(0.1, 0.1, 5, 0.5, 0.5) 0.9740 (0.4300) 0.9540 (0.8560) 0.9580 (0.8740)
(0.1, 0.1, 7, 0.7, 0.7) 0.9760 (0.4340) 0.9370 (0.8660) 0.9480 (0.8540)
(–0.1, –0.1, 1, 0.1, 0.1) 0.9750 (0.4170) 0.9500 (0.8700) 0.9380 (0.8570)
(–0.1, –0.1, 3, 0.3, 0.3) 0.9820 (0.4320) 0.9570 (0.8610) 0.9620 (0.8700)
(–0.1, –0.1, 5, 0.5, 0.5) 0.9800 (0.4230) 0.9410 (0.8730) 0.9470 (0.8790)
(–0.1, –0.1, 7, 0.7, 0.7) 0.9730 (0.4380) 0.9580 (0.8660) 0.9450 (0.8430)
(0.2, 0.2, 1, 0.1, 0.1) 0.9820 (0.458) 0.9540 (0.8690) 0.9340 (0.8500)
(0.2, 0.2, 3, 0.3, 0.3) 0.9680 (0.4320) 0.9430 (0.8400) 0.9520 (0.8600)
(0.2, 0.2, 5, 0.5, 0.5) 0.9670 (0.4240) 0.9480 (0.8490) 0.9390 (0.8610)
(–0.2, –0.2, 1, 0.1, 0.1) 0.9730 (0.4510) 0.9440 (0.8520) 0.9410 (0.8660)
(–0.2, –0.2, 3, 0.3, 0.3) 0.9710 (0.4460) 0.9470 (0.8680) 0.9390 (0.8590)
(–0.2, –0.2, 5, 0.5, 0.5) 0.9820 (0.4510) 0.9450 (0.8700) 0.9480 (0.8490)
(0.3, 0.3, 1, 0.1, 0.1) 0.9790 (0.4490) 0.9530 (0.8440) 0.9670 (0.8690)
(0.3, 0.3, 3, 0.3, 0.3) 0.9810 (0.4440) 0.9540 (0.8440) 0.9470 (0.8490)
(–0.3, –0.3, 1, 0.1, 0.1) 0.9790 (0.4450) 0.9410 (0.8630) 0.9610 (0.8570)
(–0.3, –0.3, 3, 0.3, 0.3) 0.9790 (0.4320) 0.9550 (0.8560) 0.9400 (0.8350)
(0.4, 0.4, 1, 0.1, 0.1) 0.9780 (0.4420) 0.9320 (0.8310) 0.9390 (0.8320)
(0.4, 0.4, 1, 0.3, 0.3) 0.9790 (0.4090) 0.9460 (0.8370) 0.9440 (0.8610)
(–0.4, –0.4, 1, 0.1, 0.1) 0.9820 (0.4420) 0.9500 (0.8340) 0.9400 (0.8510)
(–0.4, –0.4, 1, 0.3, 0.3) 0.9820 (0.4170) 0.9540 (0.8490) 0.9480 (0.8260)
(0.5, 0.5, 1, 0.1, 0.1) 0.9840 (0.4220) 0.9480 (0.8430) 0.9490 (0.8320)
(–0.5, –0.5, 1, 0.1, 0.1) 0.9760 (0.4470) 0.9520 (0.8450) 0.9490 (0.8360)

70 available observations, which are denoted by X1, X2, . . . , X70. The observations repre-
sent the yearly counts of student teacher ratio in China over the period from 1949 to 2018.
Let Yt = Xt – Xt–1. The plot of sample path, autocorrelation function (ACF), and partial au-
tocorrelation function (PACF) for the series {Yt} are given in Figs. 1, 2, and 3, respectively.
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Table 3 The simulation results for sequence II (ε ,σ1,σ2) = (0.75, 1,
√
7)

(θ1,θ2,α0,α1,α2) n = 100 n = 300 n = 500

(0.1, 0.1, 1, 0.1, 0.1) 0.9680 (0.3430) 0.9390 (0.7960) 0.9400 (0.8040)
(0.1, 0.1, 3, 0.3, 0.3) 0.9780 (0.3620) 0.9250 (0.7850) 0.9330 (0.7900)
(0.1, 0.1, 5, 0.5, 0.5) 0.9730 (0.3750) 0.9320 (0.8040) 0.9510 (0.7970)
(0.1, 0.1, 7, 0.7, 0.7) 0.9680 (0.3750) 0.9380 (0.7980) 0.9410 (0.7850)
(–0.1, –0.1, 1, 0.1, 0.1) 0.9690 (0.3640) 0.9380 (0.7750) 0.9340 (0.8000)
(–0.1, –0.1, 3, 0.3, 0.3) 0.9800 (0.3580) 0.9310 (0.7910) 0.9280 (0.7820)
(–0.1, –0.1, 5, 0.5, 0.5) 0.9690 (0.3480) 0.9240 (0.8050) 0.9350 (0.7860)
(–0.1, –0.1, 7, 0.7, 0.7) 0.9740 (0.3400) 0.9420 (0.7770) 0.9370 (0.7880)
(0.2, 0.2, 1, 0.1, 0.1) 0.9700 (0.3940) 0.9310 (0.7890) 0.9400 (0.7970)
(0.2, 0.2, 3, 0.3, 0.3) 0.9740 (0.3700) 0.9360 (0.7960) 0.9330 (0.7800)
(0.2, 0.2, 5, 0.5, 0.5) 0.9710 (0.3890) 0.9370 (0.7820) 0.9460 (0.7870)
(–0.2, –0.2, 1, 0.1, 0.1) 0.9700 (0.3890) 0.9370 (0.7820) 0.9230 (0.7760)
(–0.2, –0.2, 3, 0.3, 0.3) 0.9630 (0.3940) 0.9420 (0.8110) 0.9380 (0.7840)
(–0.2, –0.2, 5, 0.5, 0.5) 0.9650 (0.3780) 0.9270 (0.7810) 0.9280 (0.7740)
(0.3, 0.3, 1, 0.1, 0.1) 0.9660 (0.4020) 0.9190 (0.7720) 0.9470 (0.8060)
(0.3, 0.3, 3, 0.3, 0.3) 0.9680 (0.3680) 0.9330 (0.7940) 0.9450 (0.8080)
(–0.3, –0.3, 1, 0.1, 0.1) 0.9710 (0.4050) 0.9270 (0.7720) 0.9350 (0.7900)
(–0.3, –0.3, 3, 0.3, 0.3) 0.9820 (0.3950) 0.9440 (0.7900) 0.9350 (0.7850)
(0.4, 0.4, 1, 0.1, 0.1) 0.9670 (0.3610) 0.9420 (0.7940) 0.9420 (0.7750)
(0.4, 0.4, 1, 0.3, 0.3) 0.9690 (0.3740) 0.9360 (0.7960) 0.9470 (0.8010)
(–0.4, –0.4, 1, 0.1, 0.1) 0.9740 (0.4120) 0.9250 (0.7790) 0.9330 (0.7930)
(–0.4, –0.4, 1, 0.3, 0.3) 0.9760 (0.3970) 0.9440 (0.8030) 0.9260 (0.7890)
(0.5, 0.5, 1, 0.1, 0.1) 0.9800 (0.4140) 0.9310 (0.8010) 0.9320 (0.7960)
(–0.5, –0.5, 1, 0.1, 0.1) 0.9820 (0.4290) 0.9370 (0.7910) 0.9390 (0.7930)

Table 4 The simulation results for sequence III (ε ,σ , k) = (0.2, 1, 6)

(θ1,θ2,α0,α1,α2) n = 100 n = 300 n = 500

(0.1, 0.1, 1, 0.1, 0.1) 0.9560 (0.3180) 0.9400 (0.7260) 0.9490 (0.7200)
(0.1, 0.1, 3, 0.3, 0.3) 0.9500 (0.3130) 0.9460 (0.7090) 0.9380 (0.7000)
(0.1, 0.1, 5, 0.5, 0.5) 0.9510 (0.3440) 0.9320 (0.7330) 0.9420 (0.7180)
(0.1, 0.1, 7, 0.7, 0.7) 0.9570 (0.3270) 0.9400 (0.7110) 0.9270 (0.7230)
(–0.1, –0.1, 1, 0.1, 0.1) 0.9510 (0.3270) 0.9340 (0.7110) 0.9220 (0.6960)
(–0.1, –0.1, 3, 0.3, 0.3) 0.9580 (0.3640) 0.9200 (0.7030) 0.9350 (0.7330)
(–0.1, –0.1, 5, 0.5, 0.5) 0.9460 (0.3460) 0.9260 (0.7120) 0.9270 (0.7050)
(–0.1, –0.1, 7, 0.7, 0.7) 0.9640 (0.3350) 0.9120 (0.6850) 0.9390 (0.7320)
(0.2, 0.2, 1, 0.1, 0.1) 0.9630 (0.3550) 0.9310 (0.7180) 0.9330 (0.7140)
(0.2, 0.2, 3, 0.3, 0.3) 0.9520 (0.3470) 0.9290 (0.7310) 0.9440 (0.7400)
(0.2, 0.2, 5, 0.5, 0.5) 0.9390 (0.3330) 0.9360 (0.7250) 0.9500 (0.7210)
(–0.2, –0.2, 1, 0.1, 0.1) 0.9600 (0.3430) 0.9470 (0.7390) 0.9440 (0.7260)
(–0.2, –0.2, 3, 0.3, 0.3) 0.9560 (0.3290) 0.9480 (0.7220) 0.9370 (0.7020)
(–0.2, –0.2, 5, 0.5, 0.5) 0.9540 (0.3490) 0.9390 (0.7460) 0.9380 (0.7250)
(0.3, 0.3, 1, 0.1, 0.1) 0.9600 (0.3650) 0.9370 (0.7270) 0.9220 (0.7320)
(0.3, 0.3, 3, 0.3, 0.3) 0.9570 (0.3550) 0.9410 (0.7260) 0.9490 (0.7210)
(–0.3, –0.3, 1, 0.1, 0.1) 0.9610 (0.3520) 0.9410 (0.7320) 0.9390 (0.7150)
(–0.3, –0.3, 3, 0.3, 0.3) 0.9500 (0.3740) 0.9390 (0.7500) 0.9380 (0.7280)
(0.4, 0.4, 1, 0.1, 0.1) 0.9620 (0.3690) 0.9380 (0.7290) 0.9480 (0.7220)
(0.4, 0.4, 1, 0.3, 0.3) 0.9600 (0.3710) 0.9380 (0.7290) 0.9480 (0.7220)
(–0.4, –0.4, 1, 0.1, 0.1) 0.9610 (0.3810) 0.9420 (0.7370) 0.9310 (0.7290)
(–0.4, –0.4, 1, 0.3, 0.3) 0.9400 (0.3930) 0.9370 (0.7470) 0.9340 (0.7330)
(0.5, 0.5, 1, 0.1, 0.1) 0.9670 (0.3960) 0.9430 (0.7420) 0.9240 (0.7340)
(–0.5, –0.5, 1, 0.1, 0.1) 0.9670 (0.3950) 0.9150 (0.7170) 0.9230 (0.7330)

The corresponding plots of sample autocorrelation function (ACF) and partial autocorre-
lation function (PACF) indicate an AR(1)-like autocorrelation structure.

In what follows, based on the observation data {Yt}, we give the figure of the empirical
likelihood ratio confidence region when the confidence level is 0.95 (see Fig. 4). After a
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Table 5 The simulation results for sequence III (ε ,σ , k) = (0.5, 1, 3)

(θ1,θ2,α0,α1,α2) n = 100 n = 300 n = 500

(0.1, 0.1, 1, 0.1, 0.1) 0.9650 (0.3300) 0.9410 (0.7330) 0.9510 (0.7660)
(0.1, 0.1, 3, 0.3, 0.3) 0.9560 (0.3260) 0.9410 (0.7390) 0.9280 (0.7440)
(0.1, 0.1, 5, 0.5, 0.5) 0.9720 (0.3320) 0.9310 (0.7280) 0.9310 (0.7140)
(0.1, 0.1, 7, 0.7, 0.7) 0.9560 (0.3050) 0.9490 (0.7280) 0.9210 (0.7130)
(–0.1, –0.1, 1, 0.1, 0.1) 0.9610 (0.3020) 0.9260 (0.7240) 0.9350 (0.7530)
(–0.1, –0.1, 3, 0.3, 0.3) 0.9710 (0.3300) 0.9390 (0.7310) 0.9430 (0.7560)
(–0.1, –0.1, 5, 0.5, 0.5) 0.9540 (0.3220) 0.9350 (0.7230) 0.9410 (0.7460)
(–0.1, –0.1, 7, 0.7, 0.7) 0.9690 (0.3390) 0.9360 (0.7070) 0.9330 (0.7200)
(0.2, 0.2, 1, 0.1, 0.1) 0.9530 (0.3210) 0.9460 (0.7350) 0.9240 (0.7140)
(0.2, 0.2, 3, 0.3, 0.3) 0.9670 (0.3140) 0.9400 (0.7260) 0.9290 (0.7550)
(0.2, 0.2, 5, 0.5, 0.5) 0.9670 (0.3610) 0.9390 (0.7420) 0.9510 (0.7660)
(–0.2, –0.2, 1, 0.1, 0.1) 0.9560 (0.3490) 0.9390 (0.7280) 0.9400 (0.7490)
(–0.2, –0.2, 3, 0.3, 0.3) 0.9660 (0.3570) 0.9360 (0.7090) 0.9350 (0.7180)
(–0.2, –0.2, 5, 0.5, 0.5) 0.9550 (0.3290) 0.9380 (0.7300) 0.9190 (0.7180)
(0.3, 0.3, 1, 0.1, 0.1) 0.9640 (0.3400) 0.9380 (0.7320) 0.9330 (0.7460)
(0.3, 0.3, 3, 0.3, 0.3) 0.9670 (0.3780) 0.9340 (0.7320) 0.9350 (0.7560)
(–0.3, –0.3, 1, 0.1, 0.1) 0.9640 (0.3600) 0.9400 (0.7470) 0.9500 (0.7450)
(–0.3, –0.3, 3, 0.3, 0.3) 0.9700 (0.3710) 0.9380 (0.5650) 0.9280 (0.7440)
(0.4, 0.4, 1, 0.1, 0.1) 0.9420 (0.7570) 0.9150 (0.5650) 0.9290 (0.7640)
(0.4, 0.4, 1, 0.3, 0.3) 0.9570 (0.3810) 0.9350 (0.7380) 0.9440 (0.7430)
(–0.4, –0.4, 1, 0.1, 0.1) 0.9610 (0.4130) 0.9540 (0.7430) 0.9360 (0.7470)
(–0.4, –0.4, 1, 0.3, 0.3) 0.9600 (0.3850) 0.9400 (0.7440) 0.9400 (0.7690)
(0.5, 0.5, 1, 0.1, 0.1) 0.9540 (0.3940) 0.9320 (0.754) 0.9250 (0.7640)
(–0.5, –0.5, 1, 0.1, 0.1) 0.9590 (0.4230) 0.9450 (0.7550) 0.9500 (0.7760)

Figure 1 Sample path of transformed data Yt

simple calculation, we know that the least square estimation θ∗ = (0.1616, 0.6191), and it
is denoted by ∗ in Fig. 4. From Fig. 4, we can see that the least square estimation θ∗ is in
the empirical likelihood ratio confidence region. Moreover, the empirical likelihood ratio
confidence region is relatively small although the confidence level is 0.95.

5 Proofs
In order to establish Theorem 2.1, we first prove the following lemmas.
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Figure 2 Sample autocorrelation function plot of transformed data Yt

Figure 3 Sample partial autocorrelation function plot of transformed data Yt

Lemma 5.1 If (A1) and (A2) hold, then

1√
n

n∑

t=1

Ht(θ )
d−→ N(0, D) as n → ∞, (10)

where

D =

(
E(ε2

1(X+
0 )2) 0

0 E(ε2
1(X–

0 )2)

)

.
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Figure 4 The figure of the empirical likelihood ratio confidence region

Proof Note that

√
n
(
θ∗ – θ

)
=

√
n

(( n∑

t=1

XtX
τ
t

)–1 n∑

t=1

XtXt – θ

)

=
√

n

(( n∑

t=1

XtX
τ
t

)–1 n∑

t=1

XtXt –

( n∑

t=1

XtX
τ
t

)–1 n∑

t=1

XtX
τ
t θ

)

=
√

n

( n∑

t=1

XtX
τ
t

)–1( n∑

t=1

XtXt –
n∑

t=1

XtX
τ
t θ

)

=
√

n

( n∑

t=1

XtX
τ
t

)–1( n∑

t=1

Xt
(
Xt – Xτ

t θ
)
)

=

(
1
n

n∑

t=1

XtX
τ
t

)–1
1√
n

( n∑

t=1

Xt
(
Xt – Xτ

t θ
)
)

.

Therefore we have

1√
n

n∑

t=1

Ht(θ ) =
1√
n

n∑

t=1

(
Xt – Xτ

t θ
)
Xt

=
1
n

n∑

t=1

XtX
τ
t

(
1
n

n∑

t=1

XtX
τ
t

)–1
1√
n

( n∑

t=1

Xt
(
Xt – Xτ

t θ
)
)

=
1
n

n∑

t=1

XtX
τ
t
√

n
(
θ∗ – θ

)
. (11)
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By the ergodic theorem, we have

1
n

n∑

t=1

XtX
τ
t

a.s.−→ E
(
XtX

τ
t
)

= E

((
X+

t–1

X–
t–1

)
(

X+
t–1 X–

t–1

)
)

= E

(
(X+

t–1)2 0
0 (X–

t–1)2

)

=

(
E(X+

t–1)2 0
0 E(X–

t–1)2

)

� W .

According to the result of Lemma 1 in Hwang and Woo [5], we have

√
n
(
θ∗ – θ

) d−→ N
(
0, W –1DW –1) as n → ∞. (12)

Combining with (11), we know that Lemma 5.1 holds. �

Lemma 5.2 If (A1) and (A2) hold, then

1
n

n∑

t=1

Ht(θ )Hτ
t (θ )

p−→ D as n → ∞. (13)

Proof Notice that

1
n

n∑

t=1

Ht(θ )Hτ
t (θ ) =

1
n

n∑

t=1

(
Xt – Xτ

t θ
)2

XtX
τ
t

=
1
n

n∑

t=1

(
Xt – Xτ

t θ
)2

(
(X+

t–1)2 0
0 (X–

t–1)2

)

=
1
n

n∑

t=1

(
(Xt – Xτ

t θ )2(X+
t–1)2 0

0 (Xt – Xτ
t θ )2(X–

t–1)2

)

=
1
n

n∑

t=1

(
ε2

t (X+
t–1)2 0

0 ε2
t (X–

t–1)2

)

.

Therefore, according to the ergodic theorem, Lemma 5.2 is established. �

Lemma 5.3 If (A1) and (A2) hold, then

max
1≤t≤n

∥
∥Ht(θ )

∥
∥ = op

(
n

1
2
)

as n → ∞. (14)

Proof Based on assumption (A2), we know that E(Ht(θ )Hτ
t (θ )) < ∞, which implies that

∞∑

n=1

P
(
Ht(θ )Hτ

t (θ ) > n
)

< ∞.
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Further by assumption (A1), we know that the model is stationary, from which we can
conclude that

∞∑

n=1

P
(
Hn(θ )Hτ

n (θ ) > n
)

< ∞.

By using the Borel–Cantelli lemma, we know that ‖Ht(θ )‖ > n 1
2 holds for finite n, which

implies that max1≤t≤n ‖Ht(θ )‖ > n 1
2 holds for finite n. Similarly, we can obtain that for

∀ε > 0, max1≤t≤n ‖Ht(θ )‖ > εn 1
2 holds for finite n. Thus, Lemma 5.3 is established. �

Lemma 5.4 If (A1) and (A2) hold, then

‖b‖ = Op
(
n– 1

2
)
. (15)

Proof Let b = ‖b‖ς . By (6), we have

0 =
1
n

n∑

t=1

ςτ Ht(θ )
1 + bτ (θ )Ht(θ )

= ςτ 1
n

n∑

t=1

Ht(θ )
(

1 –
bτ (θ )Ht(θ )

1 + bτ (θ )Ht(θ )

)

= ςτ 1
n

n∑

t=1

Ht(θ ) – ςτ 1
n

n∑

t=1

Ht(θ )Hτ
t (θ )b(θ )

1 + bτ (θ )Ht(θ )

= ςτ 1
n

n∑

t=1

Ht(θ ) – ςτ 1
n

n∑

t=1

Ht(θ )Hτ
t (θ )ς‖b(θ )‖

1 + bτ (θ )Ht(θ )

= ςτ 1
n

n∑

t=1

Ht(θ ) –
∥
∥b(θ )

∥
∥ςτ 1

n

n∑

t=1

Ht(θ )Hτ
t (θ )

1 + bτ (θ )Ht(θ )
ς .

Hence we have

ςτ 1
n

n∑

t=1

Ht(θ ) =
∥
∥b(θ )

∥
∥ςτ D̃nς , (16)

where

D̃n =
1
n

n∑

t=1

Ht(θ )Hτ
t (θ )

1 + bτ (θ )Ht(θ )
.

Let Dn = 1
n
∑n

t=1 Ht(θ )Hτ
t (θ ). From (5), we can see that 1 + bτ (θ )Ht(θ ) > 0. Thus we have

∥
∥b(θ )

∥
∥ςτ Dnς ≤ ∥

∥b(θ )
∥
∥ςτ 1

n

n∑

t=1

Ht(θ )Hτ
t (θ )

1 + bτ (θ )Ht(θ )
ς
(

1 + max
1≤t≤n

bτ (θ )Ht(θ )
)

≤ ∥
∥b(θ )

∥
∥ςτ D̃nς

(
1 + max

1≤t≤n
bτ (θ )Ht(θ )

)

≤ ∥
∥b(θ )

∥
∥ςτ D̃nς

(
1 +

∥
∥b(θ )

∥
∥ max

1≤t≤n

∥
∥Ht(θ )

∥
∥
)
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= ςτ 1
n

n∑

t=1

Ht(θ )
(

1 +
∥
∥b(θ )

∥
∥ max

1≤t≤n

∥
∥Ht(θ )

∥
∥
)

, (17)

which implies that

∥
∥b(θ )

∥
∥

(

ςτ Dnς – max
1≤t≤n

∥
∥Ht(θ )

∥
∥ςτ 1

n

n∑

t=1

Ht(θ )

)

≤ ςτ 1
n

n∑

t=1

Ht(θ ). (18)

According to Lemma 5.1, we have

1√
n

n∑

t=1

Ht(θ ) = Op(1), (19)

which implies that

ςτ 1
n

n∑

t=1

Ht(θ ) = Op
(
n– 1

2
)
. (20)

Further, by Lemma 5.3, we obtain

max
1≤t≤n

∥
∥Ht(θ )

∥
∥ςτ 1

n

n∑

t=1

Ht(θ ) =
1√
n

ςτ max
1≤t≤n

∥
∥Ht(θ )

∥
∥ 1√

n

n∑

t=1

Ht(θ )

=
1√
n

op
(
n

1
2
)
Op(1)

= op(1). (21)

Note that D is a positive definite matrix. Thus we have

ςτ Dnς
p−→ ςτ Dς > 0 (22)

and

σmin + op(1) ≤ ςτ Dnς ≤ σmax + op(1), (23)

where σmax and σmin are the smallest and the largest eigenvalue of D, respectively. Com-
bining with (18)–(23), we can obtain that

∥
∥b(θ )

∥
∥
(
ςτ Dnς + op(1)

)
= Op

(
n– 1

2
)
. (24)

Combined with (22), we know that ‖b(θ )‖ = Op(n– 1
2 ). Lemma 5.4 is established. �

Lemma 5.5 If (A1) and (A2) hold, then

b(θ ) =

( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ ) + Bn, (25)
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where

Bn =

( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ )(bτ (θ )Ht(θ ))2

1 + bτ (θ )Ht(θ )
, (26)

and

‖Bn‖ = op
(
n– 1

2
)
. (27)

Proof By (6), we have

0 =
1
n

n∑

t=1

Ht(θ )
1 + bτ (θ )Ht(θ )

=
1
n

n∑

t=1

Ht(θ )
(

1 – bτ (θ )Ht(θ ) +
(bτ (θ )Ht(θ ))2

1 + bτ (θ )Ht(θ )

)

=
1
n

n∑

t=1

Ht(θ ) –
1
n

n∑

t=1

Ht(θ )Hτ
t (θ )b(θ ) +

1
n

n∑

t=1

Ht(θ )(bτ (θ )Ht(θ ))2

1 + bτ (θ )Ht(θ )
‖.

Thus, (25) can be established.
In what follows, we consider (27). Note that

‖Bn‖ =

∥
∥
∥
∥
∥

( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ )(bτ (θ )Ht(θ ))2

1 + bτ (θ )Ht(θ )

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(
1
n

n∑

t=1

Ht(θ )Hτ
t (θ )

)–1
1
n

n∑

t=1

Ht(θ )(bτ (θ )Ht(θ ))2

1 + bτ (θ )Ht(θ )

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

(
1
n

n∑

t=1

Ht(θ )Hτ
t (θ )

)–1∥∥
∥
∥
∥

∥
∥
∥
∥
∥

1
n

n∑

t=1

Ht(θ )(bτ (θ )Ht(θ ))2

1 + bτ (θ )Ht(θ )

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

(
1
n

n∑

t=1

Ht(θ )Hτ
t (θ )

)–1∥∥
∥
∥
∥

∥
∥bτ (θ )

∥
∥2 1

n

n∑

t=1

‖Ht(θ )‖3

‖1 + bτ (θ )Ht(θ )‖

≤ Op(1)Op
(
n– 1

2
)
Op

(
n– 1

2
)
Op(1)

= op
(
n– 1

2
)
. (28)

So (27) holds. �

Lemma 5.6 If (A1) and (A2) hold, then

–2 log
(
L(θ )

)
=

( n∑

t=1

Ht(θ )

)τ( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ )

– Bτ
n

n∑

t=1

Ht(θ )Hτ
t (θ )Bn + 2

n∑

t=1

ηt , (29)
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where

Bτ
n

n∑

t=1

Ht(θ )Hτ
t (θ )Bn = op(1), (30)

n∑

t=1

ηt = op(1). (31)

Proof We expand

–2 log
(
L(θ )

)
= 2

n∑

t=1

log
(
1 + bτ (θ )Ht(θ )

)

= 2
n∑

t=1

bτ (θ )Ht(θ ) –
n∑

t=1

(
bτ (θ )Ht(θ )

)2 + 2
n∑

t=1

ηt

= 2

(( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ ) + Bn

)τ n∑

t=1

Ht(θ )

–

(( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ ) + Bn

)τ( n∑

t=1

Ht(θ )Hτ
t (θ )

)

×
(( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ ) + Bn

)

+ 2
n∑

t=1

ηt . (32)

After a simple algebraic operation, we know that (29) holds.
Next, we consider (30). Note that

‖Bτ
n

n∑

t=1

Ht(θ )Hτ
t (θ )Bn‖ ≤ ∥

∥Bτ
n
∥
∥

∥
∥
∥
∥
∥

n∑

t=1

Ht(θ )Hτ
t (θ )

∥
∥
∥
∥
∥
‖Bn‖

= op
(
n– 1

2
)
op

(
n– 1

2
)
Op(n) = op(1), (33)

which implies that (30) holds.
Last, we consider (31). For this, we first prove that there exists a finite real number Q > 0

such that

P
(|ηt| ≤ Q

∣
∣bτ (θ )Ht(θ )

∣
∣3, 1 ≤ t ≤ n

) −→ 1 as n −→ ∞. (34)

Consider the third-order Taylor expansion of log(1 + x) at x = 0:

log(1 + x) = x –
x2

2
+

x3

3
+ � (x),

where � (x)
x3 → 0 as x → 0. Therefore, there exists ι > 0 such that, for any |x| < ι, |� (x)

x3 | < 1
6 .

In addition, note that

max
1≤t≤n

∥
∥bτ (θ )Ht(θ )

∥
∥ = op(1).
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Therefore, we have

lim
n→∞ P

{
max
1≤t≤n

∣
∣bτ (θ )Ht(θ )

∣
∣3 < ι3

}
= 1.

Let An = {ω : max1≤t≤n |bτ (θ )Ht(θ )|3 < ι3}. It is easy to prove that, for any ω ∈ An and 1 ≤
t ≤ n,

|ηt|
|bτ (θ )Ht(θ )|3 =

| (bτ (θ )Ht (θ ))3

3 + � (bτ (θ )Ht(θ ))|
|bτ (θ )Ht(θ )|3 ≤ 1

3
+

1
6

=
1
2

.

Thus we have

P
(|ηt| ≤ Q

∣
∣bτ (θ )Ht(θ )

∣
∣3, 1 ≤ t ≤ n

) −→ 1 as n −→ ∞,

where Q = 1
2 . This implies that

∥
∥
∥
∥
∥

n∑

t=1

ηt

∥
∥
∥
∥
∥

≤ Q
∥
∥b(θ )

∥
∥3

n∑

t=1

∥
∥Ht(θ )

∥
∥3

≤ Op
(
n– 3

2
)
op

(
n

3
2
)

= op(1). �

Proof of Theorem 2.1 By Lemma 5.6, we can conclude that –2 log(L(θ )) and
(
∑n

t=1 Ht(θ ))τ (
∑n

t=1 Ht(θ )Hτ
t (θ ))–1 ∑n

t=1 Ht(θ ) have the same limit distribution. By Lem-
ma 5.1 and Lemma 5.2, we can conclude that

n∑

t=1

Hτ
t (θ )

( n∑

t=1

Ht(θ )Hτ
t (θ )

)–1 n∑

t=1

Ht(θ )
d−→ χ2(2).

Hence Theorem 2.1 holds. �
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