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Abstract
Binomial operators are the most important extension to Bernstein operators, defined
by

(LQn f )(x) =
1

bn(1)

n∑

k=0

(
n

k

)
bk(x)bn–k(1 – x)f

( k
n

)
, f ∈ C[0, 1],

where {bn} is a sequence of binomial polynomials associated to a delta operator Q. In
this paper, we discuss the binomial operators {LQn f } preservation such as smoothness
and semi-additivity by the aid of binary representation of the operators, and present
several illustrative examples. The results obtained in this paper generalize what are
known as the corresponding Bernstein operators.

Keywords: Bernstein operators; Delta operators; Binomial operators; Binary
representation; Preservation; Smoothness; Semi-additivity

1 Introduction
Bernstein operators, also known as Bernstein polynomials, are typical positive linear op-
erators, defined as follows:

(Bnf )(x) =
n∑

k=0

(
n
k

)
xk(1 – x)n–kf

(
k
n

)
, n = 1, 2, . . . ,

which were first introduced by Bernstein in [6], and more detailed discussions were given
by Lorentz in [19]. Thanks to its simple and graceful form, as well as the favorable proper-
ties of approximation and preservation, Bernstein operators have attracted a good deal of
attention, with hundreds of related research publications [2, 7, 9, 11–13, 17, 19, 28, 29, 38].
Due to the properties of approximation and preservation, Bernstein operators are applied
to CAGD (computer aided geometric design) and IM (industrial manufacture). For exam-
ple, Bézier nets, which are powerful tools to express and design curves and surfaces in
CAGD, are constructed by Bernstein operators.

For Bernstein operators, there are various extensions and modifications. Among them,
binomial operators should be the most important extension as they maintain key struc-
tural characteristics of Bernstein operators, which were first introduced by Popoviciu in

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-021-02579-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-021-02579-x&domain=pdf
http://orcid.org/0000-0002-9567-8775
mailto:3773@mail.cnu.edu.cn


Zhang et al. Journal of Inequalities and Applications         (2021) 2021:50 Page 2 of 8

[27], defined as follows:

(
LQ

n f
)
(x) =

1
bn(1)

n∑

k=0

(
n
k

)
bk(x)bn–k(1 – x)f

(
k
n

)
, f ∈ C[0, 1],

where {bn} is a sequence of binomial polynomials, that is, bn(x) is a polynomial of exact
degree n satisfying, for any x, y ∈ [0, 1],

bn(x + y) =
n∑

k=0

(
n
k

)
bk(x)bn–k(y),

and Q is a delta operator uniquely determined by the sequence of binomial polynomials
{bn}. These sequences and their generalizations have been studied by many mathemati-
cians [10, 15, 22, 24, 25, 33–36]. In [32], Roman and Rota pointed out that many polyno-
mial sequences occurring in various mathematical circumstances turn out to be of bino-
mial type. The study of binomial polynomial sequences may go back to Bell [5], but at that
time, one only used the less efficient generating function method. Before 1970, Mullin and
Rota in [26] introduced a simpler and more convenient operator method, umbral calculus,
which is a linear-algebraic theory used to study certain types of polynomial functions that
play an important role in applied mathematics [3, 18].

Preservation of operators belong to theoretical basis of CAGD, involving preservation
of smoothness, preservation of shape, one-side approximation, variation diminishing, the
best constants in approximation of preservation and so on, on which there has been con-
siderable research in [1, 3, 8, 16, 18, 20, 40]. Here we would also like to mention Refs.
[39, 41], in which the authors investigate properties of preserving shape such as convexity,
star-shape, semi-additivity and those under the average for the Szász–Kantorovich oper-
ators and Baskakov–Kantorovich operators, respectively.

For binomial operators, their approximation and preservation have been considered in
[4, 23]. In [23], we may observe preservation of monotonicity, convexity and Lipschitz for
the binomial operators, but still there are many other problems of preservation to explore,
which is a main motivation of this article. In the present paper we show the binomial oper-
ators preserving smoothness and semi-additivity, which appear in the third section. In the
next section, we introduce some relevant notations and the corresponding preservation
of Bernstein operators.

2 Bernstein operators and preservation
First,we define some classes of functions.

A function f is said to be upper semi-additive (lower semi-additive) on [0, 1], if it satisfies

f (x + y) ≤ f (x) + f (y)
(
f (x + y) ≥ f (x) + f (y)

) ∀x, y ∈ [0, 1].

Let M > 0 and 0 < α ≤ 1, we define

LipM α =
{

f ∈ C[0, 1] : ∀t ∈ [0, 1], s.t. ω(f ; t) ≤ Mtα
}

,

where ω(f ; t) is the modulus of continuity of f , defined by

ω(f ; t) = sup
|x–y|≤t,x,y∈[0,1]

∣∣f (y) – f (x)
∣∣.
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We denote a continuous modulus function on [0, 1] by ω(t), that is, ω(t) is non-
decreasing, upper semi-additive on [0, 1] and limt→+0 ω(t) = ω(0) = 0. If it satisfies the
inequality ω(f ; t) ≤ ω(t), then we write f ∈ Hω . From [37] we can find that, if f ∈ C[0, 1],
then ω(f ; t) is a continuous modulus function, and conversely, if f is a continuous modulus
function on [0, 1], then ω(f ; t) = f (t), t ∈ [0, 1].

Next, we set out for some well-known results on preservation of smoothness for Bern-
stein operators as follows ([20], Theorem A).

Theorem A
(a) If f ∈ Hω , then Bnf ∈ H2ω , for all n ≥ 1, and the constant 2 is optimal.
(b) If ω is concave (upper convex) and f ∈ Hω , then Bnf ∈ Hω , for all n ≥ 1.
(c) If f is upper semi-additive (lower semi-additive) on [0, 1], then so is Bnf .
(d) Let ω(t) be a continuous modulus function on [0, 1], then so is Bn(ω; t), and

Bn(ω; t) ≤ 2ω(t), for all n ≥ 1. Particularly, if ω(t) is concave (upper convex), then so
is Bn(ω; t), and Bn(ω; t) ≤ ω(t), for all n ≥ 1.

3 Binomial operators and preservation
It is well known that the behavior of an operator strongly depends on its structure. From
[40] we can find binomial operators have the following so-called binary representation
similar to Bernstein operators.

Lemma Let LQ
n be binomial operators defined above, then

(
LQ

n f
)
(x) =

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)f
(

k
n

)
;

(
LQ

n f
)
(y) =

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)f
(

k + l
n

)
,

where

Bnkl =
n!

k!l!(n – k – l)!
bk(x)bl(y – x)bn–k–l(1 – y), x ≤ y.

In this section we suppose all binomial operators LQ
n to be positive and denote LQ

n ∈ B.
By the lemma, we can obtain the following theorem.

Theorem 3.1 If LQ
n ∈ B, then ω(LQ

n f ; h) ≤ 2ω(f ; h), for all n ≥ 1, and the constant 2 is
optimal.

Proof By the definition of the sequence of binomial polynomials, we can derive easily

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y) = 1.
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By the definition of Bnkl(x, y) and exchanging the order of the sum, we have

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)
l
n

=
1

bn(1)

n∑

k=0

n–k∑

l=0

n!
k!l!(n – k – l)!

bk(x)bl(y – x)bn–k–l(1 – y)
l
n

=
1

bn(1)

n∑

l=0

(
n
l

)
bl(y – x)

l
n

n–l∑

k=0

(
n – l

k

)
bk(x)bn–l–k(1 – y)

=
1

bn(1)

n∑

l=0

(
n
l

)
bl(y – x)bn–l(x + 1 – y)

l
n

= y – x.

Now let f ∈ C[0, 1] and t, τ ∈ [0, 1], then

∣∣f (t) – f (τ )
∣∣ ≤

(
1 +

|t – τ |
h

)
ω(f ; h), h > 0.

By the identities above and LQ
n ∈ B, we obtain

∣∣(LQ
n f

)
(y) –

(
LQ

n f
)
(x)

∣∣ ≤ 1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)
∣∣∣∣f

(
k + l

n

)
– f

(
k
n

)∣∣∣∣

≤ 1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)
(

1 +
l

nh

)
ω(f ; h)

≤ ω(f ; h)

(
1

bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y) +
1

bn(1)
1
h

n∑

k=0

n–k∑

l=0

Bnkl(x, y)
l
n

)

= ω(f ; h)
(

1 +
y – x

h

)
,

from which it follows that

sup
|x–y|≤h,x,y∈[0,1]

∣∣(LQ
n f

)
(y) –

(
LQ

n f
)
(x)

∣∣ ≤ 2ω(f ; h),

which means that ω(LQ
n f ; h) ≤ 2ω(f ; h). From Theorem A in Sect. 2, we know the constant

2 is optimal. �

According to Theorem 3.1, it is easy to get the following corollary.

Corollary 1 If f ∈ Hω , then LQ
n f ∈ H2ω , for all n ≥ 1.

When ω(t) is concave (upper convex), the constant 2 above could be substituted for by 1.

Theorem 3.2 If ω(t) is concave (upper convex) and f ∈ Hω , then LQ
n f ∈ Hω , for all n ≥ 1.
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Proof By the lemma, direct computation gives, for x, y ∈ [0, 1], x ≤ y,

∣∣(LQ
n f

)
(y) –

(
LQ

n f
)
(x)

∣∣ ≤ 1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)
∣∣∣∣f

(
k + l

n

)
– f

(
k
n

)∣∣∣∣

≤ 1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)ω
(

f ;
l
n

)

≤ 1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)ω
(

l
n

)

=
1

bn(1)

n∑

l=0

(
n
l

)
bl(y – x)bn–l

(
1 – (y – x)

)
ω

(
l
n

)

= LQ
n (ω; y – x),

namely,

ω
(
LQ

n f ; y – x
) ≤ LQ

n (ω; y – x).

From [23], we see that, if f (x) is concave (upper convex) on [0, 1], then

LQ
n (f ; x) ≤ Bn(f ; x) ≤ f (x), x ∈ [0, 1],

therefore

ω
(
LQ

n f ; y – x
) ≤ ω(y – x),

which means that ω(LQ
n f ; h) ≤ ω(h), that is, LQ

n f ∈ Hω . This completes the proof. �

In particular, on taking ω(h) = hα , by Theorem 3.2 we have the following result, which
can be found in [27, 30].

Corollary 2 Let LQ
n ∈ B. If f ∈ LipM α, then so is LQ

n f .

Theorem 3.3 If f is upper semi-additive (lower semi-additive) on [0, 1], then so is LQ
n f , for

all n ≥ 1.

Proof By the lemma and the upper semi-additivity of f , we have

LQ
n f (y) =

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)f
(

k + l
n

)

≤ 1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)
[

f
(

k
n

)
+ f

(
l
n

)]
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=
1

bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)f
(

k
n

)
+

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)f
(

l
n

)

= LQ
n (f ; x) +

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)f
(

l
n

)
.

By the definition of Bnkl(x, y) and exchanging the order of the sum, we have

1
bn(1)

n∑

k=0

n–k∑

l=0

Bnkl(x, y)f
(

l
n

)
= LQ

n (f ; y – x).

Thus,

LQ
n f (y) ≤ LQ

n (f ; x) + LQ
n (f ; y – x), x, y ∈ [0, 1], x ≤ y,

from which one derives the binomial operators to preserve the upper semi-additivity. That
completes the proof. �

Theorem 3.4 If ω(h) be a continuous modulus function on [0, 1], then so is LQ
n (ω; h), and

LQ
n (ω; h) ≤ 2ω(h), for all n ≥ 1; if ω(h) is concave (upper convex), then so is LQ

n (ω; h), and
LQ

n (ω; h) ≤ ω(h), for all n ≥ 1.

Proof From [4, 23] we know that, if ω(h) is a continuous modulus function, then LQ
n (ω; h)

is continuous, non-decreasing and satisfying limh→0+ LQ
n (ω; h) = LQ

n (ω; 0) = ω(0) = 0, for
all n ≥ 1, and Theorem 3.3 tells us that LQ

n (ω; h) is upper semi-additive for all n ≥ 1, so
LQ

n (ω; h) is a continuous modulus function on [0, 1], for all n ≥ 1.
If ω(h) is concave, it follows from [23, Theorem 2.4] that LQ

n (ω; h) is concave and
LQ

n (ω; h) ≤ Bn(ω; h) ≤ ω(h). However, if ω(h) is not concave, then, by [37, Lemma 7.1.5],
there is a concave continuous modulus function ω∗(h) such that

ω(h) ≤ ω∗(h) ≤ 2ω(h).

Hence,

LQ
n (ω; h) ≤ LQ

n
(
ω∗; h

) ≤ ω∗(h) ≤ 2ω(h).

This finishes the proof. Along the same lines, we may prove that binomial operators pre-
serve lower semi-additivity. �

As an application of these theorems above, in the following we give several specific cases.

Case 3.1 If the delta operator Q = D (ordinary differential operator), then the associated
sequence of binomial polynomials is {xn}, that is, bk(x) = xk , therefore the corresponding
binomial operator is

LD
n (f ; x) =

n∑

k=0

(
n
k

)
xk(1 – x)n–kf

(
k
n

)
, f ∈ C[0, 1].
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As is well known, this is the case of the famous Bernstein operators. In this case, Theorems
3.1–3.4 as well as their corollaries hold for the binomial operators LD

n .

Case 3.2 If the delta operator Q = � = eD – I (forward difference operator), then the cor-
responding binomial operators are

L�
n =

1
n!

n∑

k=0

f
(

k
n

)(
n
k

) k–1∏

i=0

(x + i)
n–k–1∏

j=0

(1 – x + j),

which are called Stancu operators [36]. Since the sequence of binomial polynomials asso-
ciated to � is

bn(x) = (x)n = x(x + 1) · · · (x + n – 1), n = 0, 1, . . . ,

which implies L�
n ∈ B, Theorems 3.1–3.4 as well as their corollaries hold for all for the

binomial operators L�
n .

Remark 1 Since when the delta operator Q = ∇ = I –e–D (back difference operator), associ-
ated to which is the sequence of binomial polynomials bn(x) = [x]n = x(x – 1) · · · (x – n + 1),
n = 0, 1, . . . , the corresponding binomial operators L∇

n are not well defined, in this case
being replaced by (see [40])

(
L∇

n f
)
(x) =

1
bn(n)

n∑

k=0

(
n
k

)
bk(nx)bn–k(n – nx)f

(
k
n

)
, f ∈ C[0, 1].

Obviously, it is not positive, therefore Theorems 3.1–3.4 as well as their corollaries are no
longer true for the binomial operators L∇

n .

Case 3.3 If the delta operator Q = T = ln(I + D) (Touchard operator), then

tn(x) = e–x
∞∑

k=0

kn

k!
xk

is the sequence of binomial polynomials associated to T , which implies LT
n ∈ B, therefore

Theorems 3.1–3.4 as well as their corollaries hold all for this binomial operator.

Remark 2 Here the results in Cases 3.2 and 3.3 are new. Binomial operators preserving
star-shape and shape under the average we may study elsewhere.
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