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Abstract
Bieberbach’s conjecture was very important in the development of geometric
function theory, not only because of the result itself, but also due to the large amount
of methods that have been developed in search of its proof. It is in this context that
the integral transformations of the type fα (z) =

∫ z
0 (f (ζ )/ζ )

α dζ or Fα(z) =
∫ z
0 (f

′(ζ ))α dζ
appear. In this note we extend the classical problem of finding the values of α ∈ C for
which either fα or Fα are univalent, whenever f belongs to some subclasses of
univalent mappings in D, to the case of logharmonic mappings by considering the
extension of the shear construction introduced by Clunie and Sheil-Small in (Clunie
and Sheil-Small in Ann. Acad. Sci. Fenn., Ser. A I 9:3–25, 1984) to this new scenario.

MSC: 31A05; 30C45

Keywords: Integral transform; Logharmonic mappings; Shear construction;
Univalent mappings

1 Introduction
One of the most studied classes of functions in the context of geometric function theory
is the well known class S of univalent functions f defined in the unit disk, normalized by
f (0) = 1 – f ′(0) = 0. The investigations of problems associated with the class S and some
of its subclasses go back to the works of Koebe, developed at beginning of the last cen-
tury. Undoubtedly, one of the most important problems in this field was the Bieberbach
conjecture, presented in 1916 and solved by de Brange in 1984. Solving this problem had
a profound influence in the development of the theory of univalent functions, providing,
among other things, powerful methods which have been used to study other problems in
geometric function theory. One important question arising in this context is determining
the values of α ∈C for which the functions

ϕα(z) =
∫ z

0

(
ϕ(ζ )
ζ

)α

dζ , (1)

or

�α(z) =
∫ z

0

(
ϕ′(ζ )

)α dζ , (2)
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belong to the class S, when ϕ is a function of this class. The univalence of these integral
operators was first studied by Royster [28], and although some partial results have been
obtained, in the general case, this question remains open. It is known, for example, that
if |α| ≤ 1/4 then both transforms are univalent, see [17, 25]. However, there are functions
ϕ ∈ S for which �α is not univalent for any |α| > 1/3 with α �= 1. An analogous result was
obtained in [17] for the transform of type (1); in that paper it is proved that, for all |α| > 1/2,
there are functions ϕ ∈ S such that the corresponding ϕα is not univalent. For a summary
of these results, we refer the reader to the classical book by Goodman [15]. Some recent
results and other problems related to transforms (1) and (2), in the context of analytic and
meromorphic functions, can be found in [18, 19, 24, 27].

Since the work by Clunie and Sheil-Small [13], many problems of geometric function
theory have been extended from the setting of holomorphic functions to the wider class
of harmonic mappings in the plane. In this direction, in [11] and subsequently in [8], the
authors proposed an extension of the integral transforms (1) and (2) to the setting of sense-
preserving harmonic mapping, see also Theorems 2 and 3 in [6]. The definitions given in
[8] make use of the shear construction introduced by Clunie and Sheil-Small in [13] as
follows: let f = h + g be a sense-preserving harmonic mapping in the unit disk D = {z ∈
C : |z| < 1} with the usual normalization g(0) = h(0) = 1 – h′(0) = 0 and dilatation ω = g ′/h′.
Given α ∈ D, when ϕ = h – g is zero only at z = 0, we define Fα as the horizontal shear of
ϕα defined by (1) with dilatation ωα = αω. This is, Fα = H + G, where H , G satisfy

H – G = ϕα and
G′

H ′ = αω

with H(0) = G(0) = 0. In a similar way we extend the integral transform (2) to sense-
preserving harmonic mappings in D. The reader can find interesting results, some of
which are related to the question of knowing for which values of α the integral transforms
lead functions belonging to the class S (or to some of its subclasses) to the class S in [8]. It is
important to point out that the analog of the Bieberbach conjecture for sense-preserving
univalent harmonic mappings f , proposed by Clunie and Sheil-Small [13], remains open
even for the second Taylor coefficient a2 of the analytic part h of f . The best known esti-
mate for |a2| is obtained in [7].

The main objective of the present paper is to investigate this type of problems, but in
the context of logharmonic mappings defined in the unit disk. To this end, we extend the
integral transforms defined by (1) and (2) to the case of logharmonic mappings. Analo-
gous to the extension of (1) and (2) previously described for sense-preserving harmonic
mappings, we use a method similar to the shear construction by Clunie and Sheil-Small,
introduced in [2, 22] for constructing univalent logharmonic mappings. The manuscript
is organized as follows. In Sect. 2 some preliminaries concerning logharmonic mappings
are introduced, in Sect. 3 we introduce the integral transform of the first type for loghar-
monic mappings, in particular, we generalize a result obtained by Pfalztgraff in [25]. The
extension of the integral transform of type (2) to logharmonic mappings is given in Sect. 4,
in which we obtain similar results to those obtained in Sect. 3. Finally, Sect. 5 is devoted to
extending the integral transforms to the special case of non-vanishing logharmonic map-
pings.
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2 Some preliminaries about logharmonic mappings
A logharmonic mapping defined in the unit disk D is a solution of the nonlinear elliptic
partial differential equation

fz(z) = ω(z)
(

f (z)
f (z)

)

fz(z),

where ω is an analytic function from D into itself, which is called second complex dilata-
tion of f . The study of logharmonic functions was initiated mainly by the works of Abdul-
hadi, Bshouty, and Hengartner [3, 5], and later continued in a series of papers in which the
basic theory of logharmonic functions has been developed. Since then many papers have
been published dealing with this subject, see for example [1, 4, 9, 22, 23].

Because of the condition on ω, the Jacobian Jf of f , given by

Jf = |fz|2 – |fz|2 = |fz|2
(
1 – |ω|2),

is nonnegative, and therefore, every nonconstant logharmonic mapping is sense-pre-
serving and open in D. If f is a nonconstant logharmonic mapping defined in D and van-
ishes only at the origin, then f has the representation

f (z) = zm|z|2βmh(z)g(z),

where m is a nonnegative integer, Re{β} > –m/2, and h and g are analytic mappings in
the unit disk, such that g(0) = 1 and h(0) �= 0 (see [3]). In particular, when f is a univalent
logharmonic mapping defined in D and f (0) = 0, we can represent f in the form

f (z) = z|z|2βh(z)g(z), z ∈D,

where Re{β} > –1/2, and h and g are analytic mappings in D such that g(0) = 1 and 0 /∈
hg(D). This class of logharmonic mappings has been widely studied. For more details the
reader can read the summary paper in [2] and the references given there.

In the first part of this study, we consider univalent logharmonic mappings in D with
ω(0) = 0, the case in which f has the form

f (z) = zh(z)g(z), z ∈D,

which implies that its dilatation ω is given by

ω(z) =
zg ′(z)/g(z)

1 + zh′(z)/h(z)
.

In relation to this class of functions, denoted by SLh, the following result, which is one of
the tools that we shall use in this manuscript, was proved in [1], see also [5]; it asserts the
following.

Theorem A Let f (z) = zh(z)g(z) be a logharmonic mapping defined in D such that 0 /∈
hg(D). Then ϕ(z) = zh(z)/g(z) is a starlike analytic function if and only if f (z) is a starlike
logharmonic mapping.



Arbeláez et al. Journal of Inequalities and Applications         (2021) 2021:48 Page 4 of 15

Also we will consider non-vanishing logharmonic mappings in D. It is well known that
such mappings can be expressed in the form

f (z) = h(z)g(z),

where h and g are non-vanishing analytic functions in D. In terms of h and g , when f is
locally univalent, the dilatation ω of f is given by

ω =
g ′h
gh′ .

Note that in this case h is locally univalent.
Throughout this paper, we mainly study integral transforms of type (1) and (2) for two

classes of logharmonic functions: first we consider univalent logharmonic mappings of the
form f (z) = zh(z)g(z) normalized as h(0) = g(0) = 1 and its several subfamilies as starlike
and convex mappings normalized as before. In a similar way we study the case when f is a
non-vanishing univalent logharmonic function of the form f = hg such that h(0) = g(0) = 1.

3 Integral transform of the first type
Let f = zh(z)g(z) be a locally univalent logharmonic mapping defined in the unit disk with
the normalization described above. Then ϕ(z) = zh(z)/g(z) is an analytic function inD such
that ϕ(0) = 0, ϕ′(0) = 1, and ϕ(z) �= 0 if z �= 0. So, h, g are solution of the system of nonlinear
differential equations

zh(z)
g(z)

= ϕ(z) and
zg ′(z)/g(z)

1 + zh′(z)/h(z)
= ω(z), z ∈D.

This fact was used in [22] to establish a method of construction of starlike (univalent)
logharmonic mappings satisfying that ϕ is an analytic starlike function and ω is a Schwarz
map. Here we use it to extend the integral transform (1) to the case of logharmonic map-
pings, with the above notation, as follows: given α ∈D, we define fα to be the logharmonic
mapping, with dilatation ωα = αω, given by fα(z) = zH(z)G(z), where H , G satisfy the sys-
tem

zH(z)
G(z)

= ϕα(z) =
∫ z

0

(
ϕ(ξ )
ξ

)α

dξ and
zG′(z)/G(z)

1 + zH ′(z)/H(z)
= ωα(z), (3)

with the initial conditions H(0) = G(0) = 1.
Here, we consider α ∈ D since ωα must be a Schwarz map. However, we can consider

any complex number α such that |αω| < 1. Note that if α = 0, then H/G ≡ 1 and ωα = 0,
whence it follows that G is constant, say k, which leads to fα(z) = |k|2z. On the other hand,
if α = 1 we have that ϕ1(z) = zH(z)/G(z) satisfies

1 + z
ϕ′′

1 (z)
ϕ′

1(z)
= z

ϕ′(z)
ϕ(z)

,

which implies that when ϕ is starlike, ϕ1 is convex (in particular starlike). Consequently,
according to [22], f1 is starlike. However, we know from the analytic case that, for α of
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module greater than 1/3, there are univalent functions whose respective functions fα are
not univalent in D. Because of this and other similar problems that appear both in the
context of analytic functions and in the context of harmonic mappings, we are interested
in studying the values of α for which we can ensure that fα belongs to SLh or to some of its
subclasses. A first result in this direction is given in the following proposition.

Proposition 3.1 Let f (z) = zh(z)g(z) be a univalent logharmonic mapping defined in D

with dilatation ω. Let zh(z)/g(z) = ϕ(z) and the integral transformation fα be defined by
(3).

(i) If ϕ is a convex mapping, then fα is a starlike logharmonic mapping when α ∈ [0, 2]
and |αω| < 1.

(ii) If ϕ is a starlike mapping, then fα is a starlike logharmonic mapping when α ∈ [0, 1].

Proof We note first that if fz(z0) = 0 for some z0 ∈D, then z0 �= 0,

z0h′(z0) + h(z0) = 0 and g ′(z0) = 0,

which implies ϕ′(z0) = 0. Hence, Jf is positive in D.
By the definition of fα(z) = zH(z)G(z), we have that zH(z)/G(z) = ϕα(z) satisfies

1 + Re

{

z
ϕ′′

α(z)
ϕ′

α(z)

}

= 1 + α Re

{

z
ϕ′(z)
ϕ(z)

– 1
}

, (4)

α ∈R. To prove (i) we argue as follows: Since ϕ is convex, it follows that Re{zϕ′(z)/ϕ(z)} >
1/2, which implies that

1 + Re

{

z
ϕ′′

α(z)
ϕ′

α(z)

}

> 1 –
α

2
> 0 for all α ∈ [0, 2).

Hence, ϕα is convex and, in particular, is a starlike mapping. Using inequality (4) we con-
clude that

1 + Re

{

z
ϕ′′

α(z)
ϕ′

α(z)

}

> 1 – α > 0 for all α ∈ [0, 1).

Analogously, ϕα is a starlike mapping when ϕ satisfies the hypothesis in (ii). Thus the
proofs of (i) and (ii) are concluded by applying Theorem A. �

In [4] the authors extend to the case of logharmonic mappings the concept of stable uni-
valent function (resp. starlike, convex, close-to-convex, etc.) studied in [16] for harmonic
and analytic functions, see also [14, 20]. More precisely, they give the following definition.

Definition 3.1 A logharmonic function f (z) = zh(z)g(z), normalized by h(0) = g(0) = 1, is
called stable univalent logharmonic or SULh if, for all |λ| = 1, fλ(z) = zh(z)g(z)

λ
is univalent

logharmonic.

Next, we present a criterion to establish the stable univalence of fα .
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Theorem 3.1 Let f (z) = zh(z)g(z) be a logharmonic mapping defined in the unit disk with
dilatation ω, normalized by h(0) = g(0) = 1, and such that zh(z)/g(z) = ϕ(z) is a univalent
mapping. Then fα defined by (3) is a stable univalent logharmonic mapping if α satisfies
the inequality

|α| ≤ 1
4(2δ + 1 + 8‖ω∗‖/15)

, (5)

where

δ =
4‖ω‖

4 – ‖ω‖ , ‖ω‖ = sup
{∣∣ω(z)

∣
∣ : z ∈D

}
and

∥
∥ω∗∥∥ = sup

z∈D
|ω′(z)|(1 – |z|2)

1 – |ω(z)|2 .

Proof As in the previous proposition, Jf > 0 in D and therefore f is locally univalent. For
|λ| = 1, we define

ψλ(z) = z
H(z)
G(z)λ

, z ∈D,

from where

ψ ′
λ(z) = ψλ(z)

(
1
z

+
H ′(z)
H(z)

– λ
G′(z)
G(z)

)

= ψλ(z)
1
z

(

1 +
zH ′(z)
H(z)

)
(
1 – λωα(z)

)
.

On the other hand,

zϕ′
α(z)

ϕα(z)
= 1 + z

H ′(z)
H(z)

– z
G′(z)
G(z)

=
(

1 + z
H ′(z)
H(z)

)
(
1 – ωα(z)

)
,

from which we get

ψ ′
λ(z) = ψλ(z)

1 – λωα(z)
1 – ωα(z)

ϕ′
α(z)

ϕα(z)
(6)

and

ψ ′′
λ (z)

ψ ′
λ(z)

=
ψ ′

λ(z)
ψλ(z)

+
ϕ′′

α(z)
ϕ′

α(z)
–

ϕ′
α(z)

ϕα(z)
+

(1 – λ)ω′
α(z)

(1 – λωα(z))(1 – ωα(z))
.

Replacing (6) in the last equality, we get

ψ ′′
λ (z)

ψ ′
λ(z)

=
(1 – λ)ωα(z)

1 – ωα(z)
ϕ′

α(z)
ϕα(z)

+
ϕ′′

α(z)
ϕ′

α(z)
+

(1 – λ)ω′
α(z)

(1 – λωα(z))(1 – ωα(z))
, (7)

hence

(
1 – |z|2)

∣
∣
∣
∣z

ψ ′′
λ (z)

ψ ′
λ(z)

∣
∣
∣
∣ =

(
1 – |z|2)|α|

∣
∣
∣
∣
(1 – λ)ω(z)
1 – ωα(z)

zϕ′
α(z)

ϕα(z)

+
zϕ′(z)
ϕ(z)

– 1 +
z(1 – λ)ω′(z)

(1 – λωα(z))(1 – ωα(z))

∣
∣
∣
∣
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and, in consequence,

(
1 – |z|2)

∣
∣
∣
∣z

ψ ′′
λ (z)

ψ ′
λ(z)

∣
∣
∣
∣ ≤ (

1 – |z|2)|α|
(∣

∣
∣
∣
(1 – λ)ω(z)
1 – ωα(z)

zϕ′
α(z)

ϕα(z)

∣
∣
∣
∣

+
∣
∣
∣
∣
zϕ′(z)
ϕ(z)

– 1
∣
∣
∣
∣ +

∣
∣
∣
∣

z(1 – λ)ω′(z)
(1 – λωα(z))(1 – ωα(z))

∣
∣
∣
∣

)

.

Since |α| ≤ 1/4, then ϕα ∈ S, therefore

∣
∣
∣
∣
zϕ′

α(z)
ϕα(z)

∣
∣
∣
∣ ≤ 1 + |z|

1 – |z| and
∣
∣
∣
∣
zϕ′(z)
ϕ(z)

– 1
∣
∣
∣
∣ ≤ 2

1 – |z| , (8)

the second inequality being a consequence of ϕ ∈ S. Moreover, it is easy to see that

|ω(z)|
|1 – ωα(z)| ≤ 4‖ω‖

4 – ‖ω‖ (9)

and

|ω′(z)|(1 – |z|2)
|(1 – λωα(z))(1 – ωα(z))| ≤ ‖ω∗‖(1 – |ω(z)|2)

(1 – |α||ω(z)|)2

≤ ‖ω∗‖(1 – |ω(z)|2)
(1 – |ω(z)|/4)2

≤ 16
15

∥
∥ω∗∥∥

(10)

for all z ∈D. Thus, using inequalities (8), (9), and (10), it follows that

(
1 – |z|2)

∣
∣
∣
∣z

ψ ′′
λ (z)

ψ ′
λ(z)

∣
∣
∣
∣ ≤ 2|α|

(
16‖ω‖

4 – ‖ω‖ + 2 +
16
15

∥
∥ω∗∥∥

)

.

Inequality (5) and Becker’s criterion (see [10]) imply that ψλ is univalent for all λ in the
unit circle, which completes the proof. �

Note that in the case when f is an analytic mapping, ω ≡ 0 and consequently δ = 0 and
‖ω∗‖ = 0. Then inequality (5) becomes in |α| ≤ 1/4, which is the best known bound of the
values of α such that the corresponding fα is univalent in D.

For the following corollary, we recall that a family F of normalized locally univalent
functions of the form

f (z) = z + a2z2 + a3z3 + · · · , z ∈D,

is said to be linear invariant (LIF) if, for all f ∈F , we have (f ◦ϕa – f (a))/((1– |a|2)f ′(a)) ∈F
for all automorphism ϕa(z) = (z + a)/(1 + az) of D. The order of an LIF F is the supremum
of the modulus of the second Taylor coefficient |a2(f )| of the functions f ∈F . The notion
of a linear invariant family of holomorphic functions was introduced by Pommerenke [26],
and it has been extended in subsequent studies in various directions; we refer the reader
to [21, 29] for an extension of LIF to the setting of harmonic mappings.
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The authors proved in [8, Lemma 3] that if ϕ is a univalent analytic function in a linear
invariant family F with order β , then

(
1 – |z|2)

∣
∣
∣
∣z

ϕ′(z)
ϕ(z)

∣
∣
∣
∣ ≤ 2β for all z ∈D. (11)

By using this inequality, we can improve the last theorem.

Corollary 3.1 Let f , ϕ be as in Theorem 3.1. Suppose, moreover, that ϕ is univalent in a
linear invariant familyF with order β . Then fα is stable univalent logharmonic if α satisfies
the condition

|α| ≤ min

{
1

2(4δ + β + 1
2 + 16‖ω∗‖/15)

,
1
4

}

.

Proof The proof is completely analogous to that of the previous theorem; it is enough to
replace the second condition in (8) with the inequality

∣
∣
∣
∣
zϕ′(z)
ϕ(z)

– 1
∣
∣
∣
∣ ≤ 2β

1 – |z|2 + 1,

which is an immediate consequence of (11). �

4 Integral transform of the second type
Following the same procedure as in the previous section, we extend the integral transform
(2) to the case of logharmonic mappings as follows: given α ∈ D and f (z) = zh(z)g(z) a
locally univalent logharmonic mapping defined in the unit disk, with the normalization
h(0) = g(0) = 1 and 0 /∈ hg(D), we define Fα to be the logharmonic mapping, with dilatation
ωα = αω, given by Fα = zH(z)G(z), where H , G satisfy the system

z
H(z)
G(z)

= �α(z) =
∫ z

0

(
ϕ′(ξ )

)α dξ and ωα = αω (12)

with the initial conditions H(0) = G(0) = 1. As in the previous case, ϕ(z) = zh(z)/g(z), z ∈D.
The following two results are dual to Proposition 3.1 and Theorem 3.1, respectively. In

both cases we assume the above normalization.

Proposition 4.1 Let f (z) = zh(z)g(z) be a logharmonic mapping defined in D with dilata-
tion ω. If zh(z)/g(z) = ϕ(z) is a convex mapping, then Fα defined by (12) is a starlike loghar-
monic mapping in the unit disk for α ∈ [0, 1].

Proof As in Proposition 3.1, the condition on ϕ implies that Jf is positive, so f is locally
univalent. Since ϕ is a convex mapping, we have that, for α ∈ [0, 1],

Re

{

1 + z
�′′

α(z)
�′

α(z)

}

= 1 + α Re

{

z
ϕ′′(z)
ϕ′(z)

}

> 1 – α > 0,

from which it concludes that �α(z) is a convex mapping and in particular starlike. Using
Theorem A, we have that Fα is a starlike logharmonic mapping. �
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Theorem 4.1 Let f (z) = zh(z)g(z) be a logharmonic mapping defined in D with dilatation
ω and such that zh(z)/g(z) = ϕ(z) is a univalent mapping. Then Fα defined as in (12) is a
stable univalent logharmonic mapping if α satisfies the inequality

|α| ≤ 1
2(4δ + 3 + 16‖ω∗‖/15)

with δ and ‖ω∗‖ as in Theorem 3.1.

Proof Since ϕ is univalent, we have Jf > 0 and

sup
z∈D

(
1 – |z|2)

∣
∣
∣
∣
�′′

α(z)
�′

α(z)

∣
∣
∣
∣ ≤ |α| sup

z∈D

(
1 – |z|2)

∣
∣
∣
∣
ϕ′′(z)
ϕ′(z)

∣
∣
∣
∣ ≤ 6|α|. (13)

It follows from equation (7) and inequalities (8), (9), and (10) that

(
1 – |z|2)

∣
∣
∣
∣z

ψ ′′
λ (z)

ψ ′
λ(z)

∣
∣
∣
∣ ≤ 2|α|(4δ + 3 + 16

∥
∥ω∗∥∥/15

)
,

from which we get, by virtue of the classical univalence criterion of Becker, that Fα is a
stable univalent logharmonic mapping. �

Note that if ϕ is a convex mapping, then the right-hand side of inequality (13) can be
replaced with 4|α|, from where the range of the values of α, for which the corresponding
mapping Fα is stable univalent, is determined by the inequality

|α| ≤ 1
4(2δ + 1 + 8‖ω∗‖/15)

.

5 Integral transforms of non-vanishing logharmonic mappings
In this section, we propose an extension of the integral transforms (1) and (2) to non-
vanishing logharmonic mappings in D. To this end, we will use the fact that if f is a non-
vanishing logharmonic mapping in D, there is a branch of log f , which is harmonic in D

with dilatation ωlog f = ωf , and apply to it the theory that we developed in [8]. Note that
ωlog f = ωf implies that log f is a sense-preserving harmonic mapping and therefore Jf is
positive in D.

As was mentioned in Sect. 2, if f is a non-vanishing logharmonic mapping in D with
dilatation ω, then f = hg , where h, g are non-vanishing analytic functions in D. In this case
ω = g ′h/gh′, and if we assume the normalization h(0) = g(0) = 1, we can choose branches
of log f , log h, and log g satisfying

log f (0) = log h(0) = log g(0) = 0 and log f = log h + log g.

The following lemma is a general tool that appears as a natural version of Theorem 1 in
[12] for logharmonic mappings. We will use this lemma in the next subsections.

Lemma 5.1 Let f = hg be a non-vanishing logharmonic mapping in D with dilatation ω,
and suppose that ψ = log h/g is a univalent mapping such that � := ψ(D) is M-linearly
connected. Then f is univalent in D if ‖ω‖ < 1/(2M + 1).
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Proof Suppose that there are z1 �= z2 in D such that f (z1) = f (z2), and let S be a path in �

joining ψ(z1) to ψ(z2) such that 
(S) ≤ M|ψ(z1) – ψ(z2)|. So,

eψ(z1)∣∣g(z1)
∣
∣2 = eψ(z2)∣∣g(z2)

∣
∣2,

and in consequence,

∣
∣ψ(z1) – ψ(z2)

∣
∣ ≤ ∣

∣2 log g(z1) – 2 log g(z2)
∣
∣ ≤ 2

∫

γ

∣
∣
∣
∣
g ′(ξ )
g(ξ )

∣
∣
∣
∣|dξ |,

where γ = ψ–1(S). From here and the equality

g ′

g
= ω

h′

h
=

ω

1 – ω
ψ ′,

it follows that

∣
∣ψ(z1) – ψ(z2)

∣
∣ ≤ 2

‖ω‖
1 – ‖ω‖

∫

γ

∣
∣ψ ′(ξ )

∣
∣|dξ | ≤ 2

‖ω‖
1 – ‖ω‖
(S) <

∣
∣ψ(z1) – ψ(z2)

∣
∣,

if ω satisfies ‖ω‖ < 1/(2M + 1). This contradiction ends the proof. �

5.1 Integral transform of the first type for non-vanishing logharmonic mappings
We consider a non-vanishing logharmonic mapping f = hg defined in D, with dilatation
ω = g ′h/h′g , and normalized by h(0) = g(0) = 1. We suppose, moreover, that ϕ = log h– log g
is zero only at z = 0. Given α ∈D, we define the integral transform of the first type of f by

fα = eHeG = exp{H + G}, (14)

where H and G satisfy the system

H(z) – G(z) = ϕα(z) =
∫ z

0

(
ϕ(ζ )
ζ

)α

dζ and
G′

H ′ = αω,

with the initial conditions H(0) = G(0) = 0. In other words, fα is defined in such a way that
log fα = H + G is a harmonic branch of the logarithm of fα in D, which is the horizontal
shear of ϕα with dilatation αω. The reader can find the details of the shear construction
of harmonic mappings in [13].

Theorem 5.1 Let f = hg be a non-vanishing logharmonic mapping in D with dilatation ω,
and let fα be defined by equation (14). If ϕ = log h/g is a univalent function and |α| ≤ 0.165,
then fα is univalent.

Proof For |λ| = 1, we define �λ = H + λG. A direct calculation shows that

H ′′(z)
H ′(z)

= α

(
ϕ′(z)
ϕ(z)

–
1
z

)

+
ω′

α(z)
1 – ωα(z)
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and

z� ′′
λ (z)

� ′
λ(z)

=
zH ′′(z)
H ′(z)

+
λzω′

α(z)
1 + λωα(z)

= α

(
zϕ′(z)
ϕ(z)

– 1
)

+
(1 + λ)zω′

α(z)
(1 – ωα(z))(1 + λωα(z))

,
(15)

from which we see that

(
1 – |z|2)

∣
∣
∣
∣
z� ′′

λ (z)
� ′

λ(z)

∣
∣
∣
∣ ≤ |α|

[
(
1 – |z|2)

∣
∣
∣
∣
zϕ′(z)
ϕ(z)

– 1
∣
∣
∣
∣ + 2

(1 – |z|2)|ω′(z)|
(1 – |α||ω(z)|)2

]

≤ |α|
[

4 + 2
(1 – |ω(z)|2)‖ω∗‖
(1 – |α||ω(z)|)2

]

≤ 2|α|
(

2 +
1

1 – |α|2
)

,

being the last inequality a consequence of

max
z∈D

(1 – |ω(z)|2)
(1 – |α||ω(z)|)2 ≤ 1

1 – |α|2 and
∥
∥ω∗∥∥ ≤ 1.

It follows from Becker’s criterion that �λ is univalent if 2|α|(2 + 1
1–|α|2 ) ≤ 1, whence H + G

is stable harmonic univalent if |α| ≤ 0.165. In consequence, fα is univalent for these values
of α. �

Proposition 5.1 Let f = hg be a non-vanishing logharmonic mapping in D with dilata-
tion ω, and let fα be defined by equation (14). If ϕ = log h/g is a starlike function and
α ∈ (–0.303, 0.707), then fα is a univalent logharmonic mapping in D.

Proof Since ϕ is starlike, we have Re{zϕ′(z)/ϕ(z)} > 0 for all z ∈ D. So, for α > 0 and �λ

defined as in the previous theorem, we get from (15) that

∫ θ2

θ1

Re

{

1 + z
� ′′

λ (z)
� ′

λ(z)

}

dθ

=
∫ θ2

θ1

[

1 – α + α Re

{

z
ϕ′(z)
ϕ(z)

+
λzω′(z)

1 + λωα(z)
+

zω′

1 – ωα(z)

}]

dθ

≥ (1 – α)(θ2 – θ1) + Arg

{
1 + λαω(reiθ2 )
1 + λαω(reiθ1 )

· 1 – αω(reiθ2 )
1 – αω(reiθ1 )

}

> –4 arcsin(α)

for all 0 ≤ θ2 – θ1 ≤ 2π . Therefore,

∫ θ2

θ1

Re

{

1 + z
� ′′

λ (z)
� ′

λ(z)

}

dθ > –π if 0 ≤ α ≤ √
2/2,

from where �λ is a close to convex mapping in D if 0 ≤ α ≤ √
2/2.
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On the other hand, since ϕ is starlike, then |Arg{ϕ(z)/z}| ≤ 2 arcsin(|z|) and, in conse-
quence,

∣
∣Arg

{
� ′

λ(z)
}∣∣ =

∣
∣
∣
∣Arg

{(
ϕ(z)

z

)α 1 + λαω(z)
1 – αω(z)

}∣
∣
∣
∣

≤ 2|α| arcsin(r) + 2 arcsin
(
r|α|), r = |z|.

Hence, by a straightforward calculation, we have |Arg{� ′
λ(z)}| < π/2 if |α| < 0.303, which

implies that Re{� ′
λ(z)} > 0 for these values of α and hence �λ is a close to convex mapping

in D, when |α| < 0.303. From this and the discussion above, it follows that log fα = H + G
is stable harmonic close-to-convex if α ∈ (–0.303, 0.707), whence fα is univalent in D. �

Proposition 5.2 Let f = hg be a non-vanishing logharmonic mapping defined in D with
‖ω‖ < 1/3, and let fα be defined by equation (14). If ϕ = log h/g is a convex function and
α ∈ [0, 2], then fα is univalent.

Proof The proof follows as a direct application of Lemma 5.1 and the fact that ϕα is a
convex mapping for α ∈ [0, 2], the case in which ϕα(D) is a M-linearly connected domain
with M = 1. �

5.2 Integral transform of the second type for non-vanishing logharmonic
mappings

The definition of the integral transform of the second type for non-vanishing logharmonic
mappings is completely analogous to that given in the previous subsection: let f = hg be
a non-vanishing logharmonic mapping in D with dilatation ω = g ′h/h′g and normalized
by h(0) = g(0) = 1. Note that from the condition |ω(z)| < 1 for all z ∈ D, it follows that
ϕ = log h – log g is locally univalent in D. We define the logharmonic mapping Fα = eH eG,
where H , G satisfy the system

H(z) – G(z) = �α(z) =
∫ z

0

(
ϕ′(ζ )

)α dζ and ωFα = αω (16)

with the initial conditions H(0) = G(0) = 0.

Theorem 5.2 Let f = hg be a non-vanishing logharmonic mapping in D with dilatation ω,
and let Fα be defined by equation (16). If ϕ is a univalent function and |α| ≤ 0.125, then Fα

is univalent.

Proof For |λ| = 1, we define �λ = H + λG. Using (16), we obtain by a direct calculation

H ′′(z)
H ′(z)

= α

(
ϕ′(z)
ϕ(z)

–
1
z

)

+
ω′

α(z)
1 – ωα(z)

and

z� ′′
λ (z)

� ′
λ(z)

=
zH ′′(z)
H ′(z)

+
λzω′

α(z)
1 + λωα(z)

= α

(
zϕ′(z)
ϕ(z)

– 1
)

+
(1 + λ)zω′

α(z)
(1 – ωα(z))(1 + λωα(z))

.
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It follows from the univalence of ϕ and

max
z∈D

(1 – |ω(z)|2)
(1 – |α||ω(z)|)2 ≤ 1

1 – |α|2

that

(
1 – |z|2)

∣
∣
∣
∣
z� ′′

λ (z)
� ′

λ(z)

∣
∣
∣
∣

≤ |α|
(∣

∣
∣
∣
(
1 – |z|2)ϕ′′(z)

ϕ′(z)
– 2z

∣
∣
∣
∣ + 2|z|2 + 2

(1 – |ω(z)|2)‖ω∗‖
(1 – |α||ω(z)|)2

)

≤ 2|α|
(

3 +
1

1 – |α|2
)

.

Consequently, we conclude from Becker’s criterion that �λ is univalent if |α| ≤ 0.125, and
therefore log Fα is stable harmonic univalent for these values of α. This completes the
proof of the theorem. �

Proposition 5.3 Let f = hg be a non-vanishing logharmonic mapping defined in D with
dilatation ω, and let Fα be defined by equation (16). If ϕ is a convex function and α ∈
(–0.303, 0.5605), then Fα is a univalent logharmonic mapping in D.

Proof The proof is almost the same as that of Proposition 5.1. Indeed, with the same no-
tation, one sees that

∫ θ2

θ1

Re

{

1 + z
� ′′

λ (z)
� ′

λ(z)

}

dθ

=
∫ θ2

θ1

[

1 – α + α Re

{

z
ϕ′′(z)
ϕ′(z)

+
λzω′(z)

1 + λωα(z)
+

zω′

1 – ωα(z)

}]

dθ

≥ (1 – 2α)(θ2 – θ1) + Arg

{
1 + λαω(reiθ2 )
1 + λαω(reiθ1 )

· 1 – αω(reiθ2 )
1 – αω(reiθ1 )

}

> –4 arcsin(α) > –π

for all 0 ≤ θ2 –θ1 ≤ 2π and 0 ≤ α < 1/2, which implies that �λ is a close to convex mapping
in the unit disk if 0 ≤ α < 1/2. The same conclusion is obtained if we assume 1/2 ≤ α <
0.5605 since in this case

∫ θ2

θ1

Re

{

1 + z
� ′′

λ (z)
� ′

λ(z)

}

dθ ≥ 2π (1 – 2α) – 4 arcsin(α) > –π

for all 0 ≤ θ2 – θ1 ≤ 2π . On the other hand,

∣
∣Arg

{
� ′

λ(z)
}∣∣ =

∣
∣
∣
∣Arg

{
(
ϕ′(z)

)α 1 + λαω(z)
1 – αω(z)

}∣
∣
∣
∣

≤ π |α| + 2 arcsin
(
r|α|), r = |z|

< π/2
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if |α| < 0.303. The proof is completed by proceeding as at the end of the proof of Proposi-
tion 5.1.

Here we have used the fact that 0.5605 and 0.303 are the approximate roots of 3π –4πx–
4 arcsin(x) = 0 and πx – π/2 + 2 arcsin(x) = 0, respectively. �

The proof of the following proposition is essentially the same as that of Proposition 5.2;
so we omit its proof.

Proposition 5.4 Let f = hg be a non-vanishing logharmonic mapping defined in the unit
disk with ‖ω‖ < 1/3, and let Fα be defined by equation (16). If ϕ is a convex function, then
Fα is univalent for α ∈ [0, 1].
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