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Abstract
In a recently published theorem on the split common fixed point problem for strict
pseudocontractive and asymptotically nonexpansive mappings, Tang et al. (J. Inequal.
Appl. 2015:305, 2015) studied a uniformly convex and 2-uniformly smooth real
Banach space with the Opial property and best smoothness constant κ satisfying the
condition 0 < κ < 1√

2
, as a real Banach space more general than Hilbert spaces.

A well-known example of a uniformly convex and 2-uniformly smooth real Banach
space with the Opial property is E = lp, 2≤ p < ∞. It is shown in this paper that, if κ is
the best smoothness constant of E and satisfies the condition 0 < κ ≤ 1√

2
, then E is

necessarily l2, a real Hilbert space. Furthermore, some important remarks concerning
the proof of this theorem are presented.
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1 Introduction
Let H1 and H2 be two real Hilbert spaces, C and Q be nonempty closed and convex sub-
sets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear mapping. The split
feasibility problem (SFP) is the following:

find x∗ ∈ C such that Ax∗ ∈ Q.

Let T : C → C and S : Q → Q be two mappings with F(T) := {x ∈ C : Tx = x} �= ∅, F(S) :=
{x ∈ Q : Sx = x} �= ∅. Then the split common fixed point problem (SCFPP) for mappings T
and S is to find a point

q∗ ∈ F(T) such that Aq∗ ∈ F(S).
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We shall denote the set of solutions of the SCFPP for mappings T and S by �, that is,

� :=
{

x∗ ∈ F(T) such that Ax∗ ∈ F(S)
}

.

The SFP was first introduced by Censor and Elfving [3] in finite dimensional real Hilbert
spaces for modeling inverse problems which arise from phase retrievals and medical im-
age reconstruction [2]. The split common fixed point problem in Hilbert spaces was in-
troduced by Moudafi [9] in 2010. It is now well known that the SFP and SCFPP have appli-
cations in very important real life problems. Consequently, these problems have attracted
the interest of many researchers.

These problems and their generalizations have been studied in real Hilbert spaces and
iterative methods for approximating their solutions, assuming existence, in this setting
abound in the literature (see, for example, Tang et al. [12], and the references therein).

Studies of SFP and SCFPP in real Banach spaces more general than Hilbert spaces are
very scanty in the literature. Part of the reason for this may be that most of the tools used
in real Hilbert spaces for studying them are confined to real Hilbert spaces. Consequently,
new tools have to be developed for solving these problems in real Banach spaces more
general than Hilbert spaces. Some of the earliest successes in this direction are the results
of Takahashi [10] and Takahashi and Yao [11]. In 2015, Tang et al. [12] studied the SFP
and SCFPP in real Banach spaces more general than Hilbert spaces and by using hybrid
methods and Halpern-type methods, they proved strong and weak convergence of the
sequence generated by their algorithm to solutions of these problems. For other results
obtained in studying the SFP, the SCFPP and some of their generalizations, in real Banach
spaces more general than Hilbert spaces, the reader may see any of the following recent
papers [5, 6], and the references therein.

In 2014, Cui and Wang [7] studied the SCFPP of τ -quasi-strictly pseudocontractive map-
pings in the setting of Hilbert space. Motivated and inspired by this study and the research
going on in the domain of split feasibility problems and SCFPP, Tang et al. [12] studied the
SCFPP for a τ -quasi-strictly pseudocontractive mapping and an asymptotically nonex-
pansive mapping in the setting of two real Banach space which they assumed are more
general than Hilbert spaces. Their setting is the following:

1. E1 is a uniformly convex and 2-uniformly smooth real Banach space which has the
Opial property and the best smoothness constant κ satisfying 0 < κ < 1√

2 .
2. E2 is a real Banach space.
3. A : E1 → E2 is a bounded linear mapping and A∗ is the adjoint of A.
4. S : E1 → E1 is an ln-asymptotically nonexpansive mapping with {ln} ⊂ [1,∞), and

ln → 1, as n → ∞. T : E2 → E2 is a τ -quasi-strict pseudocontractive mapping with
F(S) �= ∅ and F(T) �= ∅, and T is demiclosed at zero.

They proved the following theorem.

Theorem 1.1 (Theorem 3.1 of [12]) Let E1, E2, A, S, T and {ln} be the same as above. For
each x1 ∈ E1, let {xn} be the sequence generated by

⎧
⎨

⎩
zn = xn + γ J–1

1 A∗J2(T – I)Axn,

xn+1 = (1 – αn)zn + αnSnzn, ∀n ≥ 1,
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where {αn} is a sequence in (0, 1) with lim infn→∞ αn(1 – αn) > 0, γ is a positive constant
satisfying

0 < γ < min

{
1 – 2κ2

‖A‖2 ,
1 – τ

‖A‖2

}
,

{ln} is a sequence in [1,∞) with L := supn≥1{ln} and
∑∞

n=1(ln – 1) < ∞.
(I) If � := {p ∈ F(S) : Ap ∈ F(T)} �= ∅ (the set of solutions of the SCFPP is nonempty),

then the sequence {xn} converges weakly to a point x∗ ∈ �.
(II) In addition, if � �= ∅, and S is semi-compact, then {xn} converges strongly to a point

x∗ ∈ �.

We first make the following remarks concerning the proof of this theorem in Tang et al.
[12].

Remark 1 Definition 2.3(ii) of the τ -strict pseudocontractive mapping for T : C → C, C ⊂
E, where E is a real Banach space, given by inequality (2.2), is an error. This definition is
restricted to real Hilbert spaces. The definition for τ -strict pseudocontractive mapping
in real Banach spaces, E, more general than Hilbert spaces, in the sense of Browder and
Pertishyn, is the following: T : C → C, C ⊂ E, is said to be τ -strict pseudocontractive if,
∀x, y ∈ C, there exist j(x – y) ∈ J(x – y) and τ ∈ (0, 1) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖2 – τ
∥∥(I – T)x – (I – T)y

∥∥2, (1.1)

where J : E → 2E∗ is the normalized duality mapping on E. It is easy to show that in a real
Hilbert space, inequality (1.1) is equivalent to inequality (2.2) in Tang et al. [12], and it is
well known that in real Banach spaces more general than Hilbert spaces, inequality (2.2)
in Tang et al. [12] is not equivalent to inequality (1.1). Consequently, the use of inequality
(2.2) in the proof of Theorem 3.1 in Tang et al. [12] invalidates the argument of the proof.

Remark 2 The use of Lemma 2.1 by Tang et al. [12] in the proof of Theorem 1.1 is an error.
As correctly stated in Lemma 2.1 (see Tang et al. [12] for the statement of Lemma 2.1)
the inequality of the lemma can be used provided that the vectors x and y are bounded.
They used this inequality in the proof without establishing the boundedness of the vectors
(zn – p) and (Snzn – p). This erroneous application of the lemma led to inequality (3.5)
which showed that limn→∞ ‖xn – p‖ exists and consequently that {xn} is bounded, which
plays a crucial role in what followed. This use of Lemma 2.1 also invalidates the argument
in the proof of Theorem 3.1.

Remark 3 We begin by recalling the following definition.

Definition 1.2 Let E be a normed space with dim(E) ≥ 2. The modulus of smoothness of
E is the function ρE : [0,∞) → [0,∞) defined by

ρE(τ ) := sup

{‖x + y‖ + ‖x – y‖
2

– 1 : ‖x‖ = 1;‖y‖ = τ

}

= sup

{‖x + τy‖ + ‖x – τy‖
2

– 1 : ‖x‖ = 1;‖y‖ = 1
}

.
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The normed space E is called uniformly smooth if and only if limτ→0+
ρE(τ )

τ
= 0. For α > 1,

a normed space E is said to be α-uniformly smooth if there exists a constant c > 0 such that
ρE(τ ) ≤ cτα , τ > 0.

It is well known that Lp, lp and the Sobolev spaces W m
p (�), 1 < p < ∞, are all p-uniformly

smooth and that the following estimates hold:

ρLp (τ ) = ρlp (τ ) = ρW m
p (�)(τ ) =

⎧
⎨

⎩
(1 + τ p)

1
p – 1 ≤ 1

pτ p, 1 < p < 2;
p–1

2 τ 2 + o(τ 2) ≤ (p–1)
2 τ 2, p ≥ 2;

(1.2)

where τ ≥ 0 (see, e.g., Lindenstrauss and Tzafriri, [8]; see also Chidume [4], page 44). From
(1.2), it is clear that, if 1 < p < 2, then E = Lp, lp or W m

p (�) is not 2-uniformly smooth.
Consider now E = Lp, lp or W m

p (�) for p ∈ [2,∞). From (1.2), these spaces are 2-
uniformly smooth. Furthermore, for these spaces, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x)

〉
+ (p – 1)‖y‖2, ∀x, y ∈ E, (1.3)

and (p – 1) is the best smoothness constant (see, e.g., Bynun [1], Xu [13]; see also Chidume
[4], page 44). Comparing inequality (1.3) with the following inequality in Tang et al. [12]:

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x)

〉
+ 2‖κy‖2, ∀x, y ∈ E,

we find that 2κ2 = p – 1 so that κ =
√

p–1√
2 . The condition that 0 < κ ≤ 1√

2 now implies that
p ≤ 2. But if p < 2, then, from Eq. (1.2), E is not 2-uniformly smooth. So, the only possibility
is that p = 2, i.e., E = l2, a real Hilbert space.

2 Conclusion
The space E1 described in the paper of Tang et al. [12] as a real Banach space more general
than real Hilbert space is, in fact, necessarily a real Hilbert space. Furthermore, there are
serious errors in the proof of Theorem 3.1 in Tang et al. [12]. Consequently, the following
important problem which Tang et al. [12] tried to solve is still open.

3 Open problem
It is of interest to define a space E1 that is a real Banach space more general than real
Hilbert spaces, E2 as defined in the paper of Tang et al. [12] and an iterative algorithm
for solving split common fixed point problem involving a quasi-strict pseudocontractive
mapping and an asymptotically nonexpansive mapping such that the sequence generated
by the algorithm converges strongly to a solution of the problem.
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