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Abstract

We suggest a su cient setting on any linear space of sequen¢asich that the class
B, of all bounded linear mappings between two arbitrary Banach spaces with the
sequence o&-numbers inV constructs a map ideal. We de“ne a new sequence spa
(ce$1yr2) for de“nite functional by the domain of £, r;)-Cesaro matrix in, where
r;,r € (0,00) and 1<t < co. We examine some geometric and topological propertie
of the multiplication mappings orc(a$lvr2) and the pre-quasi ided®

(Ce$1,r2) )
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1 Introduction

Finding out about ¢1,r,)-mathematics or ¢1,rz)-analogues of recognized consequences
dates back to the time of Euler. It has several functions in the discipline of arithmetic
speci“cally in the area of dynamical systems, combinatorics, special functions, quan-
tum groups, learning about fractals and multi-fractal measures, and so forth. By, K;)-
analogue of a recognized expression, we suggest the generalization of that expression,
the use of new parametersr{,r,), which returns again to the authentic expression as
(r1,r2) — (1,1). In functional analysis, the multiplication mappings, and mapping ideals
have an important role in spectrum theorem, “xed point theorem, the topological and
geometric structure of Banach spaces, etc. We use the following conventions throughout
the article; if others are used, we will state them.

Conventions 1.1 ([1, 2])

N={0,1,2,..}. C. The complex nhumbers.

F: The space of all sets with a “nite number of elements.
CV: The space of all sequences of complex numbers.
. The space of bounded sequences of complex numbers.

o
r. The space of-absolutely summable sequences of complex num-
bers.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the articless Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the articless Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.



Bakery and Mohamedournal of Inequalities and Applications  (2021) 2021:43 Page 2 of 20

Co: The space of null sequences of complex numbers.
a=(0,0,...,1,0,0,...)as 1 lies at th¢!" coordinate for alll € N.
F : The space of all sequences with in“nite zero coordinates.
3: The space of all increasing sequences of real numbers.
B(P,Q): The space of all bounded linear mappings from a Banach space
P into a Banach spac®.
B(P): The space of all bounded linear mappings from a Banach space
P into itself.
F(P,Q): The space of “nite rank mappings from a Banach sp&ténto a
Banach spac®.
F(P): The space of “nite rank mappings from a Banach spd&tento
itself.
A(P,Q): The space of approximable mappings from a Banach spaggo
a Banach spac®.
A(P): The space of approximable mappings from a Banach spaa&o
itself.
K(P,Q): The space of compact mappings from a Banach spBcmto a
Banach spac®.
K(P): The space of compact mappings from a Banach spadato it-
self.

Lemmal.2([2]) IfU eB(P,Q)and U & A(P,Q), then we have mappings X B(P) and
Y € B(Q) such that YUXe=g with | € N.

De“nition 1.3 ([2]) A Banach space/ is known as simple if the algebr&(V) contains
one and only one nontrivial closed ideal.

Theorem 1.4 ([2]) Assume thatV is an in“nite dimensional Banach spacehen

F(V) S AN) G K(V) G B(Y).

De“nition 1.5 ([3]) A mappingU € B(V) is known as Fredholm ifdim(Range(U))° < oo,
dim(ker(U)) < oo, andRange(U) is closed, whereRKange(U))¢ describes the complement
of Range(U).

De“nition 1.6 ([4]) A subclassW C B is known as an ideal if all element$V(P,Q) =
WNB(P,Q) satisfy the following conditions:
() I eWif indicates a Banach space of one dimension;
(iiy W(P,Q)is alinear space of;
(i) If X e B(Po,P),Y e W(P,Q), andZ € B(Q, Qo), thenZYX € W(Pg,Qo), wherePg
and Qq are normed spaces.

De“nition 1.7 ([5]) Afunction :W — [0,00)isknown as a pre-quasi norm on the ideal
W if the following setting is con“rmed:

(1) ForallX e W(P,Q), (X)>0and (X)=0<= X=0;

(2) Onehasy > 1suchthat ( X)<Ey| | (X)forall X e W(P,Q)and €C,
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(3) One hassp > 1suchthat (Z1+Z2) <Go[ (Z1)+ (Z2)] for every
21,2, e W(P,Q);
(4) One hadDg > 1 suchthatifX € B(Po,P),Y € W(P,Q), andZ € B(Q, Qo), then
(ZYX) <DollZIl (Y)IXII.

Theorem 1.8 ([5]) If isaquasinormontheidealV,then isa pre-quasi normonthe
ideal W.

De“nition 1.9 ([6]) An snumber function is a map acting onB(P,Q), which gives to
each mapX € B(P,Q) a nonnegative scaler sequencg(K))X, satisfying the following
set-up:
@) Xl =(X) > s1(X) > %(X) > - -- > 0for everyX € B(P,Q);
(b) S+a.{X1+X2) = §(X1) + s(Xp) for eachXy, Xz € B(P,Q) andl, a€ N;
(c) Ideal propertys,(ZYX) < || Z||sa(Y)|IX]| for all X € B(Po,P),Y € B(P,Q), and
Z € B(Q,Qo), wherePg and Qg are any Banach spaces;
(d) IfGeB(P,Q)and eC thens( G)=| |%(G);
(e) Rank property: Supposenk(X) < a, thens,(X) =0for all X € B(P,Q);
(f) Norming property:S-a(la) = 0 or S<a(la) = 1, wherel, denotes the unit mapping on
the a-dimensional Hilbert space$.

We mention here some examples atnumbers:
(1) Theath Kolmogorov number, described bgt,(X), is marked by

da(X) = inf sup inf||Xf ..g].

dimJ<a ) <1 geJ
(2) Theath approximation number, described by,(X), is marked by
a(X) =inf{IX ..Y | : Y € B(P,Q) and rank(Y) < a}.
Notations 1.10 ([5])

By = {B (P,Q);P andQ are Banach spacgs
whereB, (P,Q) := {X € B(P,Q) : (a(X)) g € V],
By = {By (P,Q);P andQ are Banach spacgs
whereB,, (P,Q) = {X e B(P,Q): (( a(X))ory €V},
BY :={BY(P,Q);P andQ are Banach spacgs
whereBf (P,Q) := {X € B(P,Q) : (da(X)) ., € V}.
Theorem 1.11 ([7]) Fors-typeV :={f =(5(X)) e CV: X e B(P,Q) and (f) <oo}.If B,
is a map ideal then the following conditions are veri“ed
1. F CstypeV .
2. Assume (§(X1))?2 € stypeV and (5 (X2))iS € StypeV , then

(S(X1+ X)) e stypeV .
3. If €Cand(s(X)Zo € stypeV , then | |(s(X))Zo € StypeV .
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4. The sequence space N is solid, i.e.,if (S(Y))Z, € StypeV and s(X) <s(Y) forall
reNand XY e B(P,Q), then (5(X))2, € Stype V .

Some mapping ideals in the class of Banach spaces or Hilbert spaces are generated by
sequence spaces of numbers. As the ideal of compact mappings is generated bpd
da(X) with X € B(P,Q). Pietsch P] discussed the quasi-idealB ) when 0 <b < 0. He
examined that the ideals of nuclear mappings and of Hilbert...Schmidt mappings between
Hilbert spaces are constructed by; and »,, respectively. He showed thd( ) are dense
in B( p), and the algebra( ), where (1< b < 00), produced simple Banach space. Pietsch
[8] showed thatB b with 0 <b < o0, is small. Makarov and Faried] proved that, for ev-
ery in“nite dimensional Banach spac®, Q andr >b>0, thenB (P,Q) ¢B (P,Q) G
B(P,Q). Yaying et al. 10] introduced the sequence space! whoser-Cesaro matrix in

t with r € (0,1] and 1<t < co. They investigated the quasi Banach ideal of typé for
r € (0,1] and 1 <t < co. They found its Schauder basis,-, -, and -duals, and deter-
mined certain matrix classes related to this sequence space. Ba arir and Kara suggested
the compact mappings on some Euld(m)-di erence sequence spaced[l], some di er-
ence sequence spaces of weighted meahg [the RieszB(m)-di erence sequence space
[13], the B-di erence sequence space derived by weighted meald], and the mth or-
der di erence sequence space of generalized weighted mea§|[ Mursaleen and Noman
[16, 17] introduced the compact mappings on some di erence sequence spaces. The mul-
tiplication maps on Cesaro sequence spaces with the Luxemburg norm were examined by
Komal et al. [L8]. Ikhan et al. [19] considered the multiplication maps on Cesaro second
order function spaces. In the near past, several authors in the literature investigated some
non-absolute type sequence spaces and introduced recent high quality papers; for exam-
ple, Mursaleen and NomanZ0] de“ned the sequence spaces, and , of non-absolute
type and showed that the spaceg and |, are linearly isomorphic for 0 p < oo, ,isa
p-normed space and 8K-space in the cases for Op< 1 and 1< p < oo, and formed the
basis for the space,, for 1 < p <ococ. In [21], they studied the -, -,and -dualsof ;and

« Of non-absolute type for 1< p < co. They characterized some related matrix classes
and derived the characterizations of some other classes by means of a given basic lemma.
On Cesaro summable sequences, Mursaleen and Ba2#lj [de“ned some spaces of dou-
ble sequences whose Cesaro transforms are bounded, convergent in the Pringsheim sense,
nullin the Pringsheim sense, both convergentin the Pringsheim sense and bounded, regu-
larly convergent and absolutelg-summable, respectively, and examined some topological
properties of those sequence spaces. The next inequality will be used in the se@8} [
Suppose =t <oco andx,,z; € C, then

Xa+ Zal' < 2 {|Xal' + |zal"). @

The design of this article is arranged as follows: In Se2twe investigate su cient condi-
tions on any linear space of sequenc¥sso that B}, describes a mapping ideal. We apply
this theorem on es ,,) for de“nite functional . We examine the su cient conditions
on it to generate a pre-quasi Banach sequence space. In Steve de“ne a multiplication
map on (ce$1’r2) and introduce the necessity and su cient conditions on this sequence
space in order for the multiplication mapping to be bounded, approximable, invertible,
Fredholm, and closed range. In Sedt, “rstly, we give the su cient conditions (hot nec-

essary) on ¢e$l’r2) so thatF = ]B?ce§ X This gives a counter example of Rhoade?4]
1.2
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open problem about the linearity ok-type (ce$1’r2) spaces. Secondly, we explore the set-
up on (ce$1’,2) SO thatB§e$ ] is Banach and closed. Thirdly, we o er the su cient set-up
on (ce$1’r2) in order for B(Ceéﬂz) to be strictly con“ned for distinct powers. We advance
the conditions so thatIB%(Ce$ is minimum. Fourthly, we make known the conditions in
order that the ]B? b 1)
on (ce$l’r2) such that the class of all bounded linear mappings whose sequence of eigen-
values in (:e$ ,) is strictly contained mIB%( ob . . In Sect.5, we give our conclusion.

1,r2)
is a simple Banach space. Fifthly, we declare the su cient set-up

1 )

2 The sequence space(ces;. ,,)y

We introduce in this section the de“nition of the sequence spaceeé;!;l’rz) under the func-
tional .We suggesta subspace of any linear space of sequexidgsivate sequence space
(ps9) such that the clas$y, generates an ideal. We apply these conditions oa:e$l r
equipped with de“nite functional to create a pre-modulapssand a pre-quasi Banach
pss

De"nition 2.1 For allry,r € (0,00) and 1<t < oo, the sequence spaceé%,rz) under
the functional is de“ned as follows:

(ce$ ) ={f=(H)eC': ( f)<ooforevery >0},

z,l Zfz
as (f)= Z<|Z[:IZ;;]:12,2 |) and

|
rl..rz
ry..rp?

1.1 Iyt r=r#l,
ey, = Z rirlz = [,y 1r=1,
z=0

rn7r271,

[I]r11 r2 = 11
l, ri=rpy=1.
Remark2.2
(1) Assumer; =r andr, =1, the sequence spa(nm\%l’,2 = !was investigated by Yaying
etal. [1Q].

(2) Ifri=rp,=1, hencece$1’r2 = ce$, was made current and considered by Ng and Lee
[25]. Distinctive classi“cation ofce$ has been examined by many authors
[21, 26..29.

Theorem 2.3 Ifry,rp; € (0,00) and 1 <t <oo, then (ce$l‘r2) is of non-absolute type

Proof By takingf =(...1,1,0,0,0,...), thelh =(1,1,0,0,0,...). We have
t 2 t
(f):1+(| ..r2+r1|) N (| ..r2+r1r2|> N
[Z]I’l,rz [3]|'1J2

t 2 t
7“(';11:') +<|rf3;ﬂ> +eo= (1)

) is of non-absolute type.

Therefore, the sequence spaces, .,
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We name the sequence spacee($1 r,) as {1,r2)-Cesaro summable sequence space of
non-absolute type since it is constructed by the domain of(r;)-Cesaro matrix in ¢,
where the §1,r2)-Cesaro matrix (ry,r2) =( z(r,r2)) is de“ned as
r%r%
|Z(rl|r2) - [|+1]r1|,2 OS ZS ||
0, z>1. O

De“nition 2.4 Pick up a linear space of sequenc¥s The subspacé/ is known as apss
if it supports the next set-up:

(1) &y eV foreachb e N;

(2) Iff =(f) € OV, |0l = (Ig]) € V, and|fy| < |gy| for be N, then|f| e V, i.e.\V is solid;

(3) For(Ifol)o € V., we have([fyy )%y € V., where[2] indicates the integral part of.
Theorem 2.5 Assume that the linear sequence spacés apss, thenBy, is an ideal
Proof Similar to the proof of Theorem 3.2 in f]. d

Theorem 2.6 ce$Lr2 is apsswhenevell <t <oco and r; <r,.

Proof (1-i) Letf,ge Ce$1,r2- Since 1 <¢ < oo, we obtain
i( | a0 irs (2 + @) )t
[+ 1]rrs

= (2 R )~

1=0

hencef +geces |,
(1-ii) Assume €C f ece$, ,,, andsince 1 < < oo, one has

(| Xm0 irs” |2 a0 i
é:( [+ 1y, )_| |Z< [+ 11, )<

So f ece$ ,,. By using (1-i) and (1-ii), one hases ,, is a linear space.
Besides, when 1 €< oo, we have

00 |
$(Chrt ) g (L Y
— [+ 1, A\ [+ 1,

Hence,g, € ce§, ,, for eachb e N.
(2) Supposéfy| < |g,| forallbe N and |g| € ce$1yr2. We have

00 | 0
Z:(Izz:orir'z“zlfAI)t - Z(l Y20 rir'z"zlng)t <o,
1=0 [I + 1]I’1,I‘2 1=0 [I + 1]!’1,]’2

solf| e ceg, .
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(3) If (If]) € ce$,,, 1 <t <oo, andry <r, one has

o0 |
Z(Zz— o!i13 Zlf[é]l)t
1=0 [I + 1]f1,f2

2I+l

oo rzrl 2, t oo I‘Zl‘l 2|, t
Z( 113 |[2]|) +Z< fip; |[2]|>
— [2| + ryr — [2| + 21

Z([ZI +1] (rl r2 |f|| +Z 22 | 2+r Z+l |23|f |>>
1=0 rq,ro

70
%) 1 | t
+ r22r| 2+r22+l |...2... |f |
§<[2| +2irrs ;( ? )
00 t ) t
< 2t rz l. Zf + rz l. Zf
= l(Z([Hl]rl,Z; |Z> §<[|+1],1r2; |Z>)
0 2 | t
+ - I,-Z|,| Zlf |
Z([I + 1]r1 r2 2=0 12
t
(22t 1+3X2t ZBZ ZrZ|Z|f|
|+1]I'1I'2 2=0

so (fiz)1) e ces, .- O
From Theorem2.5 we conclude the following theorem.

Theorem 2.7 Assumel <t <oo andry <r,,then ]B%ie is an ideal
1.2

De"nition 2.8 A subclass of thgssis called a pre-modulapssif the functional :V —
[0, 00) satis“es the next conditions:
(i) Forf eV,f= <« (|f])=0forall (f)>0,with being the zero vector o¥;
(i) Forf eVand eC,onehass>1sothat ( f)<| |E (f);
(i) (f+g) <Go( (f)+ (g)) veri“es for someGy > 1, so thatf,ge V;
(iv) Ifbe N, [fp] < |al, we have ((Ifb])) = ((I%1);
(v) The inequality ((|fp])) < ((|f[g]|)) < Do ((Ifp])) is satis“ed for someDg > 1;
(vi) F =V ;
(viiy Thereis >Owith ( ,0,0,0,...» | | (1,0,0,0,..Jorall €C.

De“nition 2.9 The pssV is called a pre-quasi normegssif satis“es conditions (i)...
(i) of De“nition 2.8 WhenV is complete under , thenV is called a pre-quasi Banach
pss

Theorem 2.10 Every pre-modulampssis a pre-quasi normegssV .
Theorem 2.11 (ce$1‘r2) is a pre-modularpss, whenevell <t <oco and r; <r».

Proof (i) We have (f)>0and (|f)=0«f= .
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(i) One hasEp = max{1,| [“*}>=1with ( f)<Eol | (f)forallf ece$  and eC.

(i) We have (f +g) <2'X (f)+ (g))forallf,geces ..

(iv) Obviously, from the proof part (2) of Theoren?.6.

(v) Obviously, from the proof part (3) of Theoren®.6that Dy > 2214+ 3 x 2t-1> 1,
(vi) De“nitely, F =ce$ .

(vii) One has 0< < |*for (,0,0,0,...r | | (1,0,0,0,...) when %0 and
>0when =0. O

Theorem 2.12 If 1<t <oo and r; <ry,then (ce$1’r2) is a pre-quasi Banaclpss

Proof Let the set-up be satis“ed, then from Theoren2.11the space ¢e$l',2) is a pre-
modular pss By using Theorem2.1Q the space ¢e$1’r2) is a pre-quasi normedss. To
show that (‘3e$1,r2) is a pre-quasi Banachpss, assumé # = (f )22, to be a Cauchy sequence

in (Ce$1,r2) ,thenforall € (0,1), there isap € N so that, for alla,b > ay, one has

(fa..fb):iCZ'z:orir'z--Z(fza_,_fzb)|>t< t.

= [+ ey

Hence, fora,b > ap and z € N, we get|f2 ..fP| < . So () is a Cauchy sequence i€
for “xed z € N, this giveslimy ., f? = f0 for “xed z € N. Hence (f2..f% < ! for all
a > ay. Finally, to show thatf® € (ce$ ,,) , one has (f%) <2 (f2..f%)+ (f?))<oo,
sofle (ce$1,r2) . This means that (:e$1vr2) is a pre-quasi Banacpss O

Corollary 2.13 If 1 <t < oo, then ( !) is a normed Banachpss where (f) =

oo ¢l Iz: “fzl\t11
[ B )] forallf e .

By using Theoreml.11, we conclude the following properties of the-type (ce$1’r2) .

Theorem 2.14 For s-type(ce$1’r2) ={f=(5(X)eCN: X eB(P,Q)and (f)<oo}.The
following settings are veri‘ed
1. We have s-type (ce$,,,) DF.
2. If (s (X)) € stype (ce$,,,) and (5(X2))i € Stype (ce$,,,) , then
(§(X1+ X2))Zo € Stype (ce$,,,) -
3. Forall € Cand (s(X))% € Stype (ce§,,) ,then | |(s (X)) € Stype (ces,,,) -
4. The stype (ce$ ) issolid.

1,12

3 Multiplication mappings on (cesﬁm)v
We introduce in this section a multiplication mapping on ¢e$m) . We examine the ne-
cessity and su cient conditions on (ce$1’r2) such that the multiplication mapping is in-

vertible, bounded, Fredholm, approximable, and closed range.

De“nition 3.1 Pickup =( ) € CV andV is a pre-quasi normedpss The mapping
H :V — V isnamedamultiplication mappingorV ifH f =( ,fy) eV ,sothatf €V .
The multiplication mapping is called produced by whenH € B(V ).

Theorem 3.2 Assume e CV, 1<t<oo,andry <r, then e ifandonlyifH e

B((ces$,,,) ).
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Proof Let the conditions be veri“ed for € . Sothereis >0 suchthat| ,| < forall

beN.Iff €(ces,,,) , we have
00 |_ zpl..z f t 00 lZ‘ z I..ZfZ t
e C0-E (B E(Be ) - o
1=0 ' 1=0 E

Hence,H € ]B((ce$l,r2) ). However, supposél € ]B%((ce$1’r2) )and ¢ . So,foreach
b e N, one hasx, € N such that , >b. We obtain

_ It e\ ) 1\
H &)= ( ex.,)—;( ST ) —Z(ilﬂf T )

1=xp
oo Xp |..Xb t
rrs b) —ht
>3 (22 ) =1t (g).
g&([l-'-l]rly@ ( b)

Therefore,H &B((ce$ ,,) ). Hence € . O

Theorem3.3 If eCV,1<t<oo,andr, <r,.Then ,=gforallbe N and ge Cso that
lgl=1lifand only if H is anisometry

Proof Assume that the su cient set-up is con“rmed. We have

H D= ( f):i(lZLzorErE'k kfkl>t:iCZLzolglrErE'kka)t: (f)
1=0

[l + 1]r1,rg 1=0 [l + 1]r1,r2

forallf (ce$1’r2) . HenceH is anisometry.
Suppose that the necessity set-up is veri“ed and,| < 1 for someb = bg. One can see

(H &)= ( eoo):i@szofff'z“k k<%)k|)t:i<m>t
1=0

[l + 1]r1,r2 |=b0 [I + 1]r1,r2

= rop o Nt
2lrn,) = @

I=bg

Besides, if p,|>1,0nehas (H &,)> (&,). Forthe two cases, we have a contradiction.
So| p|=1withbeN. O

Theorem 3.4 If eCY, 1<t<oo,andr; <r,.ThenH ¢ A((ce$1yr2) ) if and only if
( b)ggo € C.

Proof SupposeH e A((ce$,,,) ), henceH e K((ce$,,,) ). Assumelimp.o b 7 O.
Hence, one has >0 such thatk ={beN:| y| > } g F when{ p}hen C K . There-
fore,{e ,: peK }e isin“nitein ( ce$1y,2) .As

© bkl k t
He,.He,)= (e,.. eb):z<|2kzor1rz[l +k](_§ea)k.._¢b)k)|)
=0 rir2

. i<|ZL:Or'1(r'2[-ik+(;]er ar)k ..€ b)k)|>t =t (e,.e,)

=0
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forall 5, peK .Hence(fe,: peK}e o, whichcannot have a convergent subse-
quence withH . SoH ¢ K((ce$,,,) ). This givesH & A((ce$,,,) ), which is unrelia-
bility. Therefore,limy_.o, p =0. Conversely, supposém,_.., p=0. Therefore, for each

>0,we haveK ={beN:| y|> } CF.So,forall >0, one hasiim(((ce$1’,2) k)=
dim(C< ) <oco. HenceH eF(((ce$,,,) )k ). Assume ,€CY, withaeN, by

b, beKa,
(ap= aTI_
0, otherwise.

Obviously,H , € F(((ce$,,,) )s , ) sincedim(((ce$,,,) )s , ) <oowith ae N. From 1<
a+l arl
t<ooandr; <r,, we have

0 I bel.b t
((H .H a)f): ((( b a)b fb bo Z(|szor1[r2 ( b---(a)b)fb|)

1=0 I + l]rler

ad IS b0 P52 b o (ool !
ZK: ( b=0 1[|2+1]r1’r2 )

(1o b (o)l )
’ %2 < [I+l]r1,r2 )

1=0| 1
a1

I t
= ZOO <|szork1)r|2"b bfbl)
1=0J¢K 1 [+ Ly,
a+l

A S (ISt
t
@+ 1 e, [+ Ly
atl

1 &I\t 1
<(a+1)t§< [+ s, ) =@ ©

Therefore,|H ..H .|| < (a+1) ThenH =lim, .o H , andhenceH cA((ces,,) ). O

Theorem 3.5 If e CV,1<t<oo,andr; <r thenH ¢ K((ce$m) ) if and only if
( b)p2o € Co-

Proof Evidently, asA((ce$, ,,) ) & K((ce$,,,) ). O
Corollary 3.6 If 1<t <ocand r; <rp, thenK((ce$, ,,) ) & B((ce$,,,) )-

Proof Since the sequence = (1,1,...) produces the multiplication mapping on
(ce$ ) .Soll e B((ce,,,) )andl ¢ K((ce$, ,,) .

Theorem3.7 If eCV,1<t<oo,rp<rpandH e B((Ce$1,r2) ). Then there exist >0
and >O0suchthat <| p|< forallb e (ker( ))¢if and only if Range(H ) is closed

Proof Let the su cient setting be veri“ed. So there is >0 such that| ,| > forallbe
(ker( ))°. To prove thatRange(H ) is closed, suppose thagis a limit point of Range(H ).
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One hasH f, e (ce$1’r2) for eachb € N so as tolim,_. o, H f, =g. Clearly, the sequence
H f, is a Cauchy sequence. We have

oo l . t
(Hfa.H )= Z( | Zk:orir'z[lki ﬁfeok k(fb)kn)
1=0 ri,r2

) N R O T ORIAY
> ( )

1=0) e(ker( ))° [+ 1]rir,
© b kel k f f t
+ <|Zkzor1rz (wfai - k( b)k)|)
120, é(ker( ))° [+ e,
. i <|ZLzorfr'2--k( (fo)i - k<fb)k>|)t
[l + 1]!’1,1’2

1=0) (ker( ))°

e (|ZL=or§r'2--k( «(Ua)k ... k(ub)kn)t
- [l + 1]r1,r2

1=0

] | B t
>Z(|Zk:0r'§r'2k ((Ua)k---(lb)k)|> = U (Ua..lip),

= [+ 1)y,

where

) I(fa)k, ke (ker( ),
(Ua)k =
0, k & (ker( ))°.

Then (uy) is a Cauchy sequence im(a$1yr2) . Since ¢e$1,r2) is complete, there isf €

(ce$,,,) so as tolimp.ooup =f. AsH e B((ce$, ,,) ), one haslimp.cH Uy =H f.

From limp , oo H Up = limy_, o H f, = g. Therefore,H f =g. Sog € Range(H ). Hence,

Range(H ) is closed. Then, let the necessity conditions be veri“ed. Hence, there is 0

suchthat (H f)> (f)forallf e ((ce$1’r2) ker( ))e- SUPPOSEK = {b e (ker( ))°:| bl <
} Z @, hence ifag € K, we have

e | bel..b t
(H ep)= (( b(eao)b));io):Z(|Zb:0[zl+r21]r b(%)bN)
1=0 1.2

00 |Z|: rbrl"b(eao)b | 1_
(=) e

1=0
this implies unreliability. HenceK = , one can see¢ | > for everyb e (ker( ))¢. This
shows the theorem. O

Theorem3.8 If eV, 1<t<oo,andr; <r,. Thenthereare >0and > 0such that
<| p|< forallbeNifandonlyifH € B((ce$1’r2) ) is invertible.

Proof Let the su cient setting be con‘rmed. Assume e CN with |, = ib By Theo-
rem3.2 onehasH eB((ce$ ,,) )andH eB((ce$, ,,) ). ThereforeH H =H H =1I.
Therefore,H =H-% Then, letH be invertible. SoRange(H ) = ((ce$,,,) )n. Hence
Range(H ) is closed. By Theoren3.7, one has >0 such that| ,| > with b e (ker( ))°.
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We haveker( )=0,if p, =0 forbg e N, this givese,, € ker(H ), which is unreliability, as
ker(H ) is trivial. Hence,| | > withbe N. AsH € . From Theorem3.2 we have
>0suchthat] ,|] < with be N.Hence,wehave <| | < withbeN. O

Theorem3.9 If eCV,1<t<oo,rp<ryandH e ]B%((ce$1’r2) ). Then H is aFredholm

mapping if and only if(i) ker( ); N is “nite and (ii) | p| > with b e (ker( ))°.

Proof Let the su cient conditions be con‘rmed. Assume thatker( ) & N is in“nite,
S0 @, € ker(H ) for b € ker( ). As as are linearly independent, this implies that
dim(ker(H )) = oo, which is unreliability. Asker( ) & N must be “nite. Setting (i) fol-
lows from Theorem3.7. Next, suppose that conditions (i) and (ii) are satis“ed. By Theo-
rem 3.7, one has that setting (ii) gives thaRange(H ) is closed. Condition (i) implies that
dim(ker(H )) <oco anddim((Range(H ))°) <oo. This gives thatH is Fredholm. 0

4 Con“guration of pre-quasiideal

In this section, “rstly, we examine the su cient conditions (not necessary) orce$1]r2) SO

thatF = Bfm ) which implies a negative example of Rhoade&Xi] open problem about
112

the linearity of s-type (ce$11,2) spaces. Secondly, we give the set-up aneg',z) soasto

]}BfCe$ ) is Banach and closed. Thirdly, we introduce the su cient conditions om(e$1 r)
1.2 )
such thatB is closely included for distinctt and minimum. Fourthly, we explain

(Ceél,rz)
the conditions so that the Banach pre-quasi ideﬁl(sce% ) is simple. Fifthly, we give the
1.2

su cient conditions on ( ce$l’r2) such that the clas® has its sequence of eigenvalues in
(ce$,,,) closely included in]B?ceél,rz) .
4.1 Denseness of finite rank mappings

Theorem 4.1 The settingsl <t <oo and r; < r, are su cient only for B® ) P,Q)=

- (Ceél,rg
F(P,Q).

Proof Assume that the su cient setting is con“rmed. Sinceq € (ce$1',2) foreveryl e N

and (ce$m) is a linear space. Assumg € F(P,Q), we have §(2)), € F. Therefore,

(8(2)% € (ce$,,,) , and this impliesZ e B?ceél,rz) (P,Q). SoF(P,Q) < B?C'#l,rz) (P,Q).
™D 0O) < o] 1 t

To prove that]B?ceél,rz) (P,Q) CF(P,Q).Since 1 < <oco,we getZ,=o(m) < 00. Sup-

poseZ e che$ ) (P,Q), one has §(2))%, (ce$l r,) - Since (s(2))%, < oo, assume
112 ’
€ (0,1), then there existdy € N ...{0} such that ((s(Z)),Ojlo) < 5w for somed > 1,

where = max{l,Zi’j,O(m)t}. Sinces (Z) is decreasing, we have

2 Lol 2 N . RN
% [ 2i=oT1r2"S20(2) t< % (2i=oT1r2"5(2) t< 2 j=0M1r2"S(2)\'
Z < [+ 1)y, ) B ,Z ( [+, > - ;( [1+1]r, )

I=lp+1 =lp+1

< 243 g° (2)

Hence, there existy € [Fy, (P, Q) with rank(Y) < 2lp and

3 [N 1 P 2| [N [
ZO (Zj=0r1r2 1 ---Y||>t - ZO (Zj=0r1r2 1z ---Y||)t - , 3)
[l + 1]r1,r2 [l + 1]r1,r2 2t+3 d

1=2lp+1 1=lg+1
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as 1<t <oo, one has

I1=lg

t
sup<2rlr2‘||z...Y||) <

Hence, we have

i YhorirstIZ Y| t<
[0+1].,, 243 g’

1=0

Since 1 < <oo and by using inequalities (1)...(5), we obtain

3lp...1

Z}—o rjlrlz"jq(z SN Z}:o rjlrlz"jﬁ(z -

d(z,Y)= (S(Z -"Y))IO:OO: Z( - [+ 1)y,

1=0

1+2lg .

(4)

(®)

rlr2 q(Z Y)\!

[
o3 (Z}zorirz}nz ...Y||>t+i(zj S0°N112'S(Z ..
- 1=0 [l + 1]I’1,I’2 [I + 2'0 + l]r]_,rz

I1=lg

I A

[l + 1]I’1,I’2

I1=lg

0

do 1 ribhz ...Y||>t Z'+2'°r sz .. Y)\ !
j=0 + ( 12

2 >

lo Z Atz Y
<3
- ; [+ 1], >
3 S hnls@ .+ Shenr’s@ - Y))
|0 [I + 1]r1,r2
lo Z SIHIZ LY
3 +2!
E ; [l + 1]I’1,I’2 ) {g

o

0

32

IA

|
Shorirs Iz LY
[|+1]r1,r2 > vz ‘|:Z

I1=lp

+

=

=

=
D]

(5

2

[I + 1]r1,f2

I1=lp

Yieorirs Iz Y|
32( [+ 1], >

2lg...1 U oo
P lsup<zrlr'2*nz Y||) S (0 + Uy

I1=lg =0

+ot 12(21“0: ;]2rj2(z)> -

I1=lg

ZZ'O 1r"lr'z"jq(z...Y) t

2z LY

ZJ n J+2|o |..;...1?o§+2|0(z Y)) i|

.Y))t

Page 13 of 20
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On the other hand, sincds € IB%( e (P,Q) butt > 1is not con“rmed. This completes the
proof. O

Corollary 4.2 Pickupl<t<ocoandO<r < 1,then]B%f 1 (P,Q)=F(P,Q).

4.2 Banach and closed pre-quasi ideal
Theorem 4.3 Assume tha{V) isapre-modularpss then the functional isa pre-quasi
norm on]B%fV) with  (Z)= ((2))g, and Z eIB% v (P.Q).

Proof Suppose thatV) is a pre-modularpss, so veri“es the next set-up:
(1) WhenX € B(V) (P,Q), (X)= (mMX)Ey=0and (X)= ($(X))p,=0ifand
only if $,(X) =0for allb e N if and only if X = 0;
(2) We haveEg > 1with  ( X)= (s5( X))p2o <Eol | (X)foreveryX e IB%(V) P,Q)
and €C
(3) One had > 1so that, forXs,X; € IB ) (P,Q), one can see

(Xp+X2) = (p(Xy+ Xz))EZO < Gof( (ﬁg](xl))gzo + (%g](xz))gzo)
< GoDo( ((XD))poo* ((X2)) o)
D[ (X)+ (X)];
(4) We have >1if X e B(Po,P),Y € IB%(V) (P,Q), andZ € B(Q, Qo), then O

(ZYX)= (2(ZYX)20 = (IXINZIs(Y s = IIXI (MIZI.

Theorem 4.4 If 1<t <oo and r_l <ry, then (]B(ce$ _ ) is a pre-quasi Banach ideal

Proof Since (:e$ is a pre-modular pss by using Theorem4.3  is a pre-quasi

norm on IB%( . If (Xp)oen is a Cauchy sequence |R( b 1) (P,Q). AsB(P,Q) 2
) P, Q) We have

00 | zpl.z t
_oFar Xa .. X
Xa_xb):z<2z_o s (Xa b)) >
1=0

B(Ceél,rz

- a - 1
[l +1]r1,r2

K

[I + 1]r1,r2 |

1l
o

hence ¥p)pen is @ Cauchy sequence B(P,Q). AsB(P, Q) is a Banach space, there exists
X € B(P, Q) such thatlimy_, o | Xp .. X|| = 0. As G(Xb))%, € (ce$,,,) with b e N. Hence,
by using De“nition 2.8 parts (ii), (iii), and (v), we get

Zz_ Zrl..ZSZ(X) t
)= Z( [+ 1]y, )
Zz— rirs?gz)(X .. Xp) i Zz_ rirs25z)(Xo)
=2 12( [T ) ZO( T+ Do )
‘. Yo FArBZIX . Xoll . Yo Firh 7S, (Xp)
=2 12( |1+211r1r2 ) +2Do Z( I+ 1, )<°°

Therefore, &(X))X, < (ce$,,) , henceX e B, b 1) (P.Q). 0
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Theorem 4.5 If P, Q are normed spaced <t < oo, and ry < rp, then (B3
pre-quasi closed ideal

(cebyry) )isa

Proof Since (:e$ rp) isapre-modularpss by following Theorem4.3 we have is a pre-
quasi norm on]B%( ebiry) LetXp eIBS(C b1e) (P,Q)with be Nandlimp,o (Xp..X)=0.

SinceB(P, Q)DB(ce$ ) (P,Q), one has

(T i SX xb)) S (r'2||x..xb||>‘> t
(X .. Xp) IX():( T lXO: EST > X .. Xl

80 (Xp)ben is a convergent sequence B(P, Q). As §(Xp))%, € (ce$ ,) with be N. From
De“nition 2.8parts (ii), (i), and (v), we have

o Lo s (X)
OQ'%( [+ Ty )

3 rEAg (X . X) % ()
< t...1 2 2
=2 Z( [T+ Ty ) Z( 0+ 1y, )

=0
o [ o TS EIX . Xl > o TErh7s,(Xp)
= Z( ) 2 Z(W) o
One can seeq(X)), € (ces$,,,) henceXeIB%(Ceé (P.Q). O

4.3 Minimum pre-quasi ideal
Theorem 4.6 If P and Q are in“nite dimensional Banach spaced <t; <t, < oo, and
ry <rp, then

By PQEE .  (P.QSEP.Q).

Proof AssumeZ e]BS (P Q), then (5(2)) € (ceé} r,) - We have
(Tl 5@) | P o LimoliES(2) |
%):( [+ 1], ) <§( [+ 1]y r, ) so

| [1+1]rqr
then Z e IB%S o2 1) (P,Q). Next, by taking &(2));%, such thatzz_ rir;?s,(Z) = ;/ilz'

one hasZ IB(P Q) with
i(ZLzo rir'z--Zsm)“ i EET
1=0 [l + l]l’l,rg 1=0 +1
and
t2

(S

1=0 1=0
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Therefore, Z ¢ ]B%S ol (P Q) and Z € ]B%S (P,Q). Evidently, IB%S P,Q) c

r $2r ) r )

1 2 112 1 2

B(P,Q). Then, by choosing §(2))r%, with ZZ_ rirs2s,(2) = '+21/122, one can conclude
ZecB(P,Q)andZ ¢ ]]3%S (P Q). O

Corollary 4.7 If P and Q are in“nite dimensional Banach spacesl <q <t < oo, and
0<r <1,then

Theorem 4.8 ]B( ey is minimum, whenP and Q are in“nite dimensional Banach
spacesl <t < oo, and2r1 <r»,.

Proof Suppose that the su cient set-up is veri“ed. HenceI{B ehyry’ ) is a pre-quasi Ba-

+1]ry ¢

>0with (2)< |Z| forZ e[IB%(]Fg 2Q). From Dvoretzky-s theoremd0), for b € N, we
have quotient space®/Y, and subspaceM, of Q which can be mapped onto§ by iso-
morphismsVy, and Xp with [|Vp || |V,;-4 < 2 and || Xpl[[| X4 < 2. Letl, be the identity map
on 5, Ty be the quotient map fromP onto P/Yp, and }, be the natural embedding map
from My into Q. Suppose tham, is the Bernstein numbers31], we have

nach ideal with (Z)=Z|°:°O(M)t AssumeB ool (P,Q)—B(P,Q),sowe have
2

1 =my(Ip) = My (XpXg ¥oVeVs Y < 1Xplimz (Xg16Vo) [ Vi
= 1 Xplm(HXg 1oVo) [V < 1Xolldz (X5 ¥6Vo) | Vs
= 1 Xplldz(BX5 Y6VoTo) [ Ve Y < IXoll 2(BX5¥6VoTo) [V

if 0 <1 < b. One can conclude

Zrzr'2 < Z IXollrfrs® 2(BX5HVoTo) [V5y =

Zz— I'ZI'I N\t ot Zz— I'ZI'I z z(\LX"':|beTb) t
( [I +1]-:-1,f2 ) n (”Xb”HVb ]ﬂ) ( : 2[| +1]r1,r: ) .

Therefore, for some > 1, we have

zel.z\ t b | rZrlz - t
Z(%ﬁ T ) < ||xb||||V5"]1|Z(ZZ= N o
1=0 ur 1=0

[(1+1)r,r,
b
)

1=0

z.l.z
z—rr2

[+ Ly ) %] {Vb ]ﬂ ‘JDxb“:'beTb) =

Mc‘

[+ 1oy

n
S o

Yo irs?

=\ [+ 1,
< Xl Ve A X Y ullVeToll = Xl | Ve Y X5 A elIVel =

b z,l.z\ t
Zz— r r2 <
Z( [I+11r1,r2> =4

1=0

(T
(e |22> < Pollvs T vl =
(55
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. ! N

Forb— oo and smceZ,:o(Z“Z;f% t=y o(%#)‘ 32,1 =00. Thisim-

plies unreliability. HenceP andQ both cannot be in“nite dimensional IﬂBce$ P,Q)=
112

B(P,Q). This con“rms the proof.

Theorem 4.9 If P and Q are in“nite dimensional Banach spaced <t <oo,and r; <r,
then B¢ iS minimum.

ce$;r,
Corollary 4.10 If P and Q are in“nite dimensional Banach spaced <t <oo,and0<r <
1, thenIB% is minimum.

Corollary 4.11 If P and Q are in“nite dimensional Banach spaced <t <oco,and0 <r <
1,thenB, is minimum.

4.4 Non-trivial closed pre-quasi ideal
Theorem 4.12 If P and Q are in“nite dimensional Banach spaces; < rp, and 1 <t; <
to <00, then

BBz, , (P.Q).E] (P.Q)=A(E o | P.Q.E,  (P.Q).

(ce$l 1)

Proof Assume X ¢ IB%(]B%? o2 )
1.2
P By using Lemmal. We haveY e]BIB%S
By ) (PQ))- By using 2 B eetz,.)

B(B Sce%1 ) (P,Q)) so thatzXYl, = l,. Hence, for allb € N, one has

( 1.2
o] .z t1
> o rirb?si(lb)
ollss PQ)= (—
celt,y O 2 e

Ce$l’r2 =0

00 i_ rZrl..ZSZ(Ib) to
< 1ZXY Il lblles . (p,Q)§Z<%> :

Ce$1 rg) 1=0 [I + 1]r1,r2

(P.QLE,, | (P.Q) and X & AB: . | (P.Q)

P, Q)) and Z

This contradicts Theorem4.6. Therefore,X € A(]B%S e2.) (P,Q), ]BS (P Q)), which
completes the proof. " O

Corollary 4.13 If P and Q are in“nite dimensional Banach spaces; <ry, and 1 <t; <

to < oo, then
B(B (ces? 1) P.Q). B(Ce$1 2) (P.Q) :K(B(Ce%,r ) (.Q).B (ce r) (P.Q)).
Proof De“nitely, since A c K. 0

Theorem 4.14 If P and Q are in“nite dimensional Banach spaced <t <oo,and r; <r,

then]B%( eb,r) is simple

Proof Assume that the closed ideaIK(IBS ) (P,Q)) contains a mapping X ¢

A (B3 (cobyr, (P Q)). By using Lemmad..2, we haveY Ze IB%(]B%(C b (P ,Q)) with ZXYl, =

lp. ThIS |mpI|es thatIBs i, PQ) e K(B? (P,Q)). Therefore B(B?ceé ) P,Q)) =
172

1) (ce$;r,

K(IB%(Ce$ P,Q)). SoIB%( o1 is simple. O



Bakery and Mohamedournal of Inequalities and Applications  (2021) 2021:43 Page 18 of 20

4.5 Spectrum of pre-quasi ideal
Notation 4.15

(BY) ={(B}) (P,Q);P andQ are Banach spac¢s where

(BY) (P,Q):={XeB(P,Q):(( (X)), €Vand|X ...

does not exist for every N}.

Theorem 4.16 If P and Q are in“nite dimensional Banach spaced <t <oo,and r; <r,
then

(B(Sce$1,r2) ) (.Q) CB(CQ$ 2) (. Q).

Proof AssumeX e (B(ce$ ) (P,Q), so (X)), € (ce$1',2) and ||X ... |(X)I]| =0 for
everyl € N. One hasX = |(X)I for all | € N, hences(X) =s( ((X)I) =] (X)]| for each
| € N. Hence §(X))%, € (ce;%:1 r,) » Which implies X € IB%( b1, (P,Q). Next, by putting

(1(X))S, so that Yo rérk? ,(X) = “*ﬁ@,we havex e B(P, Q) so that

S L AR |
§< [+ 1y, ) Z—l =

and by choosing § (X)), with ZZ_ rrs2s,(X) = “J'ﬂ% Therefore, X ¢ (B(ce$ ) (P,

Q) andX € B® (P, Q). This con“rms the proof.
(Ceél,l’z)

5 Conclusion
Many authors in the near past investigated and studied theCesaro matrix and the linked
summability methods B2..35]. In this paper, we explain some topological and geomet-
ric structure of the cIasﬁB( . and the multiplication mappings de“ned on (:e$11r2) .
Whenr; =randr,=1, we havece;%m = [. Some new properties to the sequence space

{ have been added. This article has many bene“ts for researchers such as studying the
“xed points of any contraction maps on this pre-quasi normed sequence space, which is
more general than the quasi normed sequence spaces, a new general space of solutions
for many di erence equations, the spectrum of any bounded linear operators between
any two Banach spaces witknumbers in this sequence space, and noting that the oper-
ator ideals are the prime structural components of a vector lattice; consequently, closed
ideals are bound to play a positive role in the theory of Banach lattices. We open the way
for many authors to generalize the results by a sequertce ()75, and build (ce§1 rp) Of
non-absolute type.
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