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Abstract
This paper deals with nonlocal fractional p-Laplacian problems with difference. We
get a theorem which shows existence of a sequence of weak solutions for a family of
nonlocal fractional p-Laplacian problems with difference. We first show that there
exists a sequence of weak solutions for these problems on the finite-dimensional
subspace. We next show that there exists a limit sequence of a sequence of weak
solutions for finite-dimensional problems, and this limit sequence is a sequence of
the solutions of our problems. We get this result by the estimate of the energy
functional and the compactness property of continuous embedding inclusions
between some special spaces.
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1 Introduction
The nonlocal fractional p-Laplacian problems with difference appear in the models of
nonlinear fractional Laplace flows such as the parabolic boundary value problems with
time derivative and the fractional p-Laplacian differential operators. The fractional Lapla-
cian flows arise in applications of nonlinear elasticity theory, electro rheological fluids,
non-Newtonian fluid theory in a porous medium (cf. [9, 31, 40]).

In this paper we consider a family of the fractional p-Laplacian problems of Rothe type
with difference under boundary and initial conditions:

(–�)s
gp un + λV (x)|un|p–2un +

|un|r–1un – |un–1|r–1un–1

h
= 0 in �, (1.1)

un = 0 on ∂�,

un(0) = u0 in �,

where � is a bounded domain of RN , N ≥ 3, with smooth boundary ∂�, s ∈ (0, 1), p is
a real constant, 2 ≤ p ≤ N , r = p∗

s – 1 = Np
N–sp – 1, gp is a continuous function defined by

gp(t) = |t|p–2t, t �= 0, gp(0) = 0, λ > 0, V : � → [0,∞) is a continuous function, and un is
a measurable function defined on � with valued into R, n = 1, 2, . . . , and (–�)s

gp is the
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fractional p-Laplacian operator defined as follows: for each x ∈ RN and any u ∈ C∞
0 (�),

(–�)s
gp u(x) = P.V.

∫
�

gp

( |u(x) – u(y)|
|x – y|s

)
u(x) – u(y)
|u(x) – u(y)|

dy
|x – y|N+s

= P.V.
∫

�

|u(x) – u(y)|p–2

|x – y|s(p–2)
u(x) – u(y)

|x – y|s
u(x) – u(y)
|u(x) – u(y)|

dy
|x – y|N+s , (1.2)

where P.V. denotes the Cauchy principle value. For 0 < s < 1, (–�)s
gp is called the fractional

p-Laplacian operator.
In the last years, for pure mathematical research and concrete real-world applications,

the fractional p-Laplacian operator has been studied on the fractional Sobolev space

W sLgp (�) =
{

u ∈ Lgp (�) :
∫

�

∫
�

|u(x) – u(y)|p
|x – y|N+sp dx dy < ∞

}
,

where Lgp (�) is the Banach space defined by

Lgp (�) =
{

u : � → R is a measurable function :
∫

�

(∫ |u(x)|

0
gp(t) dt

)
dx < ∞

}
.

The fractional p-Laplacian operator and the fractional Sobolev space arise in many fields of
science, for example, elastic mechanics (see [40]), electro-rheological fluid dynamics(see
[31]), and image processing (see [6]) and the references therein. When 0 < s < 1, (–�)s is
the usual fractional Laplacian operator defined by: for each x ∈ RN and any u ∈ C∞

0 (�),

(–�)su(x) = P.V.
∫

�

u(x) – u(y)
|x – y|N+2s

u(x) – u(y)
|u(x) – u(y)| dy, (1.3)

where P.V. denotes the Cauchy principle value. Since 0 < s < 1, (–�)s is called the frac-
tional Laplacian operator. For the fractional Laplacian operator, see [8, 10, 19] and the
references therein. The fractional Laplacian problems arise from continuum mechanics,
phase transition phenomena, population dynamics, minimum surfaces, and game theory.
The body of literature on the fractional Laplacian operators and their applications is quite
large. We refer the reader to [3, 12, 13, 24–29, 33–38] and the references therein. For the
basic properties of the fractional Sobolev spaces, we refer the readers to [10]. If s → 1–,
(–�)

s(·)
2 reduces to –�. For s = 1, we identify (–�)s with the classical Laplacian opera-

tor –�. If 2 < s < ∞, (1.1) is called s-exponent problems of elliptic type. The s-exponent
Laplacian problems of elliptic type appear in a lot of applications, for example, elastic me-
chanics, electro-rheological fluid dynamics, and image processing. We refer the readers to
[2, 9, 11, 22, 23, 31] and the references therein. In [5, 6, 16], there are some papers concern-
ing related equations involving the fractional Laplacian operator, but results for fractional
Sobolev spaces and the fractional Laplacian operator with exponent are few. In particular,
the fractional Laplacian operator with variable exponent was suggested firstly by Lorenzo
and Hartley [20]. The fractional Laplacian operator with variable exponent and the vari-
able exponent fractional Sobolev space have appeared in a nonlinear diffusion process.
Some diffusion processes reacting to temperature changes can be explained well by frac-
tional derivatives in a nonlocal integro differential operator (see [21]). In [17, 18, 30], the
authors consider the pseudodifferential equations on the fractional Sobolev spaces.
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In recent years, the Kirchhoff equations involving fractional p-Laplacian have attracted
interest and have been researched by some mathematicians. In particular, when s = 1 and
p = 2, –� is the classical Laplace operator. Ji, Fang, and Zhang [15] provided multiplicity
results of solutions for asymptotically linear Kirchhoff equations by using a variant version
of mountain pass theorem and the variational method. When 0 < s < 1 and p = 2, Fiscella
[14] provided the existence of solution for a class of Kirchhoff-type problems involving
fractional Laplacian operator singular term and a critical nonlinearity. When 0 < s < 1 and
1 < p < N/s, Xiang, Zhang, and Rǎdulescu [39] obtained multiplicity results for superlin-
ear Schrödinger–Kirchhoff equations involving fractional N/s-Laplacian with critical ex-
ponential nonlinearity by using the concentration compactness principle in the fractional
Sobolev and mountain pass theorem. When 0 < s < 1 and p = N/s, Mingqi, Rǎdulescu, and
Zhang [25] provided existence and multiplicity of solutions for Kirchhoff equations involv-
ing fractional N/s-Laplacian with critical nonlinearity by the mountain pass geometry and
Ekeland’s variational principle. They [26] also obtained the existence and multiplicity re-
sults of solutions for Kirchhoff equations involving fractional N/s-Laplacian with singular
exponential nonlinearity by using the same methods.

The weak solutions un ∈ W sLgp (�) of (1.1) are a measurable function defined on � with
valued into R, n = 1, 2, . . . , and satisfy the following in weak sense:

∫
�

[
(–�)s

gp un + λV (x)|un|p–2un
]
w(x) dx +

∫
�

|un|r–1un – |un–1|r–1un–1

h
w(x) dx = 0

for any w ∈ W sLgp (�) and

∥∥u(x) – u0
∥∥ → 0 as x → θ .

Our main result is as follows.

Theorem 1.1 Assume that 0 < s < 1, 2 ≤ p < ∞, r = Np
N–sp –1 = p∗

s –1, N > sp u0 ∈ W sLgp (�)
and V : �̄ → [0,∞) is a continuous function satisfying

(V1) J = int(V –1(0)) ⊂ � is a nonempty bounded domain and J̄ = V –1(0),
(V2) there exists a nonempty open domain �0 ⊂ J such that V (x) = 0 for all x ∈ �̄0.

Then there exists a family of weak solutions un ∈ W sLgp (�), n = 1, 2, . . . of (1.1).

The outline of the proof of Theorem 1.1 is as follows: We first prove the existence of
a sequence of weak solutions for a family of the fractional p-Laplacian difference equa-
tions defined on the finite-dimensional subspace. We next show that there exists a limit
sequence of the sequence of weak solutions for the finite-dimensional problem, and this
limit sequence is the sequence of the solutions of our problem. We get this result by the
estimate of the energy functional and the compactness property of the continuous em-
bedding inclusions between some special spaces. In Sect. 2, we introduce the fractional
Lebesgue space with exponent and the fractional Sobolev space and give some properties.
In Sect. 3, we first prove that problem (1.1) defined on the finite-dimensional subspace has
a sequence of weak solutions for each n = 1, 2, . . . . In Sect. 4, we show that there exists a
limit sequence of the sequence of weak solutions for finite-dimensional problem, and this
limit sequence is a sequence of solutions of our problem (1.1).
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2 Preliminaries
For the variational setting for our problem, we introduce some definitions and theories on
the fractional Lebesgue space with exponent and the fractional Sobolev space.

Let N ≥ 3 and � be a bounded open domain in RN with smooth boundary ∂�. Let
2 ≤ p < ∞ and r = Np

N–sp – 1. The Lebesgue space with p-exponent is

Lp(�) =
{

u : � → R is a measurable function :
(∫

�

∣∣u(x)
∣∣p dx

) 1
p

< ∞
}

with the Luxemburg norm on Lp(�)

‖u‖Lp(�) = inf

{
λ > 0

∣∣∣
∫

�

∣∣∣∣u(x)
λ

∣∣∣∣
p

dx ≤ 1
}

.

The Sobolev space with p-exponent is

W 1,p(�) =
{

u ∈ Lp(�) : � → R is a measurable function :

[u]W 1,p(�) =
(∫

�

∣∣∇u(x)
∣∣p dx

) 1
p

< ∞
}

with the Sobolev norm

‖u‖W 1,p(�) =
[‖u‖p

Lp(�) + [u]p
W 1,p(�)

] 1
p .

Then Lp(�) and W 1,p(�) are Banach spaces. We also define the Sobolev space W 1,p
0 (�)

as the closure of C∞
0 (�) in W 1,p(�). The space is also a reflexive Banach space. If p is

bounded, then norm ‖ · ‖W 1,p(�) is equivalent to the norm [·]W 1,p(�). If p = ∞, L∞(�) is the
Banach space of essentially bounded. If p is bounded and p′ is the conjugate exponent of
p defined by p′ = p

p–1 , then the dual space (Lp(�))′ can be identified with Lp′ (�). If 1 < p <
∞, then the Lebesgue space Lp(�) with p-exponent is separable and reflexive. In Lp(�),
Hölder’s inequality is valid: for all u ∈ Lp(�), v ∈ Lp′ (�) with 1 < p < ∞, we have

∫
�

uv dx ≤ 2‖u‖Lp(�)‖v‖Lp′ (�).

Let us set gp(t) = |t|p–2t. Then g–1
p (t) = t

1
p–1 if t > 0, g–1

p (t) = –t
1

p–1 if t < 0 and g–1
p (0) = 0. By

Young’s inequality, we have

rt ≤ 1
p
|r|p +

1
p′ |t|p

′
=

∫ r

0
|x|p–2x dx +

∫ t

0
y

1
p–1 dy for all r, t ≥ 0.

Let Lgp (�) be the space defined by

Lgp (�) =
{

u : � → R is a measurable such that

sup

{∫
�

uv dx;
∫

�

[∫ |v|

0
y

1
p–1 dy

]
dx ≤ 1

}
< ∞

}
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equipped with the norm

‖u‖Lgp = sup

{∫
�

uv dx;
∫

�

[∫ |v|

0
y

1
p–1 dy

]
dx ≤ 1

}
.

Then (Lgp (�),‖u‖Lgp ) is a Banach space whose norm is equivalent to the Luxemburg norm

‖u‖gp = inf

{
λ > 0;

∫
�

∫ | u(x)
λ

|

0
|t|p–2t dt dx ≤ 1

}
.

In Lgp (�), Hölder’s inequality is valid: for all u ∈ Lgp (�), v ∈ Lg–1
p

(�) with 1 < p < ∞, we
have

∫
�

|uv|dx ≤ 2‖u‖gp‖v‖g–1
p

.

Now we introduce the fractional Sobolev space with p-exponent. Let 0 < s < 1 and 2 ≤ p <
∞. The fractional Sobolev space with p-exponent is defined by

W sLgp (�) =
{

u ∈ Lgp (�) : [u]p
s,gp =

∫
�

∫
�

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N < ∞
}

equipped with the norm

‖u‖s,gp =
(‖u‖p

gp (�) + [u]p
s,gp

) 1
p .

Lemma 2.1 ([7]) Let 0 < s < 1 and 2 ≤ p < ∞. Then W sLgp (RN ) is a reflexive and separable
Banach space. Moreover, C∞

0 (RN ) is dense in W sLgp (RN ).

Let W s
0Lgp (�) denote the closure of C∞

0 (�) in the norm ‖u‖s,gp .
The following lemma shows that the norm [·]s,gp is a norm of W sLgp (�) equivalent to

‖ · ‖s,gp .

Lemma 2.2 ([32]; Generalized Poincaré inequality) Let 0 < s < 1 and 2 ≤ p < ∞. Then
there exists a positive constant C > 0 such that

‖u‖gp ≤ [u]s,gp , ∀u ∈ W s
0Lgp (�). (2.1)

That is, the embedding

W s
0Lgp (�) ↪→ Lgp (�)

is continuous and compact. Furthermore, [u]s,gp is a norm of W s
0Lgp (�) equivalent to ‖·‖s,gp .

Lemma 2.3 Let 0 < s < 1, 2 ≤ p < ∞. If N > sp, for any fixed constant exponent q ∈ (1, Np
N–sp ],

W s
0Lgp (�) is continuously embedded into Lgq (�). If u ∈ W s

0Lgp (�), then there exists a con-
stant C1 = C1(N , p, q, s) > 0 such that

‖u‖gq ≤ C1‖u‖s,p. (2.2)
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Furthermore, [u]s,p is a norm of W s
0Lgp (�). Moreover, there exists a constant C2 =

C2(N , p, s) > 0 such that

‖u‖gq ≤ C2[u]s,p. (2.3)

Proof By Theorem 6.7 and Theorem 6.9 of [10], for N > sp and any fixed constant expo-
nent q ∈ (1, Np

N–sp ], W s
0Lgp (�) is continuously embedded into Lgq (�). It follows that (2.2)

holds. By combining inequalities (2.1) and (2.2), [u]s,gp is an equivalent norm of W s
0Lgp (�).

It follows that (2.3) holds. �

Lemma 2.4 Let 0 < s1 < s < s2 < 1 and 2 ≤ p < ∞. Then the embeddings

W s2
0 Lgp (�) ↪→ W s

0Lgp (�) ↪→ W s1
0 Lgp (�)

are continuous.

Proof For any u ∈ W s2
0 Lgp (�), we have

∫
�

∫
�∩{|x–y|≥1}

[∫ |u(x)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�∩{|x–y|≥1}

[∫ |u(x)|
|x–y|s1

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�∩{|z|≥1}

[∫ |u(x)|
|z|s1

0
|t|p–2t dt

]
dx dz

|x – y|N

≤ C
∫

�

∣∣u(x)
∣∣p dx.

Moreover we have

∫
�

∫
�∩{|x–y|≤1}

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�∩{|x–y|≤1}

[∫ |u(x)–u(y)|
|x–y|s2

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�

[∫ |u(x)–u(y)|
|x–y|s2

0
|t|p–2t dt

]
dx dy

|x – y|N .

Thus we have

∫
�

∫
�

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�∩{|x–y|≥1}

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N

+
∫

�

∫
�∩{|x–y|≤1}

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N
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≤ C
∫

�

∣∣u(x)
∣∣p dx +

∫
�

∫
�

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N

≤ C
(∫

�

∣∣u(x)
∣∣p dx +

∫
�

∫
�

[∫ |u(x)–u(y)|
|x–y|s2

0
|t|p–2t dt

]
dx dy

|x – y|N
)

.

It follows from this inequality that we can easily verify that the embedding W s2
0 Lgp (�) ↪→

W s
0Lgp (�) is continuous. Similarly, for any u ∈ W s

0Lgp (�), we have

∫
�

∫
�∩{|x–y|≥1}

[∫ |u(x)|
|x–y|s1

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�∩{|z|≥1}

[∫ |u(x)|
|z|s1

0
|t|p–2t dt

]
dx dy

|x – y|N

≤ D
∫

�

∣∣u(x)
∣∣p dx.

Moreover, we have

∫
�

∫
�∩{|x–y|≤1}

[∫ |u(x)–u(y)|
|x–y|s1

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�∩{|x–y|≤1}

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N .

Thus we have

∫
�

∫
�

[∫ |u(x)–u(y)|
|x–y|s1

0
|t|p–2t dt

]
dx dy

|x – y|N

≤
∫

�

∫
�∩{|x–y|≥1}

[∫ |u(x)–u(y)|
|x–y|s1

0
|t|p–2t dt

]
dx dy

|x – y|N

+
∫

�

∫
�∩{|x–y|≤1}

[∫ |u(x)–u(y)|
|x–y|s1

0
|t|p–2t dt

]
dx dy

|x – y|N

≤ D
∫

�

∣∣u(x)
∣∣p dx +

∫
�

∫
�

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N

≤ D
(∫

�

∣∣u(x)
∣∣p dx +

∫
�

∫
�

[∫ |u(x)–u(y)|
|x–y|s

0
|t|p–2t dt

]
dx dy

|x – y|N
)

.

It follows that the embedding W s
0Lgp (�) ↪→ W s1

0 Lgp (�) is continuous. Thus the proof of
the lemma is complete. �

Lemma 2.5 Let 0 < s < 1, 2 ≤ p < ∞. If N > sp, for any fixed constant exponent q ∈ (1, Np
N–sp ],

the embedding

W sLgp (�) ↪→ Lgq (�)
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is continuous and compact. That is, if u ∈ W sLgp (�), then there exists a constant D =
D(N , p, s) > 0 such that

‖u‖gq ≤ D‖u‖s,gp .

Furthermore, [u]s,gp is a norm of W s
0Lgp (�). Moreover, there exists a constant C2 =

C2(N , p, s) > 0 such that

‖u‖gq ≤ C2[u]s,gp .

Proof Let us set

p∗
s =

Np
N – sp

,

‖u‖gp∗s
(Vi) = ‖u‖gp∗s

|Vi , [u]s,gp (Vi) = [u]s,gp |Vi , and ‖u‖s,gp (Vi) = ‖u‖s,gp |Vi .

Since 0 < s < 1 and N > sp, there exists a constant τ1 > 0 such that

p∗
s – p ≥ τ1 > 0.

Since � is bounded, there exist a constant ε > 0 and l numbers of disjoint hypercubes Vi

such that � =
⋃l

i=1 Vi and diam Vi < ε such that

p∗
s – p ≥ τ1

2
> 0

on Vi, i = 1, 2, . . . , l. By Lemma 2.3, Theorem 6.7, and Theorem 6.9 of [12], there exists a
constant D = D(N , s, p) such that

‖u‖gp∗s
(Vi) ≤ D

(‖u‖p
gp (Vi) + [u]p

s,gp (Vi)
) 1

p . (2.4)

By Hölder’s inequality, if q ∈ (1, p∗
s ], we have

‖u‖gq (Vi) ≤ D‖u‖gp∗s
(Vi).

We note that

‖u‖gq (�) ≤
l∑

i=1

‖u‖gq (Vi).

Thus we have

‖u‖gq (�) ≤
l∑

i=1

‖u‖gq (Vi) ≤ D
l∑

i=1

‖u‖gp∗s
(Vi).

It follows from (2.4) that

‖u‖gq (�) ≤
l∑

i=1

D
(‖u‖p

gp (Vi) + [u]p
s,p(Vi)

) 1
p ≤ D‖u‖s,p.
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Thus the embedding W sLgp (�) ↪→ Lgq (�) is continuous. Furthermore, we show that the
embedding is compact. In fact, in the constant p∗

s on Vi, for q ∈ (1, p∗
s ] on Vi, the em-

bedding W sLgp (Vi) ↪→ Lgq (Vi) is compact. Thus the embedding W sLgp (�) ↪→ Lgq (�) is
compact. It follows that there exists a constant D = D(N , p, s) > 0 such that

‖u‖gq ≤ D‖u‖s,gp . �

By Lemma 2.2, we have the following lemma.

Lemma 2.6 If u, un ∈ W s
0Lgp (�), n = 1, 2, . . . , then the following statements are equivalent

to each other:
(i) limn→∞ ‖un – u‖s,gp = 0, i = 1, 2,

(ii) limn→∞
∫
�

|un – u|p dx = 0 and limn→∞[un – u]s,gp = 0,
(iii) un → u in measure in � and limn→∞

∫
�

|un|p dx =
∫
�

|u|p dx.

We need the following inequality for the p-Laplacian operator.

Lemma 2.7 ([1]) Let 1 < p < ∞. Then there exist constants C1 and C2 depending on p and
N such that, for any ξ , η ∈ RN ,

(i)
∣∣|ξ |p–2ξ – |η|p–2η

∣∣ ≤ C1
(|ξ | + |η|)p–2|ξ – η|

and

(ii)
(|ξ |p–2ξ – |η|p–2η

) · (ξ – η) ≥ C2|ξ – η|p.

We recall a fundamental fact, which is a crucial role for our main result.

Lemma 2.8 ([4]) Assume that Q is a continuous vector field from RN to RN and satisfies

Q(x) · x ≥ 0 if |x| = ρ

for some ρ > 0. Then there exists a point x ∈ Bρ(0) such that

Q(x) = 0,

where Bρ(0) denotes a ball centered at the origin with radius ρ in RN .

3 Existence of approximating solutions
In this section we show that there exists a unique approximating solution for (1.1) on each
finite-dimensional subspace.

Let us choose a family of bases {φi(x)}∞i=1 in W s
0Lgp (�) such that {φi(x)}∞i=1 is an orthonor-

mal system in Lp(�) and span{φi(x)}∞i=1 is dense in W s
0Lgp (�). Let u0 ∈ W s

0Lgp (�). Since
span{φi(x)}∞i=1 is dense in W s

0Lgp (�), any element un in W s
0Lgp (�) and the initial data u0

can be expanded as

un(x) =
∞∑
i=1

ai
nφi(x), u0(x) =

∞∑
i=1

ai
0φi(x).



Choi and Jung Journal of Inequalities and Applications         (2021) 2021:41 Page 10 of 17

Let us define the finite subspace Fk of W s
0Lgp (�) by

Fk = span
{
φ1(x), . . . ,φk(x)

}
.

Let N be any positive integer which shall be sent to infinity and h be any small pos-
itive number. For any fixed integer k = 1, 2, . . . , let un,k =

∑k
i=1 ai

n,kφi(x) be a family of
the Galerkin approximating solutions for a family of fractional Laplace equations with
p-exponent and difference defined on the finite-dimensional subspaces.

∫
�

(–�)s
gp un,k · ψ dx + λ

∫
�

V (x)|un,k|p–2un,k · ψ dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· ψ dx = 0, (3.1)

∀ψ ∈ Fk ,

u0,k(x) =
k∑

i=1

ai
0φi(x).

Now we shall show that, for each n = 1, 2, . . . , N and k = 1, 2, . . . , (3.1) has a unique solution
un,k ∈ Fk ⊂ W s

0Lgp (�).

Lemma 3.1 (Existence of approximating weak solutions) For each n = 1, 2, . . . , N and k =
1, 2, . . . , there exists a unique weak solution un,k ∈ Fk ⊂ W s

0Lgp (�) of (3.1).

Proof Let us choose any element v ∈ Fk ⊂ W s
0Lgp (�). Then v can be represented by

v =
k∑

i=1

ρ iφi.

Let us set

ρ =
(
ρ1, . . . ,ρk) ∈ Rk .

Let us define the functional J i
n,k(ρ) by

J i
n,k(ρ) =

∫
�

(–�)s
gp v · φi dx + λ

∫
�

V (x)|v|p–2v · φi dx +
∫

�

|v|r–1v – |un–1|r–1un–1

h
· φi dx

=
∫

�

∫
�

∣∣∣∣ |v(x) – v(y)|
|x – y|s

∣∣∣∣
p–2 v(x) – v(y)

|x – y|s
φi(x) – φi(y)
|x – y|N+s dx dy

+ λ

∫
�

V (x)|v|p–2v · φi dx +
∫

�

|v|r–1v – |un–1|r–1un–1

h
· v dx.

Let us define the functional Jn,k = (J1
n.k , . . . , Jk

n,k) : Rk → Rk . Then Jn,k is continuous on ρ and
satisfies

Jn,k(ρ) · ρ =
k∑

i=1

J i
n,kρ

i
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=
∫

�

∫
�

|v(x) – v(y)|p
|x – y|N+sp dx dy

+ λ

∫
�

V (x)|v|p dx +
∫

�

|v|r–1v – |un–1|r–1un–1

h
· v dx. (3.2)

We claim that Jn,k(ρ) · ρ ≥ 0. In fact, by Young’s inequality and generalized Poincaré’s in-
equality of Lemma 2.2, for any ε > 0, there exists a constant Cε > 0 such that

∫
�

|un–1|r–1un–1 · v dx ≤ p – 1
p

∫
�

|un–1|
rp

p–1 dx +
1
p

∫
�

|v|p dx

≤ Cε

∫
�

|un–1|
rp

p–1 dx + ε[v]p
s,gp .

Thus

Jn,k(ρ) · ρ ≥ [v]p
s,gp + λ

∫
�

V (x)|v|p dx +
1
h

∫
�

|v|r+1 dx

–
Cε

h

∫
�

|un–1|
rp

p–1 dx –
ε

h
[v]p

s,gp . (3.3)

By (3.2) and (3.3), we have

Jn,k(ρ) · ρ ≥
(

1 –
ε

h

)
[v]p

s,gp + λ

∫
�

V (x)|v|p dx +
1
h

∫
�

|v|r+1 dx –
Cε

h

∫
�

|un–1|
rp

p–1 dx.

Taking ε > 0 so that ε = h
2 for a small positive number h, we have

Jn,k(ρ) · ρ ≥ 1
2

[v]p
s,gp + λ

∫
�

V (x)|v|p dx +
1
h

∫
�

|v|r+1 dx –
Cε

h

∫
�

|un–1|
rp

p–1 dx. (3.4)

By Hölder’s inequality and the orthonormality of {φi} in Lgp (�), we have

(∫
�

|v|r+1 dx
) 2

r+1 ≥ 1
|�| r–1

r+1
|ρ|2.

Since r + 1 = p∗
s > p and λ > 0, we can choose |ρ|2 so large that the right-hand side of

(3.4) is nonnegative. It follows from Lemma 2.8 that Jn,k has a zero. Let this point be ρ =
(ρ1

n,k , . . . ,ρk
n,k) and un,k =

∑k
i=1 ρ i

n,kφi. Then we have

∫
�

(–�)s
gp un,k · φi dx + λ

∫
�

V (x)|un,k|p–2un,k · φi dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· φi dx = 0

for all i = 1, . . . , k. Then, for any element ψ ∈ Fk ⊂ W s
0Lgp (�), we have

∫
�

(–�)s
gp un,k · ψ dx + λ

∫
�

V (x)|un,k|p–2un,k · ψ dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· ψ dx = 0
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for all i = 1, . . . , k, i.e.,

∫
�

∫
�

|un,k(x) – un,k(y)|p–2

|x – y|s(p–2)
un,k(x) – un,k(y)

|x – y|s
ψ(x) – ψ(y)
|x – y|N+s dx dy

+ λ

∫
�

V (x)|un,k|p–2un,k · ψ dx +
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· ψ dx = 0

for all i = 1, . . . , k. Then un,k =
∑k

i=1
˜ρ i
n,kφi is a weak solution of (3.1) on Fk for each integer

n = 1, 2, . . . , N and k = 1, 2, . . . . �

Lemma 3.2 (Energy estimate for finite-dimensional problem) Suppose that
{un,k}n=1,2,...,N ;k=1,2,... is a solution of (3.1). Then, for each integer n = 1, 2, . . . , N and k =
1, 2, . . . , we have

r
(r + 1)h

∫
�

|un–1|r+1 dx ≥
∫

�

∫
�

|un,k(x) – un,k(y)|p
|x – y|N+sp dx dy

+ λ

∫
�

V (x)|un,k|p dx +
r

(r + 1)h

∫
�

|un,k|r+1 dx. (3.5)

Proof Putting ψ = un,k in (3.1), we have

∫
�

(–�)s
gp un,k · un,k dx + λ

∫
�

V (x)|un,k|p dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· un,k dx = 0. (3.6)

That is,

∫
�

|un,k|r–1un,k – |un–1|r–1un–1

h
· un,k dx

= –
∫

�

∫
�

|un,k(x) – un,k(y)|p
|x – y|N+sp dx dy – λ

∫
�

V (x)|un,k|p dx. (3.7)

By Young’s inequality, we have

|un–1|r–1un–1 · un,k ≤ |un–1|r|un,k| ≤ r
r + 1

|un–1|r+1 +
1

r + 1
|un,k|r+1.

Thus we have
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· un,k dx

≥ r
(r + 1)h

∫
�

|un,k|r+1 dx –
r

(r + 1)h

∫
�

|un–1|r+1 dx. (3.8)

Combining (3.7) and (3.8), we have

r
(r + 1)h

∫
�

|un–1|r+1 dx ≥
∫

�

∫
�

|un,k(x) – un,k(y)|p
|x – y|N+sp dx dy

+ λ

∫
�

V (x)|un,k|p dx +
r

(r + 1)h

∫
�

|un,k|r+1 dx.
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Thus the lemma is proved. �

4 Proof of Theorem 1.1
In this section we prove Theorem 1.1 by showing that the limit un = limk→∞ un,k of the
subsequence {un,k}n=1,2,...,N ;k=1,2,... of the sequence of weak solutions of (3.1) on Fk satisfies
(1.1).

Lemma 4.1 Let {un,k}n=1,2,...,N ;k=1,2,... be a solution of (3.1) satisfying

∫
�

(–�)s
gp un,k · ψ dx + λ

∫
�

V (x)|un,k|p–2un,k · ψ dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· ψ dx = 0

∀ψ ∈ Fk . Then there exists a subsequence, up to a subsequence, {un,k}n=1,2,...,N ;k=1,2,... con-
verging to limk→∞ un,k = un such that

(i) un,k → un strongly as k → ∞ in Lgr (�).
(ii) |un,k|r–1un,k → |un|r–1un strongly as k → ∞ in L1(�).

Proof (i) The sequence un–1 ∈ Lgr+1 (�) is defined inductively and by Lemma 3.2, {un,k} is
bounded in W s

0Lgp (�). Since the embedding W s
0Lgp (�) ↪→ Lgq (�) is continuous and com-

pact for any q with 1 ≤ q < Np
N–p = r + 1, the embedding W s

0Lgp (�) ↪→ Lgr (�) is continuous
and compact. Thus the sequence {un,k} has a subsequence, up to a subsequence, {un,k}
converging strongly to limk→∞0 un,k = un in Lgr (�).

(ii) By Lemma 2.7 (i), there exist constants C > 0 and C′ > 0 such that

∫
�

∣∣|un,k|r–1un,k – |un|r–1un
∣∣dx ≤ C

∫
�

(|un,k|r–1 + |un|r–1)|un,k – un|dx

≤ C
(∫

�

(|un,k|r + |un|r
)

dx
) r–1

r
(∫

�

|un,k – un|r dx
) 1

r

≤ C′‖un,k – un‖Lgr .

Since by (i) un,k → un strongly as k → ∞ in Lgr (�) and un ∈ Lgr (�), it follows that
|un,k|r–1un,k – |un|r–1un ∈ L1(�). �

Proof of Theorem 1.1 By Lemma 3.1, for each n = 1, 2, . . . , N and k = 1, 2, . . . , there exists a
unique weak solution un,k ∈ Fk ⊂ W s

0Lgp (�) of (3.1). By Lemma 4.1, there exists a subse-
quence, up to a subsequence, {un,k} converging strongly to limk→∞∞ un,k = un in Lgr (�).

We shall show that un satisfies (1.1). That is, we shall show that, for any w ∈ W s
0Lgp (�),

∫
�

(–�)s
gp un · w dx + λ

∫
�

V (x)|un|p–2un · w dx

+
∫

�

|un|r–1un – |un–1|r–1un–1

h
· w dx = 0,
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i.e.,
∫

�

∫
�

|un(x) – un(y)|p–2

|x – y|s(p–2)
un(x) – un(y)

|x – y|s
w(x) – w(y)
|x – y|N+s dx dy

+ λ

∫
�

V (x)|un|p–2un · w dx +
∫

�

|un|r–1un – |un–1|r–1un–1

h
· w dx = 0.

In fact, for any w ∈ W s
0Lgp (�), let wk =

∑k
i=1 hn,iφi(x) be the approximating sequence which

converges to w in W s
0Lgp (�). By Lemma 2.7 (ii), there exists a constant C2 > 0 such that

∫
�

(
(–�)s

gp wk – (–�)s
pun,k

) · (wk – un,k) dx

=
∫

�

∫
�

(|wk(x) – wk(y)|p–2(wk(x) – wk(y)) – (|un,k(x) – un,k(y)|p–2(un,k(x) – un,k(y))
|x – y|s(p–2)|x – y|s

· (wk(x) – un,k(x)) – (wk(y) – un,k(y))
|x – y|N+s dx dy

≥ C2

∫
�

∫
�

|(wk(x) – un,k(x)) – (wk(y) – un,k(y))|p
|x – y|N+sp dx dy ≥ 0. (4.1)

On the other hand, putting w = un,k in (3.1), we have

–
∫

�

(–�)s
gp un,k · un,k dx = λ

∫
�

V (x)|un,k|p–2un,k · un,k dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· un,k dx. (4.2)

Taking the test function as wk – un,k in (3.1), we have

–
∫

�

(–�)s
gp un,k · (wk – un,k) dx

= λ

∫
�

V (x)|un,k|p–2un,k · (wk – un,k) dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· (wk – un,k) dx. (4.3)

By adding (4.1) and (4.2), we have
∫

�

((–�)s
gp wk · (wk – un,k) + λ

∫
�

V (x)|un,k|p–2un,k · (wk – un,k) dx

+
∫

�

|un,k|r–1un,k – |un–1|r–1un–1

h
· (wk – un,k) dx ≥ 0. (4.4)

By the energy estimate theorem Lemma 3.2, there exists a constant C1 > 0 such that
∫

�

(–�)s
gp un,k · un,k dx + λ

∫
�

V (x)|un,k|p dx +
r

(r + 1)h

∫
�

|un,k|r+1 dx

=
∫

�

∫
�

|un,k(x) – un,k(y)|p
|x – y|N+sp dx dy + λ

∫
�

V (x)|un,k|p dx +
r

(r + 1)h

∫
�

|un,k|r+1 dx

≤ C1,
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it follows that the sequence {un,k} is bounded in Lgp (�) and so, up to a subsequence,

un,k converges to un weakly in Lgp (�).

Passing to the limit as k → ∞, we have that the first part and the second part of the left-
hand side of (4.4)

∫
�

((–�)s
gp wk · (wk – un,k) + λ

∫
�

V (x)|un,k|p–2un,k · (wk – un,k) dx

−→
∫

�

((–�)s
gp w · (w – un) + λ

∫
�

V (x)|un|p–2un · (w – un) dx. (4.5)

On the other hand, by (ii) of Lemma 4.1, un,k → un a.e., in � and by Vitali’s converging
theorem, up to a subsequence,

|un,k|r–1un,k converges to |un|r–1un weakly in L
r+1

r (�).

It follows that the third part of the left-hand side of (4.4)

∫
�

|un,k|r–1un,k – |un–1|r–1un–1

h
· (wk – un,k) dx

−→
∫

�

|un|r–1un – |un–1|r–1un–1

h
· (w – un) dx. (4.6)

Combining (4.4), (4.5), and (4.6), we have

∫
�

((–�)s
gp w · (w – un) + λ

∫
�

V (x)|un|p–2un · (w – un) dx

+
∫

�

|un|r–1un – |un–1|r–1un–1

h
· (w – un) dx ≥ 0 (4.7)

for any w ∈ W s
0Lgp (�). Let us set

w = un + ηψ for any ψ ∈ W s
0Lgp (�) and η > 0.

Inserting the test function w = un + ηψ in (4.7), we have

∫
�

((–�)s
gp (un + ηψ) · ψ + λ

∫
�

V (x)|un|p–2un · ψ dx

+
∫

�

|un|r–1un – |un–1|r–1un–1

h
· ψ dx ≥ 0. (4.8)

Letting η → 0, we have

∫
�

((–�)s
gp (un) · ψ + λ

∫
�

V (x)|un|p–2un · ψ dx

+
∫

�

|un|r–1un – |un–1|r–1un–1

h
· ψ dx ≥ 0. (4.9)
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Replacing ψ by –ψ and letting η → 0 in (4.8), we have

∫
�

((–�)s
gp (un) · ψ + λ

∫
�

V (x)|un|p–2un · ψ dx

+
∫

�

|un|r–1un – |un–1|r–1un–1

h
· ψ dx ≤ 0. (4.10)

Combining (4.9) and (4.10), we obtain the equality

∫
�

((–�)s
gp (un) · ψ + λ

∫
�

V (x)|un|p–2un · ψ dx

+
∫

�

|un|r–1un – |un–1|r–1un–1

h
· ψ dx = 0.

Thus the proof of Theorem 1.1 is complete. �
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11. Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springe,
Heidelberg (2011)

12. Fǎrcǎseanu, M.: On an eigenvalue problem involving the fractional (s,p)-Laplacian. Fract. Calc. Appl. Anal. 21, 94–103
(2018)
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