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1 Introduction

It is well known that the complete elliptic integrals of the first kind and of the second
kind are classical integrals, and apart from their theoretical importance in the theory
of theta functions, they have important applications in mechanics, statistical mechanics,
electrodynamics, magnetic field calculations, astronomy, geodesy, quasiconformal map-
pings, and other fields of mathematics and mathematical physics. In most applications, we
encounter complicated expressions involving the complete elliptic integrals (which are not
always in a form that is immediately recognizable), and it is difficult to find numerical val-
ues of such expressions to a sufficient number of significant digits. The complete elliptic
integrals cannot be expressed in terms of elementary functions and have representations
as infinite series that slowly converge, so these series are not the most computationally
efficient approach for most scientists and engineers. Therefore, there is a need for appro-

priate approximations and bounds for these integrals.
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The complete elliptic integrals of the first and second kinds K(x) and E(x), respectively,
are defined as [9, 14]

0<x<1 (1)

3 dt
K(x) = / S
0 ~/1-—x2sin’t

and

%
E(x)=/ V1-a2sin’tdt, 0<x<l1, 2)
0

which satisfy
lim K(x) = lim E() = % lim K() =00, lim E(x)=1, 3)

K'(x) = K(v 1- x2) and E'(x) = E(v 1- x2).

The functions K(x) and E(x) have the following representation [23]:

K(x) = %F(% % 1,x2) (4)

and

1 -1
E@)=ZF(2,=21,42),
2 2 2

where the hypergeometric function F(a, b, ¢, x) is defined by [5]

> n b}’l "
F(a,b,c,x) = Z %%,

n=0

“l<x<]1, (5)

with (a), = Fl(_”(;)” ) and the Euler gamma function I'(x) is defined by the improper integral

o0
I(x) =/ e"vldy, x>0.
0

The hypergeometric function F(a, b, ¢, x) has the differentiation formula [5]

@ F(a,b,c,x) = (a)r(b)rl-"(a +r,b+r,c+r,x) (6)
dx’ (©)r

and the transformation
(1-x)"*PF(a,b,c,x) = F(c— a,c - b,c,x), a,b,c>0;a+b>c. 7)

Wallis’s ratio W, is defined as [10, 12]

['(n+1/2)

= m, eN, (8)

n
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and satisfies the recurrence relation

n+1/2
W,

n+l =
n+1

In [31], Yang et al. show that

" W2 Ww? 6(2n +1)W?
u, = k _nk <0, n>8. 9
" n;(k+1)(n—k+1) niDm+2) "= ©)
K (x) can be written using the notation W, as follows:
K(x):zin 2 0cx<l (10)
2 n=0 ! ’ .

The importance of elliptic integrals led to deduction of many of their inequalities. In
[11], Carlson and Gustafson presented the inequality

4 4
log O<x<1. (11)

NS

In [16], Kithnau deduced the lower bound

<K(x) <

lo
g 1— 2 3 +u?

9 4
I((x)>8+x210gm, O<x<1, (12)
which is an improvement of the left-hand side of inequality (11). In [4], Anderson et al.
deduced the inequality

tanh™* tanh™!
T an7(QC)<I((96)<Zani(x), O<x<l1. (13)
2 X 2 X

Alzer and Qiu [1] presented the inequality

-1 Iz -1 v
T (M) <K(x) < £<M> , O<x<l1, (14)
2 X 2 X

with the best possible constants = 3/4 and v = 1, which improved the lower bound of
(13).In [31], Yang et al. proved the inequality

log 1_x2<1((x)<10g<eg—4+ \/14__962>, O<x<l1. (15)
In 2019, Yang and Tian [32] deduced the inequality
plog(1+ 4 ) <K(x)<010g<1+ 4 ), (16)
N 1-a2
with the best possible constants p = 57— and o = 1. Recently, Wang et al. [27] presented

the inequality

K(x)<log( 1+ 4 il +11 il x? O<x<1 (17)
g J1-%2/|2log5 2log5 ’ ’
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For more details about inequalities, applications, and other related special functions to
K(x) and E(x), we refer to [2, 3, 13, 15, 17-22, 24—26, 28—30] and the references therein.
Padé approximant [6—8] of order (r,s) of a function f(x) is a rational function

Yo !

——=—, 0,
1+ Z?zl ﬂixl

r;s =

[r/s]r(x) =

where singularities of f(x) are only poles. There are many different ways to determine the
other coefficients ;s for 0 <j <r and fs for 1 < k <s. Among them is the matching
between the first 7 + s + 1 coefficients in Maclaurin series f(x) = Z/ﬁo cxx’ and the first

r + s+ 1 coefficients of Padé approximant by the relation
r+s+1 Zr a'xi r+s+1 s r
> izo Bix =0 i=0 i=0

k=0

Hence, we solve the following equations for «;s and S;s:

S r
it Y ckBrak=0 and o =Y Brick,

k=1 k=0
and we have
[r/s]p(x) — f(x) = O(x””l).

2 Main results
Theorem 1 The following inequality

K@®) < Zlog| —= ! 0<x<l (18
(x <§0g il p+ =) | <x< )

holds for the best possible constant p = 1.

Proof Consider the function

Using (4) and (6), we have

Fl2 219 1 33 2
LN (AN WCE PR
v 4p+ A=) 1-x/ \2°2 (1-x)?

and then the function F, (/) is strictly decreasing on x € (0, 1) if and only if

2 1
FG22n(1-07 VI-x

p= = f(x).



Mahmoud and Anis Journal of Inequalities and Applications (2021) 2021:37

Using relation (7), we have

Z_F(%)%721x)
flo) = 2P
1 _xF(E; Exzyx)
and hence
1
"(x) = fi(%),
4F(%,1,2,0)2(1 - 2)3
where

11 11 2 3 3
—ar( =, = 2x) —2F( 2,2 2,x) —a-0F(2,2,3,%).
) (2 2 x) (2 2 x) (1-%) (2 2 x)

From (8), we have

o]

n+1

w2 >, w2 P 2(4n - 1) W?
filx) =4 E n+”1x”—2 E x") + E — Iy
n=0 n=0

(n+1)(n+2)

n=0
> w2w? > 6(2n+1)W?
=92 k " n—k n n .n
;g (k+1)(n—k+1)x +§ (n+ 1)(n+2)x
== Zﬂnx )
n=0
where
=2 - WEW?2 _6(2n+ 1)W3‘
g P (k+1)(n—-k+1) m+1)n+2)
Using (9), we obtain

wy<U,<0, n>8,

-1 =17 —43 -953 —2801
and po = -1, 1 = 5, U2 = 1550 M3 =

n

—485,318

on x € (0,1) with

lim f(x) =1,
x—>0*

which implies that p < 1. Therefore, the function F,(x) is strictly decreasing on x € (0,1)
if and only if p < 1, and using the first limit in (3), we obtain inequality (18).

Theorem 2 The following inequality

b4 e 1
K(x) > —log q+ , O<x<l1
2 q+1 1-L,0
2

holds for the best possible constant q = g.

5127 M4 = Tg3847 M5 = G55367 M6 = 1043047 M7 =
Terma16- Hence p, <0 for n > 0, fi(x) > 0 and therefore the function f(x) is increasing

Page 5 of 13
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Proof Consider the function

Using (4) and (6), we have

, PR 1 33 11
Hq(x): 1 5 q+ F _;_127x - 5 3|
4(q + ) 1- 1y 22 6(1- 1x)2

11
1-15%

and then the function H, (/) is strictly increasing on (0, 1) if and only if

11 1
qZ 3 3 11 3 - :h(x).
6F(§’§’2)x)(1_ ﬁx)z /1 — %x
Then
1143
W)= —— /3 —hy (x),
2F(3,2,2,%2)%(12 - 11x)2
where

33 33 2 55
hi(x) =132F( =, =, 2,x | + (=24 + 22x)F( =, =,2,x ) +9(-12+ 11x)F( =, =,3,x ).
22 22 22

From (8), we have

o]

00 2
(2m +1)2W? (2n+1)2W?
hi(x) =132 § R 4 (=24 + 22%) § R S W
o n+1 o n+1

o]

+9(-12+11%)

n=0

B 4%2‘“: 22k + DX ((n—k + 12+ Hywzw?z,
T (k+D)(n—k+1) ¥

(2n +1)?(2n* - 5n - 12) W2
n+1)(n+2)

2(2n + 1)*(2n + 3)*W?
I+ 1)(n+2)

v

M

and

L2k + DA(m—k+ 32+ HWEWE, (2n+1)22n+3)(n-H)W?

Vi = k+1)(n—k+1) (n+1)(n+2)

k=0
The sequence V), < 0 for n =4,5,6,... and

-19 -663 -8367
Vo =0, Vi=—, Vo= ——, V= ——.
8 128 1024
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Then V,, < 0 for n > 0, h;(x) < 0 and therefore the function /(x) is decreasing with
5
li =-,

which implies that g > %. Therefore, the function H,(x) is strictly increasing on x € (0,1)
ifand only if g > %, and using the limits in (3), we obtain inequality (19). O

Based on the Padé approximation method, we can conclude the following approxima-
tions.

Proposition 3 The Padé approximations of orders (3,4) and (3,7) of the function

ZeZK(x)-l

R

x* 134 261x%  14,317x1°

=1-— - - - +.00, x>0
64 768 16,384 983,040
are the following rational functions:
_ 13
1-"5+&
and
1 _ 795
832 11
BI7®) = —— 5 * O(x'). (21)

832 T 62 T 159,744

Proposition 4 The Padé approximations of orders (3,7) and (3,9) of the function

1 19x° 403  167,659x° 1,862,857x!2
+

== + + + +.0, x—0
2 9216 110,592 35,389,440 339,738,624
are the following rational functions:
1 40342
_ 2~ 456 11
[3/7]4(x) = T e L7 +0(x') (22)
4608 ~ 228
and
1 167,659
_ 2~ 7257920 13
[8/9](x) = 167,659 _ 195 _ 34361578 O(x ) (23)

128,960 4608 1,782,743,040

Unfortunately, formulas (20),(21), (22), and (23) did not give bounds of the function
K(x) for all x in the domain (0, 1). But formula (20) motivates us to establish the following
inequalities.
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Theorem 5 The following inequality

1 1- B42
K(x)< log 1+ 100
2 1-x2 +g

1- 15 100

holds for 0 <x < 1.

Proof Consider the function

()
e =
T(x) = ,
L1+ ) ()
and hence
() - (1600 + (1536 - 253))e FE30 4 (x)
X) = )
128e+/1 — (=25 + 24x)(1 + /1 — x) (**> — 1)
where

(%) = wi(x) — wa(x)

with

wi (%) = (x* - 1)F(%, %,Z,x)

and
(*? - 1)
wa(x) = 80,000
2 (1 + /1 —x)(25 — 24x)(1600 — (1536—25x)x)[
—200(793 + 25+/1 — x)x + (82,378 + 7400+/1 — x)x>
- 120003 + 2v/1 - x)x*].
Now
o0 o0
Wr% n+2 an n
Wl(x)_22n+1x _Zn+1x
n=0 n=0
+ Z (641> — 104n° + 48n - 9)W?
(m+1)2n-1)%2(2n - 3)2
and

) i (n+ 1)( + 2)(183 + 4007 + 280n2 + 64r3) W2,,
N (n+3)3 +4n(n + 2))?

n=0

Then wy (x) is a convex function between the points (0, -1) and (1,0). Also,

w
wy(1-u?) = 3(M), O<uc<l,
wa (1)

(24)

Page 8 of 13
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where
wa(u) = —2u(89 + 3622u” + 35,689u* + 600u6)3 1+u)?<0
and

ws(u) = —422,9814 — 171,806,490u — 1,017,032,637u* — 107,1925,167u>
- 26,188,833,484u" + 167,770,858,692u° — 106,178,812,935u°
+2,315,906,378,9951” — 2,725,881,138,9904° — 8,235,729,120,2101°
- 93,146,282,277,931u"° - 135,010,050,058,6654'! — 381,354,896,855,6881'
—469,576,678,642,848u"> — 381,450,253,571,1211**
-157,869,853,296,507u'® — 117,933,228,362,6001'°
- 118,127,740,267,800u'” — 38,943,594,964,800u'® — 1,971,366,120,0001*°

- 629,017,920,0004%° — 11,016,000,0004> — 3,456,000,0002:>2

o0
=(1- u)M/ ety (£) dt < 0,
0

1,937,500¢%3 415,555,625¢%2 154,777,075t
T 26,298,031,350,591  18,294,282,678,672  48,915,194,328

167,679,321,125¢t%°  90,786,961,225¢°  100,101,056,444,021¢'8

633,568,231,296  6,092,002,224  166,728,481,920
3,562,788,612,574,819t'7  133,198,651,249,637,299:°
©198,486,288,000 326,918,592,000
2,692,769,780,390,699t'>  174,766,864,343,435,699¢
378,378,000 1,816,214,400
43,522,631,386,179,371t13  5,123,113,557,369,119¢'2
43,243,200 633,600
122,852,110,141,292,563¢'1  809,450,870,289,838,177t°
2,494,800 3,628,800
2,111,790,435,345,101¢°  68,468,628,875,595,70713
2880 40,320
169,054,344,340,120t"  5,639,548,747,095¢°

—1,965,373,967,040¢°

63 2
—924,471,855,000t* — 276,448,320,000£ — 43,524,000,000%>

- 3,456,000,000¢ < 0.

Then w,(x) is a convex function between the same two points (0,—1) and (1,0). Also,

. -1 .
xlg%){ Wy(x) = R xlinoj* wy(x) = 3
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and
lim wi,(x) = 4 lim w/(x) = 8
x—>1" 2 ’ x—>1" 1 T

Then wy(x) > wa(x), £1(x) > 0 and T'(x) is decreasing on x € (0, 1). Hence, using the limits
in (3), we obtain inequality (24). O

Theorem 6 The inequality

K(x)>zlo (E(1+ ! )( -« )) (25)
2 22 V1 —x2 1—x2+%

holds for x € (0,1).

Proof Consider the function

2K (x)
e n

and hence

, (62 — 62x + x%)eF (3131
G ,
=)= 124e(1-x)3(1 + M)gl @

where
11 2(62 233 +24/1—-w)x + (3 +24/1 - x)x
ax)=F(=,=,2,x
2°2 (1++1-x)(62—-62x +x2)

Using (5), we get

11 > w2 3x2 2543
F| -,=-,2,x :Z ”x”>1+f+i+ x' (26)
2’2 —n+l 8 64 1024
Now let

Hx) =1 ++/1- )<2(62 2(33 + 21— x)x + (3 + 21— x)x?)

x  3x2 25%°
-1+ += 1++/1-x)(62-62x+x%) ).
( 3t % 1024)( + x)( +x)>

&3(u) = 1225 — 114,096u + 533,640u> — 875,268u° + 489,925u* + 154,1761u°

—194,208u4° — 67,464u" + 75,897u® + 13,520u° — 14,872u'° + 300z

Page 10 0of 13
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where

&(t) =

—325u'? —194,2084° — 67,464u" + 75,897u® + 13,520u° — 14,872u'°

+300u!t — 325412
o0
=(1-uk / AT
0

<0,

- [48¢'" +6864¢"° + 313,225¢° + 5,268,780¢°
623,700

+85,446,900t” + 794,011,680¢° + 3,030,340,005¢° + 4,942,822,500¢*

+3,432,636,900¢° + 1,122,660,000¢> + 202,702,500¢].

Then g (x) is deceasing with

lirgl+ &(x)=0.

Hence g»(x) < 0, and we have

2(62 — 2(33 + 24/1 —x)x + (3 + 24/1 — x)x> x  3x% 254%
<

1+ -

+—+ . (27)
(1++/1-x)(62—62x +x2) 8 64 1024

From inequalities (26) and (27), we get g1 (x) > 0 and the function G(x) is increasing. Hence,

using the limits in (3), we obtain inequality (25) O

3 Remarks
Comparing our new bounds of the function K(x) with its previous ones presents the fol-

lowing remarks.

Remark 7 Our upper bound in (24) is better than our upper bound in (18) for x € (0, 1).

Remark 8 The upper bound in (24) is better than the upper bound in (11) for x € (0,0.97).

Remark 9 The upper bound in (24) is better than the upper bound in (14) for x € (0, 1).

Remark 10 The upper bound in (24) is better than the upper bound in each of (15), (16),
and (17) for x € (0,0.98).

Remark 11 Ourlower boundsin (19) and (25) are not contained in each other for x € (0, 1).

Remark 12 Our lower bound in (25) is better than the lower bound in (12) for x € (0,9).

Remark 13 The lower bound in (25) is better than the lower bound in (14) for x € (0, 87).

Remark 14 The lower bound in (25) is better than the lower bound in (15) for x € (0, 94).

Remark 15 The lower bound in (25) is better than the lower bound in (16) for x € (0,91).

Page 11 0f 13
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