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Abstract
We propose an inertial KM-type extragradient scheme to approximate a common
solution of a variational inequality problem and a hierarchical fixed point problem for
nonexpansive mappings. This scheme generalizes and unifies a number of known
iterative schemes. Furthermore, we discuss the weak convergence for the proposed
scheme. We also discuss an example to illustrate the main theorem.
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1 Introduction
Let C be a nonempty convex and closed set in a real Hilbert space H and 〈·, ·〉 and ‖ · ‖
denote the inner product and induced norm on H. A mapping U : C → C is said to be
nonexpansive if ‖Uu – Uv‖ ≤ ‖u – v‖, ∀u, v ∈ C . Note that if F(U) := {u ∈ C : Uu = u} 	= ∅
then set F(U) is convex and closed. Let F(U) 	= ∅. The subdifferential of a proper function
g : H → (–∞, +∞] is the set-valued operator ∂g : H → 2H defined by ∂g(u) = {w ∈ H :
〈y – u, w〉 + g(u) ≤ g(y),∀y ∈ H}. Let u ∈H. Then g is subdifferential at u if ∂g(u) 	= ∅. The
indicator function ψC : H → (–∞, +∞] is given by

∂ψC(u) =

⎧
⎨

⎩

0, u ∈ C,

∞, otherwise.

Note that ψC is a convex function when C is a convex set.
In 2006, Moudafi et al. [1] discussed the convergence of a scheme for the following hi-

erarchical fixed point problem (in short, H-FPP): Find ū ∈ F(U) such that

〈ū – V ū, ū – u〉 ≤ 0, ∀u ∈ F(U), (1.1)

where the mappings U , V : C → C are nonexpansive. Let � denote the set of solutions of
H-FPP(1.1). If ū ∈ F(U) then (1.1) ⇔ 〈–(I –V )ū, u– ū〉+ψF(U)(ū) ≤ ψF(U)(u) ⇔ –(I –V )ū ∈
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∂ψF(U)(ū). Hence H-FPP(1.1) is equivalent to the variational inclusion: Find ū ∈ F(U) such
that

0 ∈ (I – V )ū + NF(U)(ū), (1.2)

where the mapping I is identity on C and NF(U)(ū) denotes the normal cone to F(U) at ū
given by

NF(U)(ū) = ∂ψF(U)(ū) =

⎧
⎨

⎩

{w ∈H : 〈u – ū, w〉 ≤ 0,∀u ∈ F(U)}, if ū ∈ F(U),

∅, otherwise.

If we set V = I , then � is just F(U). Furthermore, we mention that H-FPP(1.1) is worth to
study because it includes as special cases, the important problems such as the variational
inequality on fixed point sets and hierarchical minimization problems; see Moudafi [2].

In 2007, Moudafi [2] proposed the following Krasnoselski–Mann (KM)-type scheme for
solving H-FPP(1.1): For given u0 ∈ C ,

uk+1 = (1 – αk)uk + αk
(
σkVuk + (1 – σn)Uuk

)
, ∀n ≥ 0, (1.3)

where {αk} ⊂ (0, 1) and {σk} ⊂ (0, 1). For further work related to scheme (1.3), see for ex-
ample [1, 3–7].

In 2008, Mainge [8] introduced an inertial version of KM-type scheme by unifying the
KM-type scheme and the inertial extrapolation, for approximating a fixed point of non-
expansive mappings and discussed the weak convergence. Recently, Bot et al. [9] derived
some the convergence results of the following inertial KM-type scheme to approximate a
fixed point of nonexpansive mapping U on H which generalize the results of Mainge [8]:

tk = uk + ηk(uk – uk–1),
uk+1 = (1 – αk)tk + αkUtk ,

}

(1.4)

for each k ≥ 1, where ηk is a damping-type term and αk is a relaxation factor. Recently, the
interest of studying inertial type algorithms has been increased due to their fast conver-
gence. For further study of scheme (1.4) and its generalizations; see for example [10–13].

On the other hand, we consider the classical variational inequality (in short, VI): Find
ū ∈ C such that

〈
h(ū), v – ū

〉 ≥ 0, ∀v ∈ C, (1.5)

introduced in [14] where h : H → H. The set of solutions of VI(1.5) is denoted by
Sol(VI(1.5)). Note that the projected gradient scheme for solving VI(1.5) is

uk+1 = PC
(
uk – μh(uk)

)
, (1.6)

where μ > 0 and PC is the metric projection onto C . In order to converge, this scheme
requires the restrictive condition that h is inverse strongly (or strongly) monotone. To
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overcome this difficulty, Korpelevich [15] proposed an extragradient iterative scheme by

vk = PC(uk – μh(uk)),
uk+1 = PC(uk – μh(vk)),

}

(1.7)

where μ ∈ (0, 1
L ), where L > 0 is Lipschitz constant of h. Since then many researchers im-

proved scheme (1.7) in various directions; see, e.g. [16–24] and the references therein.
Note that the calculation of two projections onto C might affect the efficiency of such
scheme. Therefore, Dong et al. [25] proposed the following inertial KM-type extragradi-
ent scheme for VI(1.5):

tk = uk + ηk(uk – uk–1),
vk = PC(tk – μh(tk)),
uk+1 = (1 – αk)tk + αkPC(tk – μh(vk)),

⎫
⎪⎬

⎪⎭
(1.8)

where {ηk} ⊂ [0,η], ∀k is nondecreasing with η1 = 0 and 0 ≤ ηk ≤ η < 1, for every k ≥ 1
such that

δ >
η[(1 + μL)2η(1 + η) + (1 – μ2L2)ησ + σ (1 + μL)2]

1 – μ2L2

and

0 < α ≤ αk ≤ δ(1 – μ2L2) – η[(1 + μL)2η(1 + η) + (1 – μ2L2)ησ + σ (1 + μL)2]
δ[(1 + μL)2η(1 + η) + (1 – μ2L2)ησ + σ (1 + μL)2]

,

where α,σ , δ > 0.

They proved the weak convergence theorem for scheme (1.8).
In this paper, we propose an inertial version of KM-type extragradient scheme by com-

bining iterative schemes (1.3) and (1.8) to approximate a common solution of H-FPP(1.1)
and VI(1.5). We prove a weak convergence theorem for the proposed scheme. Further-
more, we discuss an example to illustrate the main theorem. The theorems of the pa-
per unify and generalize previously known corresponding theorems; see for example
[2, 8, 9, 25–27].

2 Preliminaries
We give some definitions and results of convex and nonlinear analysis, which will be used
in the proof of the weak convergence theorem.

A mapping PC is called the metric projection of H onto C if for every point u ∈H, there
exists a unique point in C denoted by PCu such that

‖u – PCu‖ ≤ ‖u – v‖, ∀v ∈ C.

Note that PC is nonexpansive and satisfies

〈u – v,PCu – PCv〉 ≥ ‖PCu – PCv‖2, ∀u ∈H.
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Moreover, PCu is characterized by the fact PCu ∈ C and

〈u – PCu, v – PCu〉 ≤ 0, ∀v ∈ C,

which implies that

‖u – v‖2 ≥ ‖u – PCu‖2 + ‖v – PCu‖2, ∀u ∈H, v ∈ C.

Definition 2.1 A mapping h : H →H is called:
(i) monotone, if for all u, v ∈H, we have

〈hu – hv, u – v〉 ≥ 0;

(ii) L-Lipschitz continuous, if there exists a constant L > 0 such that, for all u, v ∈H, we
have

‖hu – hv‖ ≤ L‖u – v‖.

Lemma 2.1 If a mapping U is nonexpansive on H then I – U is maximal monotone [28]
and demiclosed [29] on H.

Lemma 2.2 ([30]) Let {ψk}, {δk} and {ηk} be the sequences in [0,∞) such that ψk+1 ≤ ψk +
ηk(ψk – ψk–1) + γk , ∀k ≥ 1,

∑∞
k=1 γk < +∞ and there is a number η with 0 ≤ ηk ≤ η < 1,

∀k ≥ 1. Then the following hold:
(a)

∑∞
k=1[ψk – ψk–1]+ < +∞, where [r]+ := max{r, 0};

(b) there is a ψ∗ ∈ [0,∞) such that limk→∞ ψk = ψ∗.

Lemma 2.3 ([31]) Let C be a nonempty subset of H and the sequence {uk} in H satisfy the
conditions:

(a) limk→∞ ‖uk – u‖ exists for every u ∈ C ;
(b) any weak cluster point of {uk} is in C .

Then {uk} is weak convergent to a point in C .

3 Weak convergence theorem
We propose the following inertial KM-type extragradient scheme for solving H-FPP(1.1)
and VI(1.5).

Scheme Choose initial values u0, u1 ∈ H arbitrarily. The sequence {uk} be generated by
the scheme:

tk = uk + ηk(uk – uk–1),
vk = PC(tk – μh(tk)),
wk = PC(tk – μh(vk)),
uk+1 = (1 – αk)tk + αn(σkVwk + (1 – σn)Uwk),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.1)
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where {ηk} ⊂ [0,η], ∀k, is nondecreasing with η1 = 0 and 0 ≤ ηk ≤ η < 1, {σk} ⊆ [c, d],
c, d ∈ (0, 1), μ ∈ (0, 1

L ), L > 0 and {αk} is a real sequence with conditions:

δ >
η2(1 + η) + ησ

1 – η2 and 0 < α ≤ αk ≤ δ – η[η(1 + η) + ηδ + σ ]
δ[1 + η(1 + η) + ηδ + σ ]

, where α,σ , δ > 0.

Now, we discuss the weak convergence for scheme (3.1).

Theorem 3.1 Let H be a real Hilbert space and C ⊂H be a nonempty, convex and closed
set; let the mappings U , V : C → C be nonexpansive and h : H → H be L-Lipschitz contin-
uous and monotone. Assume that 
 = Sol(VI(1.5)) ∩ � ∩ F(V ) 	= ∅. Let the sequence {uk}
be defined by scheme (3.1). Then the following results hold:

(a)
∑∞

k=1 ‖uk+1 – uk‖2 < +∞;
(b) the sequence {uk} converges weakly to ū ∈ 
.

Proof (a). Let for any q ∈ 
. Since h is L-Lipschitz continuous and monotone then we can
easily get

‖wk – q‖2 ≤ ‖tk – q‖2 –
(
1 – μ2L2)‖tk – vk‖2; (3.2)

see [3]. From the nonexpansivity of PC and Lipschitz continuity of h, it follows that

‖vk – wk‖ =
∥
∥PC

(
tk – μh(tk)

)
– PC

(
tk – μh(vk)

)∥
∥ ≤ μ

∥
∥h(tk) – h(vk)

∥
∥

≤ μL‖tk – vk‖, (3.3)

which yields

‖tk – wk‖ ≤ ‖tk – vk‖ + ‖vk – wk‖ ≤ (1 + μL)‖tk – vk‖. (3.4)

As follows from (3.2), (3.4) and μL ∈ (0, 1), we have

‖wk – q‖2 ≤ ‖tk – q‖2 –
1 – μ2L2

(1 + μL)2 ‖tk – wk‖2. (3.5)

Let for any q ∈ 
 and Tσk := σkV + (1 – σk)U . Now, by using (3.5), we estimate

‖uk+1 – q‖2 =
∥
∥(1 – αk)tk + αkTσk wk – q

∥
∥2

≤ (1 – αk)‖tk – q‖2 + αk‖Tσn wk – q‖2 – αk(1 – αk)‖Tσk wk – tk‖2

≤ (1 – αk)‖tk – q‖2 + αk
(
σk‖Vwk – q‖2 + (1 – σk)‖Uwk – q‖2

– σk(1 – σk)‖Vwk – Uwk‖2) – αk(1 – αk)‖Tσk wk – tk‖2

≤ ‖tk – q‖2 – αkσk(1 – σk)‖Vwk – Uwk‖2 –
1 – μ2L2

(1 + μL)2 ‖tk – vk‖2

– αk(1 – αk)‖Tσk wk – tk‖2 (3.6)

≤ ‖tk – q‖2 – αk(1 – αk)‖Tσk wk – tk‖2. (3.7)
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Next, we estimate

‖tk – q‖2 =
∥
∥uk + ηk(uk – uk–1) – q

∥
∥2

= (1 + ηk)‖uk – q‖2 – ηk‖uk–1 – q‖2

+ ηk(1 + ηk)‖uk – uk–1‖2. (3.8)

From (3.7) and (3.8), we have

‖uk+1 – q‖2 – (1 + ηk)‖uk – q‖2 + ηk‖uk–1 – q‖2 ≤ –αk(1 – αk)‖Tσk uk – tk‖2

+ ηk(1 + ηk)‖uk – uk–1‖2. (3.9)

Furthermore, from scheme (3.1), we have

‖Tσk wk – tk‖2 =
∥
∥
∥
∥

1
αk

(uk+1 – uk) +
ηk

αk
(uk–1 – uk)

∥
∥
∥
∥

2

≥ 1
α2

k
‖uk+1 – uk‖2 +

η2
k

α2
k
‖uk – uk–1‖2

+
ηk

α2
k

(

–ρk‖uk+1 – uk‖2 –
1
ρk

‖uk – uk–1‖2
)

, (3.10)

where ρk := 1
ηk +δαk

. Thus, it follows from (3.9) and (3.10) that

‖uk+1 – q‖2 – (1 + ηk)‖uk – q‖2 + ηk‖uk–1 – q‖2 ≤ (1 – αk)(ηkρk – 1)
αk

‖uk+1 – uk‖2

+ γk‖uk – uk–1‖2, (3.11)

where

γk := ηk(1 + ηk) + ηk(1 – αk)
(1 – ηkρk)

αkρk
> 0, (3.12)

since ηkρk < 1 and αk ∈ (0, 1). It follows from δ = (1–ηkρk )
αkρk

and (3.12) that

γk := ηk(1 + ηk) + ηk(1 – αk)δ ≤ η(1 + η) + ηδ, ∀k ≥ 1. (3.13)

Next, we define the sequences {φk} and {ψk} by

φk := ‖xk – q‖2, ψk := φk – ηkφk–1 + γk‖uk – uk–1‖2, ∀k ≥ 1. (3.14)

Now, using the monotonicity of {ηk} and the fact that φk ≥ 0 for all k ∈N, we have

ψk+1 – ψk ≤ φk+1 – (1 + ηk)φk + ηkφk–1 + γk+1‖uk+1 – uk‖2 – γk‖uk – uk–1‖2. (3.15)
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Hence, it follows from (3.11) and (3.15) that

ψk+1 – ψk ≤ (1 – αk)(ηkρk – 1)
αk

‖uk+1 – uk‖2 + γk+1‖uk+1 – uk‖2

=
(

(1 – αk)(ηkρk – 1)
αk

+ γk+1

)

‖uk+1 – uk‖2. (3.16)

Now, we note that

(1 – αk)(ηkρk – 1)
αk

+ γk+1 ≤ –σ , ∀k ≥ 1; (3.17)

see [9].
Therefore, it follows from (3.16) and (3.17) that

ψk+1 – ψk ≤ –σ‖uk+1 – uk‖2. (3.18)

Since η1 = 0, it follows from (3.14) that ψ1 = φ1 ≥ 0 and hence (3.18) shows that {ψk} is
bounded. Furthermore, (3.14) and the boundedness of {ηk} yield

–ηφk–1 ≤ φk – ηφk–1 ≤ ψk ≤ ψ1. (3.19)

Thus, we obtain

φk ≤ ηkφ0 + ψ1

k–1∑

j=1

ηj ≤ ηkφ0 +
1

1 – η
ψ1. (3.20)

Now, it follows from (3.18), (3.19), (3.20) and the boundedness of {ψk} that

σ

k∑

j=1

‖uj+1 – uj‖2 ≤ ψ1 – ψk+1 ≤ ψ1 + ηφk ≤ ψ1 + ηkφ0 +
1

1 – η
ψ1, (3.21)

which implies that
∑∞

k=1 ‖uk+1 – uk‖2 < +∞.
Proof of (b). Since ηkρk < 1, it follows from (3.11), (3.13),

∑∞
k=1 ‖uk+1 – uk‖2 < +∞, and

Lemma 2.2 that

lim
k→∞

‖uk – q‖ exists and finite, (3.22)

and hence {uk} is bounded. It follows furthermore from
∑∞

k=1 ‖uk+1 – uk‖2 < +∞ that

lim
k→∞

‖uk+1 – uk‖ = 0. (3.23)

Next, by the definition of tk in (3.1) and ηk ≤ η, ∀k, we have

‖tk – uk‖ = ηk‖uk – uk–1‖ ≤ η‖uk – uk–1‖,
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which implies that

lim
k→∞

‖tk – uk‖ = 0, (3.24)

and hence {tk} is bounded. Since

‖tk – uk+1‖ ≤ ‖tk – uk‖ + ‖uk – uk+1‖, (3.25)

it follows from (3.23), (3.24) and (3.25) that

lim
k→∞

‖tk – uk+1‖ = 0. (3.26)

From (3.6) and (3.26), and {αk} ⊆ (0, 1), {σk} ⊆ [c, d], c, d ∈ (0, 1), we have

αkσk(1 – σk)‖Vwk – Uwk‖2 = ‖tk – q‖2 – ‖uk+1 – q‖2

≤ ‖tk – uk+1‖
(‖tk – q‖ + ‖uk+1 – q‖)

= ‖tk – uk+1‖M1,

where M1 := supk{‖tk – q‖ + ‖uk+1 – q‖}. Hence, it follows

lim
k→∞

‖Vwk – Uwk‖ = 0. (3.27)

From (3.6) and (3.26), and μL ∈ (0, 1), we have

1 – μ2L2

(1 + μL)2 ‖tk – wk‖2 ≤ ‖tk – q‖2 – ‖uk+1 – q‖2

= ‖tk – uk+1‖M1,

it follows that

lim
k→∞

‖tk – wk‖ = 0. (3.28)

It follows from (3.26) and (3.28) that

lim
k→∞

∥
∥tk – uk+1 – αk(tk – wk)

∥
∥ = 0. (3.29)

Furthermore, we have

αk‖Uwk – wk‖ ≤ ‖uk+1 – tk‖ + αk‖tk – wk‖ + αkσk‖Uwk – Vwk‖,

‖Uwk – wk‖ ≤ 1
αk

‖uk+1 – tk‖ + ‖tk – wk‖ + σk‖Uwk – Vwk‖. (3.30)

Since αk > α > 0, ∀k, it follows from (3.26), (3.27), (3.28) and (3.30) that

lim
k→∞

‖Uwk – wk‖ = 0. (3.31)
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From (3.27) and (3.31), we have

lim
k→∞

‖Vwk – wk‖ = 0. (3.32)

Now, let ū be a sequential weak cluster point of {uk}, that is, there exists a subsequence
{uki} of {uk} such that {uki} converges weakly to ū, say, in H. Furthermore, (3.24) and (3.28)
imply that {uk}, {tk} and {wk} all have the same asymptotic behavior and hence there exist
subsequences {tki} of {tk} and {wki} of {wk} and such that tki and wki both converge weakly
to ū. Now, Lemma 2.1, (3.31) and (3.32) imply that ū ∈ F(U) and ū ∈ F(V ).

Next, we prove that ū ∈ �. Since

uk+1 – tk = αk(wk – tk) + αk
(
σk(Vwk – wk) + (1 – σk)(Uwk – wk)

)
, (3.33)

and hence

1
αkσk

(
tk – uk+1 – αk(tk – wk)

)
= (I – V )wk +

(
1 – σk

σk

)

(I – U)wk , (3.34)

and therefore for all z ∈ F(U) and by making use of the monotonicity of I – V , we have

〈
1

αkσk

(
tk – uk+1 – αk(tk – wk)

)
, wk – z

〉

=
〈
(I – V )wk – (I – V )z, wk – z

〉

+
〈
(I – V )z, wk – z

〉

+
1 – σk

σk
〈wk – Uwk , wk – z〉

≥ 〈
(I – V )z, wk – z

〉

+
1 – σk

σk
〈wk – Uwk , wk – z〉. (3.35)

Hence,
〈

1
αkiσki

(
tki – uki+1 – αki (tki – wki )

)
, wki – z

〉

≥ 〈
(I – V )z, wki – z

〉

+
1 – σki

σki

〈wki – Uwki , wki – z〉. (3.36)

Using (3.29), (3.31), and the conditions on the parameters αk and σk in (3.36), we have

lim sup
i→∞

〈z – Vz, wki – z〉 ≤ 0 ∀z ∈ F(U). (3.37)

Since wki converges weakly to ū, we get

〈
(I – V )z, ū – z

〉 ≤ 0, ∀z ∈ F(U). (3.38)

Since F(U) is convex, βz + (1 – β)û ∈ F(U) for β ∈ (0, 1) and hence

〈
(I – V )

(
βz + (1 – β)ū

)
, ū –

(
βz + (1 – β)ū

)〉
(3.39)
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= β
〈
(I – V )

(
βz + (1 – β)ū

)
, ū – z

〉
(3.40)

≤ 0, ∀z ∈ F(U), (3.41)

which implies

〈
(I – V )

(
βz + (1 – β)ū

)
, ū – z

〉 ≤ 0, ∀z ∈ F(U).

On taking the limit β → 0+, we have

〈
(I – V )ū, ū – z

〉 ≤ 0, ∀z ∈ F(U), (3.42)

which implies ū ∈ �.
Now, we show that ū ∈ Sol(VI(1.5)). Since limk→∞ ‖vk – tk‖ = 0 and limk→∞ ‖tk –uk‖ = 0,

there exist subsequences {tki} of {tk} and {vki} of {vk}, respectively, such that {tki}, {vki} both
converge weakly to ū. Let

Gv =

⎧
⎨

⎩

hv + NC(v), if v ∈ C;

∅, if v /∈ C,

then the monotone mapping G is maximal [32] and hence 0 ∈ Gv if and only if v ∈
Sol(VI(1.5)) [33]. Let (v, w) ∈ graph(G), then w ∈ Gv = hv+NC(v) and hence w–hv ∈ NC(v),
i.e., 〈v – u, w – hv〉 ≥ 0, for all u ∈ C .

On the other hand, from vk = PC(I – μh)tk and v ∈ C , we get

〈
(I – μh)tk – vk , vk – v

〉 ≥ 0.

This implies that

〈

v∗ – vk ,
vk – tk

μ
+ htk

〉

≥ 0.

Since 〈v – u, w – hv〉 ≥ 0, for all u ∈ C and vki ∈ C , using the monotonicity of h, we have

〈v – vki , w〉 ≥ 〈v – vki , hv〉

≥ 〈v – vki , hv〉 –
〈

v – vki ,
vki – tki

μ
+ htki

〉

= 〈v – vki , hv – hvki〉 + 〈v – vki , hvki – htki〉 –
〈

v – yki ,
vki – tki

μ

〉

≥ 〈v – vki , hvki – htki〉 –
〈

v – vki ,
vki – tki

μ

〉

.

Since h is continuous, on taking the limit i → ∞ we have 〈v – ū, w〉 ≥ 0. Since G is maximal
monotone, we have ū ∈ G–10 and hence ū ∈ Sol(VI(1.5)) and thus ū ∈ 
.
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Finally, it follows from (3.22) and Lemma 2.3 that the sequence {uk} converges weakly
to ū ∈ 
. �

Remark 3.2 One can derive a number of schemes from scheme (3.1); some special cases
are as follows:

(i) Setting ηk = 0, ∀k then scheme (3.1) reduces to extragradient scheme for solving
VI(1.5) and H-FPP(1.1).

(ii) Setting σk = 0, ∀k, and V = I , U = I then scheme (3.1) reduces to scheme (1.8) for
solving VI(1.5) and hence we recover Theorem 3.1 [25].

(iii) Setting V = I , σk = 0, U = JB
λk

:= (I + λkB)–1 (where B : H → 2H is maximal
monotone and λk ∈ (0,∞)), and αk = α ∀k, scheme (3.1) takes the following form:

tk = uk + ηk(uk – uk–1),
vk = PC(tk – μh(tk)),
wk = PC(tk – μh(vk)),
uk+1 = (1 – α)tk + αJB

λk
wk ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.43)

which was considered with an additional error tolerance strategy in [34].

4 Numerical example
We discuss an example to illustrate Theorem 3.1.

Example 4.1 Let H = R. Let C = (–∞, +∞), the mappings h : H → H be defined by
h(u) = 3u – 2, ∀u ∈ C ; and U , V : C → C be defined by Uu = u+4

7 , Vu = u+6
10 , ∀u ∈ C , respec-

tively. Setting {αk} = 0.8, {ηk} = 0.4 and {σk} = { 1
1000 + 0.9

k2 }, ∀k ≥ 1. Then there are unique
sequences {uk}, {vk} and {wk} obtained by scheme (3.1) converging to ū = 2

3 ∈ 
.

Proof Since h is Lipschitz continuous with L = 3 and monotone and hence μ ∈ (0, 1
3 ), we

take μ = 1
4 . Observe that the mappings U , V are nonexpansive with F(U) = { 2

3 }, F(V ) =
{ 2

3 }, and hence � = Sol(H-FPP(1.1)) = { 2
3 }. One can also obtain Sol(VI(1.5)) = { 2

3 }. Hence,

 = Sol(VI(1.5)) ∩ � ∩ F(S) = { 2

3 } 	= ∅. Furthermore, scheme (3.1) reduces to the following
scheme: Given initial values u0, u1,

tk = uk + ηk(uk – uk–1),

vk = PC(tk – μh(tk)) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if u < 0,

1, if u > 1,
1
4 tk + 1

2 , otherwise,

wk = PC(tk – μh(vk)) =

⎧
⎪⎪⎨

⎪⎪⎩

tk + 1
2 , if u < 0,

tk + 1
4 , if u > 1,

tk – 1
4 (3yk – 2), otherwise,

uk+1 = (1 – αk)tk + αk(σk
wk +6

10 + (1 – σk) wk +7
4 ).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

Finally, using MATLAB, we have Fig. 1 and Table 1, which show that {uk}, {vk} and {wk}
converge to ū = 2

3 as k → +∞. �
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Figure 1 Convergence of {uk}, {vk} and {wk} when
u0 = 1, u1 = 2

Table 1 Values of uk , vk and wk

No. of iterations uk (u0 = 1, u1 = 2) vk wk

1 0.824408 0.650000 0.612500
2 0.758075 0.688543 0.737764
3 0.721779 0.682885 0.719378
4 0.700135 0.676815 0.699649
5 0.687021 0.672869 0.686825
6 0.679051 0.670444 0.678942
7 0.674203 0.668966 0.674138
8 0.671253 0.668066 0.671214
9 0.669458 0.667518 0.669434
10 0.668366 0.667185 0.668351
11 0.667701 0.666982 0.667692
12 0.667296 0.666859 0.667291
13 0.667050 0.666784 0.667047
14 0.666900 0.666738 0.666898
15 0.666809 0.666710 0.666807
20 0.666679 0.666670 0.666678
25 0.666668 0.666667 0.666668
29 0.666667 0.666667 0.666667
30 0.666667 0.666667 0.666667

Concluding remark 4.1 In this paper, we considered a variational inequality problem (VI)
and a hierarchical fixed point problem (H-FPP) in Hilbert space. We proposed an iner-
tial version of Krasnoselski–Mann (KM)-type extragradient scheme (3.1) by combining
the KM-type scheme (1.3) and an inertial version of the extragradient scheme (1.8) to ap-
proximate a common solution of H-FPP(1.1) and VI(1.5). Furthermore, we proved a weak
convergence theorem for the proposed scheme (3.1). Finally, we discussed an example to
illustrate Theorem 3.1.
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