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1 Introduction
In the 1980s, the multilinear Calderén—Zygmund theory was first studied by Coifman
and Meyer [1, 2]. The multilinear Calderén—Zygmund operators with standard kernels
were then further investigated by many authors, such as [3—8]. Meanwhile, many authors
weakened the standard kernel conditions to rough associated kernel conditions; see [9—
13]. Particularly, in 1985, Yabuta [10] introduced the Calder6n—Zygmund operators of
type w(t) (the definition given below) and obtained weighted norm inequalities of the
Calder6n—Zygmund operators of type w(t) on L? spaces, here weight functions belong
to Muckenhoupt’s class A,. In 2014, Lu and Zhang [12] obtained the weighted bounded-
ness of multilinear Calder6n—Zygmund operators of type w(£) and their commutators with
BMO functions from weighted L? spaces to weighted product of L? spaces. In 2016, Zhang
and Sun [13] further considered weighted norm inequalities of iterated commutators that
multilinear Calder6n-Zygmund operators of type w(z) with BMO functions.
Throughout this paper, w(t) : [0,00) — [0,00) is a nondecreasing function with 0 <
w(1) < oo.
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For a > 0, we say that w € Dini(a), if

1 _ a
w(£)
|a)|Dini(a) = / dt < oo
0 t

It is worth mentioning that Dini(a;) C Dini(a;) when 0 < a; < a5.

Definition 1.1 Let K(x,y1,...,¥,) be alocally integrable function, defined away from the
diagonal x = y; = --- = y,, in (R")"*1, it is said to belong a certain class of multilinear
Calder6n—Zygmund kernel of type w(¢), if there exist constant A > 0, N > 0 such that

A

Ky, m)| < — - (1.1)
’ ' | (Z,‘=1 | _yj|)mn(1 + Zj:l | _y1'|)N
for all (x,y1,...,9m) € (R”)"*! with x #y;forsomej=1,2,...,mand
|K %9150 0m) = K (5,915 9m) |
A [ — x|
(21':1 % _y/|)mn(1 + Z/:l |x_yj|) Zj:l lx — yjl
whenever |x —x'| < %maxlfl«gm |x — y;l, and
|K(x,y1,...,yj...,ym)—I((x,yl,...,yj’-,...,ymﬂ
A ly; =¥l
< —m - Nw( % ) (1.3)
(Z/‘:I e =y (1 + Zj:l l — y;1) Zj:l % — 1

whenever |y; — y/| < % maxi<j<m % — yjl.

Let T:S(R") x - -+ x S(R") — §’(R") (from the product of Schwarz spaces to the space
of tempered distributions) be a multilinear operator with certain classes of multilinear
Calder6n—-Zygmund kernels of type w(¢) if there exists a K(x, 1, .. .,¥,) that satisfies (1.1)—
(1.3), such that

T(f1,..rfm) ) :/ mK(x,yl,...,ym)fl(yl)ooofm(ym)dyl~o aym (1.4)

(R")

whenever x ¢ ﬂ;ﬁl suppf; and each f; € C*(R"),j = 1,...,m.
If T can be extended to a bounded multilinear operator:

LT(R") x -+ x L™ (R") — L1(R") (1.5)
for some 1< qy,...,q, <cowith 1/q; + -+ + 1/q,, = 1/g, or
LT (R") x -+ x L7 (R") — L?>(R") (1.6)

for some 1 <gq,...,qm < 00 with 1/g; + --- + 1/q,, = 1/q, then T is said to belong to the
class of multilinear Calder6n—Zygmund operators of type w(t).
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Remark When N =0 in Egs. (1.1)—(1.3), such kernels have a standard kernel of type w(z)
as Lu and Zhang [12] and Zhang and Sun [13] considered.

The assumption of (1.6) is reasonable, one may refer to [12, Theorem 1.2].
Let T be a multilinear operator and b= (b1,...,bm) bealocally integrable vector function
in BMO™(R"), the multilinear commutators of 7" with b is defined by

Ts, (i) = Y THF),
j=1

where

T = BT (oS- onf) = T s B o fon)-

In 2003, Pérez and Torres [14] first introduced multilinear commutators of multilin-
ear Calderén-Zygmund operators and established their boundedness from L7 (R") x
oo x LI (R") to LY(R") for 1 < q,q1,...,qm < 00 with 1/q; + --- + 1/q,, = 1/q, also, from
LT(R") x -+ x LI(R") to L?>*(R"”) for 1 < q,q1,...,qm <00 with 1/q; +--- + 1/q,,, = 1/q.
In 2009, Lerner et al. [8] obtained some weighted boundedness of multilinear commuta-
tors as follows:

m m
1755 1agugy = € 2 15illawio [ T
= =1

and for the weak end-point also it was proved that

3=

v‘;,{xe R”: |T):E(f)(x)| > t’”} < CH(/R” <I>(lﬁ(tx)|)wj(x)dx)
j=1

To clarify the notation, if T is associated in the usual way with a kernel K(x,1,...,%)
satisfying (1.1)—(1.3), then at a formal level

Tnl;(fl; 27 :fm)(x)

) /(;Rﬂ)m l_l(b/(x) - bj(yj))1<(x)yl, . :ym)_fl()/l) o fm()/m)dyl e dym
j=1

Lerner [8] obtained weighted norm inequalities of classical multilinear Calderén—
Zygmund operators and their commutators with BMO functions through new maximal
functions. In 2014, end-point estimates for iterated commutators of multilinear singular
integrals were shown by Pérez et al. [15]. Lu and Zhang [12] studied multilinear Calderén—
Zygmund operators with type w(£) and multilinear commutators with BMO functions. Si-
multaneously, they established some weighted norm inequalities, such as strong type and
weak end-point estimates. The corresponding result of iterated commutators by Zhang
and Sun [13] was shown, where the weights belong to A. In 2015, Pan and Tang [16] and
Bui [17], respectively, established weighted norm inequalities for certain classes of mul-
tilinear Calderé6n—Zygmund operators and their commutators with BMOy(¢). The dif-
ference is that Pan and Tang also considered weak end-point results. In 2019, Hu and
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Zhou [18] obtained weighted norm inequalities of Calderén—Zygmund operators of type
o(t) and their commutators with BM Oy (¢) functions, here weights belong to A,(¢) func-
tions.

Inspired by the work above, this paper’s primary purpose is to obtain weighted norm
inequalities for certain classes of multilinear operators of type w(t) and their commutators,
including the pointwise estimate, strong type, and weak end-point estimates.

2 Some preliminaries and notations

In this section, we first recall some notations. For a measure set E, we define |E| as
the Lebesgue measure of E and xr as the characteristic function of E. Q(x,r) denotes
the cube centered at x with the side length r and 2Q = Q(x,Ar). ¢ = (91,92, ---,qm) and
6 = (61,05,...,0,,). Fora locally integrable function f, f;; denotes the average f, = (1/|Q)
fQ f(y)dy. In this paper, let 94(Q) = (1 + r)?, where r is the side length of the cube Q.

2.1 The AS"((p) weights
According to [16], we say that a weight w belongs to the class AZ(gp) for 1 < p < 00, if there
exists a constant C such that, for all cubes Q,

1 1 a4\
_ d - ) .
(¢9(Q)|Q|/QWO]) y)((ﬂe(Q)lQl /QW(” y) =¢

In particular, when p = 1,

1 .
([ ) = Cnpoee

Notice that A>°(¢) = U= A5 (), A2 (¢) = Ups14;°(9) and AY(¢) is equivalent to the
Muckenhoupt class of weights A, in [19] for all 1 < p < co. However, in general, the class
A (p) is strictly larger than the class A, forall 1 < p < c0.

Next, we give some necessary properties of Ag(w) functions.

Lemma 2.1 ([20]) The following statements hold:
() AX(g) C AX(g) for 1 <p < g<oc.
(ii) If we A (¢), with p > 1 then there exists € > 0 such that w € A (¢). Consequently,
Ay (@) = U,y AT (@)
(iii) If w e A (@) with p > 1, then exist positive numbers 8,1 and C so that, for all cubes

Qy
<|Q|/QW (x) dx <C |Q|/Qw(x)dx ¢ (Q).

Lemma 2.2 ([21]) The following statements hold:
(i) we Ap) ifand only if w 7T € A% (¢), where lyloy
(ii) if wi, wy 6A2(<p),p > 1, then wiwi™ € Aﬁ((p)for any0<a < 1;
(iii) if w e AY(¢), for 1 < p < 00, then

_ 1 , ;
¢(QIQ /QWW“C(W(SQ) fQ o W(y)dy> .
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In particular, let f = xg for any measurable set E C Q,

|E| <C< w(E) )}
9 (QIQl ~ \wQ)/)

Let p = (p1,...,pm) and 1/p = 1/py + -+ + 1/p,, with 1 < pq,...,p, < 00. Given w =

(W1, ..., W), each w; being nonnegative measurable, we set

m
plpj
w, .

Vi = ;

j=1

For 6 > 0, we say that w satisfies the Ag(w) condition and denote w € Ag(w), if

1 vz 1 o\
| vix)d _ i(x) " d ,
up (%(Q)IQI/QV =) ") H(%(Q)IQI e x) <o

j=1

where the supremum is taken over all cubes Q C R”, and the term (ﬁ fQ wj(x)l’p//‘)l/p//'
coincides with (infyeqw;)™ whenp;=1;=1,2,...,m.
For 1 <ps,...,pm < 00, set A§°(<p) = ngoAg(w). When 0 = 0, the class Ag(go) coincides

with the class of multiple weights A introduced by [15].

Lemma 2.3 ([17]) Let 1 < p1,...,pm < 00 and w = (wy,...,wy,). Then the following state-
ments are equivalent:

(i) e AZ(p);

(ii) le_p} c A;op;,j =1,...,m,and vy € A%, (¢).

The class A§°(<p) is not increasing, which means that, for p = (p1,...,pm) and q =
(G- qm) with p; < g;,j = 1,...,m, the following may not be true A199°(<p) C A§°(<p).

Lemma 2.4 ([17]) Let1 <p1,...,ppm <00 and w = (wy,...,Wy,) €A§°(<p). Then
() foranyr>1,we Af[-j(go);
(i) f1<pi,...,Pm < 00, then there exists r > 1 so that w € A% (@)

2.2 BMO(¢) spaces
Now, recall the definition and properties of the BMO,, spaces introduced by [20].
A locally integrable function b is in BMOy(¢)(0 > 0) if

1
b = su 7/b ) —bo|dy < oo.
15110y (0) pweoTTe] Q! () - bq| dy

When 6 = 0,BMOg(¢p) = BMO(R”). Clearly BMO(R") C BMOy(p) and BMOg, (¢) C
BMOy, (¢) for 6; < 6. We denote BMO(¢) = (g~ BMOy(¢).

Lemma 2.5 ([20]) Let 6 >0,s > 1. If b € BMOy(¢) then for all cubes Q = Q(x,r)
(i) (& fiy 16G) = bol’ )5 < 1bllsmoy )00 (Q);
() (gt Sy 16O) — bl d)F < Klbllesio, 0 (3Q), for all k €N.
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2.3 The norm of Orlicz spaces
For ®(¢) = ¢(1+log*¢) and a cube Q in R”, we will consider the average ||f || ¢,q of a function
f given by the Luxemburg norm

Fllog —mf{x 50: = (lf(xH)dxf 1}.

IQI A

The generalized Holder inequality in Orlicz spaces together with the corresponding
John—Nirenberg inequality in [18, Lemma 2.5] implies that

1
101 /Q| (b)) = bo)f )| dy < 11BllBMOy () If 1| L(Logr). @6 (Q).

2.4 Maximal functions and Sharp maximal functions
Maximal functions and sharp maximal functions play an important role in the proof of
the main theorem. Next, recall the relevant definition.

For 0 < 1 < 0o, the maximal operator M,,, is defined by

M d
o/ (5) =20 w(Q)"IQI/ ol

Definition 2.6 ([21]) Let 0 < n < 0o, then the dyadic maximal function ijln is defined by

MO e o / ol

xeQ(dyadiccube) ¥

Let Q be a dyadic cube; f is a locally integral function, then the dyadic sharp maximal
function M%% is defined by

1
M5 f(x) = — d / d
(p#f(x) xesgil |Q| Qlxo,r) lf(y) fQ| r xes(;l}ll <P(Q)" |Q| Q(xo,r) lf(y)| i’

~ sup inf—/ [f»)~Cldy+ sup If )| dy,
c |Q| Q(xq,7)

xeQ,r<1 xeQr>1 ¢(Q)H|Q| /Q(xo,r)

where f; = ﬁ Jof W) dy.
From the above definition, the variants of the dyadic maximal operator and the dyadic
sharp maximal operator are as follows:

MY, 0= (ML, (O], M@ = [V (1)
Lemma 2.7 ([21]) Let 1<p < oo, w €AS,0<n<ooandf € LF(w), then

Wl = M5, |y = 1MG5f oy

Lemma 2.8 ([21]) Letl<p<oo,w € AX,0<n<00andé>0andlety:(0,00) (0,00)
be doubling, that is, ¥ (2a) < ¥ (a) for a > 0. Then there exists a constant C depending upon
the A condition of w and the doubling condition of W such that

supy(Ww({y e R": M?wnf(y)>)u})<Csup1ﬁ(k)w({yeR” M f()>A}),

A>0
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1
MrgogL).onf (®) = sup ———IfllLgog1).0-
(og Dygnf sup gy W ez

Let 0 < 1) <00, f = (fi,for-..rfin)s then the multilinear maximal operators M, and
M (LogL)g. are defined by

My f (%) = supH (Q)nnfu@

ML(LogL qf(x SUP 1_[ ”f”L (logL)-

(Q)'7

Lemma 2.9 ([16]) Let 1< p;j<00,j=1,2,.. ,m,; 19_1+p_2+ ~+[iandﬁ/€A§°,then

there exists some 1o > 0 depending on p,m, p; such that

”M(ﬂno(f)i CHHfHLPJ

3 Estimates for multilinear operators

Theorem 3.1 Let T be a multilinear Calderén—Zygmund operator of type w(t) as in Def-
inition 1.1, assume that 0 < § < #, 0 < n and w is satisfying o € Dini(1). Then there exists a
constant C > 0 such that

Mt (T @) < CM ()
forallf in IPV(R") x -+ x LP"(R") with 1 < pj< oo forj=1,...,m

Proof 1If w € Dini(1), then

. (1)
;a)(Z k)z/ wTdt

For a fixed point x € R” and let x € Q = Q(x,7), Q is a dyadic cube. To complete the
proof, we consider the following two cases of the side length r: r <1and r > 1.
Case 1. When r < 1. Since 0 < § < % <1,n>0and ||a|’ - |b|!| < |a-b| for 0 < t <1, for

any number C we can estimate

(s [irdof -ierlas)' = (& [1rno-crae)

Let Q* = 8,/nQ, we decompose fj = £ + £ for each f;, where £ = fixo+- Then

[T500=" >_ Ao Lo =[]0+ D A0) £ Om)
j=1 } j=0

a1, €{0,00

where . = {(a1,...,a,) : there is at least one «; # 0}.
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~~~~~~~~~~

estimates:

(ﬁ /Q iT(?)(z)—csz)g
(|Q|/|T(f1’ )@ dZ)
(|Q|/| )@ = Ca.., aml‘*dz)s

Since T:L! x -+ x L' — L#™ and using the Kolmogorov inequality with p = § and

q= %,we have

1< C” T(fiof . "fr?l) “L%'w(Q, dx)

!
ECE@/Q*WZ)

1Ql

m

H e f e
<CMy, (f)(x)
To estimate I, we choose Cy, ., = T(fla L. fm)(x), for any z € Q, the following esti-
mate holds:

ST S @) = T - f27) @)] < CMg (F)().

A1yt €L

We consider first the case when o) = - - - = @, = 00. For any z € Q, we get

’T(ffo,...,f,zo)(z) - T(ffo,...,fmoo)(x)’

K(z,y) - K(«, )| dy

: /(R”\Q* | (2,9) - K(x y)| l—“f(yl | ”

=2 / K(@5) - Ke5)| [ [IF o] 4,
k=17 ()" i1

where Q; = (2K*3./nQ) \ (2¥*2/nQ) for k=1,2,....
Note that, for x,z € Q and any (y1,...,¥m) € (%)™,

lz—y|>25/nr and |z-x| < /nr,

Page 8 of 23
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since w is nondecreasing, and through the kernel condition (1.2), we have

|K(z,5) - K(x,5)| < = 4 i w( ,LZ il )
(Zj:1 IZ—y;I)’””(l + Z,‘:1 |Z—yj|)N Z,‘:1 |z -yl
Cw(27%)
|2k«/_Q|’”(1+2"x/—V

Then, taking N > mn,
T f2)@) = T, o) @)

1 m
—k ' .
€200 )/(Szk>m 12K/nQI™ (1 + 2k/nr)N L—l“f(y/” dy

Mg

>~

=1

lf(J’j)| day;

IA

‘ </

éw }_[ [2%/nQ|(1 +2k\/_r)m 243 /nQ
—

< Clolpiniy Mo, ( f )(x).

We are now to consider aj; =--- =, =0for 1 </<m.Let ¢ :={ji,...,j;} then oj = 00
forj¢ ¢.Thus

TR f) @) = TR fir) ()]
< /(R IK(z,5) - 1<(x,y)|1‘[lf )| 5

< [ T [, . I -1s3] Tl

je s

= [, TTHonl X [ e =k [0l

16] j¢ s

Similar to the above discussion, taking N > mn, we have
|T(f1”1,...,f,‘,’l‘”')(z) - T(ffl,...,f,fjm)(x)|
o0
1
C / (y; 27%) / dy
(Q*)ljglﬁ(y]”;w( ot 1264/nQI" (1 + 26/ l—“f(y/)| g

_ 1
e (,5 /Q o) dy”)

( 3 /k+3ﬁQlf/(yj)| d)’i)

[e¢]

()| dy;
Z Ol |2k /n Q|(1+2kf % /wmw’” g

k=1 j=1

IA

IA

< Clolpinia) Mo, ) (%)
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Case2. When r > 1, since 0 <8 < % < 1,and n > 0, it follows that

1 ] ;
(m/{JT(f)(x)de)
1 1 5 %
——— [ |T(R oS d
< ¢(Q)n/8<|Q|./(;i (R f) @) x)
L (1 “ o }
Y i frr syl )
ameL

For I, by the Kolmogorov inequality and T : L! x --- x L' — L™, we have

1 0 0
ISC(p(Q)mn ||T 1,...,fm)||L%oc(Q,%)
1 &1
_ ) d
<CM,,(f))

To estimate II, note that, for z € Q and any (y1,...,ym) € ()", |z -y = 2k /nr. Con-

sider now o1 = - -+ = @, = 00, taking N > mn + 1, the following estimate holds:

)n/6(|Q|/| ()@ dz)
|Q|/| (fl ’e ; (Z)|dz

C m
=00 K(z,5) ) dyd
lolfoglfmk)m' =PI Tron s

H] llf(y/)| -
dyd
|Q| «/Q 1 /Qk (Z] 1|Z y] 7 (1 + Z/ 1|Z y;l)N ‘

_Z 2k+3\/_Q|m(1+2k+3\/—V /2’“3[@’" Hlf(y/)’d)b

= k2:1: 1+ 2k+3ﬁr)N !:_1[ |2k+3ﬁQ| 2k+3ﬁQlf(yl)| Vi

m C N
< ; m/\/‘w,n (Hx)

<CM,,x).
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Whenaj, =---=a;;=0for1 <l<m.Let Z :={j,...,ji} thenaj=ocoforj¢ ¢, taking
N > mn + 1, then

1

1 1 o o B
W(@/(;‘T 1 ,...,fm )(Z)’adZ)

< / 1—[ lﬁ v, | H,ef Al &

(Rm\Q*)m-1 (Z, 1z=yjl [y (1 + Z, 1lz— y/|)

16/
oI B

<C1_/[¢/ V(yl |Z/ |2k+3«/_(2]ﬁ”/1+2j(+3fr d

je

d 1
<C () s )| d )

N RSN L (r}, [, o) (F} Jus selio01
<CM,,(x).

Pan and Tang in [16, Lemma 2.7] proved the result in our framework, which is similar to
the classical Fefferman—Stein inequalities. Next, using Lemma 2.7 of our paper, we obtain

the result as follows. O

Corollary 3.2 Let T be a multilinear operator satisfying (1.1)—(1.5), and suppose that w is
satisfying € Dini(1), w € A%, >0 and p > 0. Then there exist constants C > 0, such that

[T = CIMen Dl

and

17O ey = I Mo D

Proof From Lemma 2.7 and Theorem 3.1, we get

I T(f) ||L17(w) = ||MZ,,7(T()7)) ||LP(W)
= C”M%(T(f)) ”Lp(w)

< C[ My, () ”l}’(w)' -
Similarly, with the help of Lemma 2.8, the weak-type estimate is obtained.
Theorem 3.3 Let T be a multilinear operator satisfying (1.1)—(1.5), w € A§°(<p) and 1/p =

1/p1+ -+ 1/py. If wis satisfying v € Dini(1), then there exists a constant C > 0, such that:
(i) Ifl<pj<oo,j=1,...,m,then

m
1T,y < CT T2y

Jj=1

Page 11 of 23
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(i) If1<pj<oo,j=1,...,m,and at least one of p; = 1, then

m
ITO ey = CT TNy

j=1

Proof The desired result directly is obtained from Theorem 3.1, Corollary 3.2, Lemma 2.4
and Lemma 2.9. The proof is completed. d

4 Estimates for multilinear commutators
To ensure the fluency of the demonstration in this section, we need first to explain the

meaning of some notations. We write

ij = {o:a = {0(1),0(2),...,0(]’)},1 ijm},

We always take o (i) < o (j) if i <.

For any o' € Cj”’, we have 6’ = {c(1),0(2),...,0(m)}\ o and o’ € C:n"_j_:

Let b be m-tuple functions and o € Cj"’, we have t_l}e j-tuple function b = (b5 (1), b2, - - -»
bs(j). For all b, () € BMOg(¢), 1 <j < m, we have b = (by1), b5, +bo(m)) € BMOg’(go).
See [15, 16].

Corresponding to the classical form, can define the following form of the iterated com-

mutators:
T, () = /(Rn)m [ [(Boty®) = oo K31, o i 01) -+ fon ) A1 -+ Ay,
i=1

Theorem 4.1 Let T be a multilinear Calderén—Zygmund operator of type w(t) as in Def-
inition 1.1, Tng be a multilinear commutator with b BMOg’(go). We have 0 <8 <€ <1/m

and n > (61,...,0m)/(1/8 — 1/€), assume that w is satisfying

1 m
/ &<1+10g l) dt < 0. (4.1)
o t ¢

Then there exists a constant C > 0 such that

M?,’Z,,, (Tng (f ))x) <C H 1511 BMOy, (¢) (M igogL)om (F) () + Mf,w,n (T(}?)) (x))

Jj=1

m-1 j
+CY ST ”ba(i)”BMO,,(i)Me,(p,n(TI'IBU, (1) ),

j=1 gec i=1

for all m-tuples} =(f1,....fm) of bounded measurable functions with compact support.

Proof For simplicity, we only prove the case m =2 and 6; =6, = 6.
If w is satisfying (4.1), then @ € Dini(1) and

oo

1 m
ka.a)(2‘k)z/ @<1+]0g%> < 00.

k=1 0

Page 12 of 23
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For by, b, € BMOy (), it suffices to prove that

M (T, (1.£2)) @) < Cllbi o, ) 152 IBM0y () (Mrtog 1. (i o) ()
+ CM?(/: n (T(fl’fZ))(x))
+ C(||b2 ||BM09(¢)ME,¢,77(Tgl)(fl:fZ)(x)

+ C”bl ”BMOg(go)Me,(p,ﬂ (szz)(flrﬁ)(x))

For any constants 11, Ay, it follows that

Ty (i, o) (@) = (b1(x) = A1) (b2(0) = %2) T(f1, ) () = (b1(x) = 21) T (fi, (b2 = A2)f) (x)
= (b2(®) = 12) T ((by = M)A f2) () + T((br — A)fr, (b2 — Aa)fo ) ()
= —(b1(%) = 1) (b2(®) = 22) T(f1, o) (%) + (b1(x%) — M) T, 5, (F1,2) ()
(bz(x) Ag)Tbl iy V) (x) + T( by —A)fi, (by — Az)fz)(x)

where

T}y (D) @) = (b1(3) = 10) TG ) (6) = T((br = Ma)fio o) () (4.2)
and

T2, () @) = (b2(0) = 12) TG, /) (x) = T(fi, (b = ha)fy) (). (4.3)

Now, we fix x € R”, a dyadic cube Q > x and a constant ¢, then, since 0 < § < %, we only
need to consider the two casesr <1landr> 1.
Case 1: When r < 1, the following estimate holds:

(IQI/HT“ (hh)E) - e |dz>
(|Q|/|T“ (hf)@) =< dz)
(i@ [l -2) -1 1 ) :
! (% / |(01) = 24) 5,5, (7 2)(z)|5dz)%
(IQI/ |(b22) = 32) T, ()@ dz)

+ (% /Q|T((b1 —A)fi (b2 = A2)fo) (2) _C|5dz)s

=1+ +1I+1V.
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Let Q* = 8/nQand let A; = (b)) o+ be the average of bj on Q*,j = 1,2. Forany 1 < r1, 13,73 <

oo with 1/r; + 1/ry + 1/r3 = 1, choosing a § to make ér; < 1,i=1,2 and r3 < €/4.

X

By Holder’s inequality, we have

r % r
I§C<|Q/‘b1 ~Ble adz) (|Q|/’b”) o)™ dz

(g o ee)”

< Cllb1llsmoy (o 12 llBmOy (M2, (T, £2)) ().

—
>

For II,let 1 < t1,t, < oo with 1 = 1/¢; + 1/t; and t, < €/8. By Holder’s inequality,

e ) <|Q|/ [ Ton-sa (o)) |”5dz) ’

< Cllb1llemoy@Maysgim (Thy—s, (1:/2)) ()
=< C”bl ”BMO@(((J)ME,(p,n(Tb227}‘2(f1)_f2))(x)

= C”bl ”BMOg(zp)Ms,w,n(TZZ(fl; 2)) (x)

II< C(|Q /|b1(Z) (bl)Q*

Similarly, we obtain

I < Cl|ba llBmog (0 Megir (Tp, (finf2)) ().

Now for the last term V. We split each f; as f; =j;° +/ where f? = f xo* and /> = f; —ﬁo.

Let ¢ = ¢1 + ¢3 + ¢3, where

€= T((bl -, (b - )vz)fzoo)(x),
2= T((b1 = 1), (ba = a)fy) (),
= T((bl = A (by - )Lz)fzoo)(x)~

Then
V= C(ﬁfQ\T((bl—M)ﬂo,(bz—xz) 2°)(z)|5dz>a
+C(|Q|/‘T Mflr (by = A)f5° )(z _Cl} dz)
+C<|—(12|/;|T((b1 —)»1)]{100,([92_)Lz)fZO)(Z)_Czi(sdz)ﬁ

+ C<|—é| -/Q|T((b1 - M)F, (by - }‘Z)fzoo)(z) _ C3|5 dz) 5

=1V + 1V + IV + 1V,
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For IV, choosing 1 < p < 55 and applying Kolmogorov’s inequality with p = § < %,

1V = CT((r =2 (b2 = 1) s o,

= C|T((br -2 (b2 - M) 3,

Q@)

O&.

5C|—Q|/|b1(2) m)f(a)|de; |/|b2<z> ho)fy (2)| dz

< Cllb11lBMOg (o) 12| BMO, (0) M Litog L), (f1:/2) ().

Next to estimate IV,. For any z € Q, let ¢; = T((by — AM)fy, (b2 — A2)f5°)(x), we have

1V, = <|—(12| fQ|T((b1 - )\1)f10’ (by — )»2)f2°°)(z) _ T((bl _ )\1)f107 (by — )»2)f2°°)(x)|5 dz) 5
/(R [K(z,91,92) = K y1,90)|[(B1071) = 1) 01)] | (B202) = 22)f5 (02) | dy1 dly
= / |(b1(y1) = 21)A10n)|
Q*
* (/ |K(zy1,92) = K, y1,90)|| (0202) = 22)o02)| d)’Z) dy.
RM\Q*
Forany z € Q,y; € Q" and y; € Q,

|K(z,91,92) — K(%,91,92)|

- A < |z — x| )
< w
(Iz=y1l +1z=2D?"A +|z=y1l + 2= 22N \lz=y1]+ |z -y
w(27%)
<C ,
- |2k*3ﬁQ|2(1+2k*3ﬁr)N

then we have

IV, < CL*|(b1@1) = M)fA0n)|

3 w(2 ) b dy, | d
" kZ/szk 25 QR(L 205 | P207) )02 2 |
=1
SC/ |(B101) = 2)f0n))|
Q*

(2 (5a(32) — 30500
X (;w(z )/z,ﬁgﬁQ 12643 QI (1 + 2643 Jnr)N dy2> dy,

[e¢}

a)(2 k)
= C](Zl: |2k+3ﬁQ|2(1 +2k*3ﬁr)N

x /(2k+3ﬁQ)2|b1(y1)—MILfl(yl)Hbz(yz)—Aszz(h)Idyldyz-
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Note that, for the constant A; = (b;)¢+, the following holds:

Lo 1b0)-bor
2k+3ﬁQ

Taking N > 2p, then

[f )] dy < k|2 V/nQe (2" /nQ) bl Bmoy ) I L 10g 2443 -

o0
1Vy < CY " Ko(27) 151 sm0y ) 152 w0 () i 1 0g 203 i 1o I 1og 12043 g
k=1
< Cllb1llBmOy (o) 102l BMO, (0) M Litog £),0.n (f15./2) ().
Similarly to IV, we can estimate

1V3 < C|1b1llMO,(0) 152 | BMOy (0) M Litog L), (F11/2) ().

Now for the term IV,. For any z € Q and y1,y2 € €,

|K(z,y1,52) = K(x,51,52)|

< A a)( |z — x| )

T (lz=nl+1z=2D)A +lz—y1l+ 12— 9DV \lz=y1l+ |z -y
-k

<C ©7) .

- |2,(+3\/ZQ|2(1+2](+3\/EV)N

Note C3 = T((bl - )Ll)floo, (bz — )»2)f2°°)(x) Then

IV, < C(ﬁ /;|T((b1 = M), (b2 = 12)f5°) (2)
= T((br = ) (b = 1)) ) dz) '

2
< C/ |K(z,y1,52) = K(x,51,75)] <H| (b)) - A,')f,'(y,')|) dy: dy,
(RM\Q*)? j=1

00 2
ECZ/ Kz y1,32) = Ky )| [ [1 (B0 = 2500 ) dyr dys
k=1 (Qk)2 j=1

> (27 2
<C b(y) - M| [f )] ) dy, d
- ;/ukﬂﬁ@z |2k+3ﬁQI2(1+2k+3ﬁr)N<H’ 109 = 4| [f0p] ) dyr dy
< C Y Ko(27)11b1 llanos o) 121130 ) i 10g £,2543 v Vol og 1283 v

k=1

< Cllb11lBMOg (o) 102l BMO, (0) M Litog L), (f15/2) ().

Case 2: When r > 1. Let 0 < § < € < 1, the following holds:

1 . 5
<§0(Q)”|Q| /Q|T“B(f)(z)|6dy>
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1 1 1
- CW(@/QW’I - A1)y — X)) T (A, 2)|5dz)

C@(T&/|(b1‘AI)T(ﬁ’(bz—Az)fz)sz)‘s
C@Q@/Wh )\2)T( by — M)f, 2)| dz)

FCo@m ”’5<|Q|/|T (b1 =210/, (b2 = 22)5) "’Z)
=I1+I+1I+1V.

Let Q* = 8/nQandlet A; = (b)) be the average of bjon Q*,j = 1,2. Forany 1 < r1,r3, 73 <

oo with 1/r; + 1/rp + 1/r3 = 1, we choose a § small enough to make §r; < 1,i = 1,2 and
r3 < €/é.

Using Holder’s inequality, choosing 7 so that n(

) Cw«lz)z (ﬁ fQ“’l‘z) —M”s””)w
rZ(S r3é 5
(|Q|/|b2(Z) A2| ) <|Q|/|T(f1,f2)(z)| dz)

nle
sczigmwg(Q*)||b1||BMoe<¢>||b2||BMoe ( ] f T(h)E) dz)

< Cllb1llemoy o 12 llvoy M2, , (T, £)) ()

11
5= ;) > 20, then

By the Holder inequality, and Lemma 2.5, we have

II < C||b1lBMOy () (Q)’l/‘s -~ <|Q| / | T(f°, (b — )»2)]‘0)(2)|P dz)

T

1 1
+C||b1||BM09(¢)W(@/|T(f1;(b2 Aa)fy” )(Z)|p5dz)

5~

+ C|lb1 llBmOy (0) (Q)ln,s 9(|Q| / | T(£7°, (by = 12)f3) (2) |”‘3dz)

B

1 1 -
+C||b1||BM09(¢)W<@/Q|T(fI ,(by = A)f5° )z)|P5dz)

22111 +1]2 +[13 +II4.

Now to estimate II;, using the Kolmogorov inequality and the boundedness of operators,
we have

I, < Cllb1llBMog(9) — =75 (Q)n/5 g [T, (B = 22)f) | 1

13 &)

SC||b1||BMog(¢)W@/Qm0(2)|dz/(;|(b2—)Lz)fzo(z)\dz
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< Cllbillmoyt9) —~757 )n/5 — 16211BMOy () 12| (Logr). @90 (Q) 1] @

9(Q

1
< ClIb1 1Moy (o) QD2 162118MOy (9) M L(LogL), 00 (fi2/2) (%)

< ClIb1llBmOy (o) 102 lBMO, (0) M Litog L),0n (f15.2) ().

The way of estimate II; is the same as II3, we only prove II5:

I, = Clbillemoy ) — A5

(Q)n/a o |Q|/|T(fl7(b2 M)f°)(2)| dz

< C“bl”BMOg((p)W@/;(/;*Vl()ﬁ”dyl)

y (/ [(B2(y2) — A2)f2(y2) dys | )dz
rvo+ (IZ=y1l + 12— y2)2" (1 + |z = y1| + |z = y2 )N

s 1 i k(1 +2k+3ﬁr)9+2n
T eQU A (1 2k QN

| beMOg () 122 | BMOg () M Lit0g )01 (15 2) ().

Choosing n such that n/§ -1 >0, N > 0 + 2n + 1, we get

II; < Cllb1BMOy () 162 IBMOy M L(t0g L) (10/2) (X).

Let N>0 +2n+1andn/§-1>0, then

1 1
I, < C“bl”BMOg((p)W@ /Q|T(fl°°, (bs — 12)f°) (2)| dz
11
P(Q=01Q|

A D)(B2(y2) — Aa)fa(y2)| dyr dy2 )d
(Z/Q (2=l + 12— DA+ [z -y + [z —yaD¥ )

< Cllb1llBMmOy ()

k(1 + 253 /ur)?+2n
(p(Q)n/a - Z -~ 1 +2k+3\/{I_Q| W 161 11BMOg () 1621 BMOg () M Lit0g 1), (fi2/2)(

< ClIb1llBmOy (o) 102 lBMO, (0) M Litog £),0n (f15./2) ().

Now estimate /V. We first split any function

1 1 1
1V < CW (@ L|T((b1 - )‘l)flo; (b2 _ )"Z)fZO)(Z)P dZ)
1 1 1
TN RS LIRS K

1 1 N %

1 1 N ) ,
C gy (ja T2 ol )
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= IV1 +[V2 +1V3 +IV4.
Similar to the estimate of II;, taking n(% —2)> 26, then

IV < Cl1b1 1Moy, () 152 | BMOy (0) M Litog L0, (F11f2) ().

IV, and IV3 are symmetric, here, only to estimate of IV, similar to II,, taking N >
260 +2n + 1, we get

IV < Cllb1llBmoy (o) 102 lBMO, (0) M Litog L), (f15/2) ().

Finally, similarly we estimate IV,

IV 4 < Cllb1llBMOy (o) 12l BMO, (0) M Litog L), (f15./2) ().

Thus, we completed the proof of Theorem 4.1. d

Theorem 4.2 Let T be a multilinear Calderén—Zygmund operator of type w(t) as in Def-
inition 1.1, T“z; be a multilinear commutator with b € BMO;{’(q)) and w € Ago(w) with
lp=1/p1+---+1llpmandl<pj<oo,j=1,...,m. If w satisfies

1 m
/ &<1+10gl> dt < oo,
o ¢ t

then there exists a constant C > 0 such that

m m
I T, (f) ||Lp(m) < Cl—[ ”bj”BMOgj((p) 1_[ |U§’||LP1‘(W,-)'
j=1

j=1

Proof 1t is sufficient to prove that, p >0, w € A,

[ 17 w0 = T iblasion o [ MutostyontaPwis) .
R i=1 T JRe
By the related Fefferman—Stein inequality (Lemma 2.7) and Theorem 4.1, we get

170, ) oy = IMG g (T, D)

= ” M?Z,n (Tng (1?)) ”LP(W)

m
= CH ”b/‘”BMOe,(w) ||ML(1°gL),¢,n(f) ”Ll’(w) + ”Med,so,n(T(f)) ||LP(W)

j=1

m-1 m
+CY 3 [T 18s0llemo,

j=1 geC]m j=1

Mepn(Try;, DI

m
= CH ||bj||BMOs,<w> | Mgy (f) ”L!’(w) + ||M§jf£,,,(T(f)) ||Lp(w)
j=1

Page 19 of 23
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m-1 m
+C 3 [T1Bowlnmon 1M, (Tr, (D)

j=1 gec i=1

Here €, 1 are the same as in Theorem 4.1.
By Theorem 3.1, then

HMEIZ,n(T(f)) Hw(w) = CHM%'?(?)HU’(W)

< CHMLaogL),so,n(?)||Lp(w)'

For simplicity, we only prove the case m = 2 in the following:

1842 4.0 (T, ) |y = CIME (T3, Fis)

+ C”Mg,tp,n (Tl}z(fl’fZ)) ”LP(W)'

Similar to the estimate of |M>?

& (T(F)llr@w), and Egs. (4.2) and (4.3),

||M£,¢,n(T£,(ﬂ’ﬁ)) ||L!7(w) = C”bi”BMOej ||ML(logL)y</)’n(1?)||Lp(w)'

To sum up, we obtain
/R T @I ) < cﬁ 1651lEm04 0 /R  Migiog 1y ()@ W) . (4.4)
i=1
By Lemma 2.3, we get
/Rann,;(f)(x)lpvw < Cﬁ l16illB7o, /R Miiog 1), (@) viy dix.
i=1

If u > 1, and since ®(¢) = £(1 + log*(¢)) < t*(t > 1), we easily get

Moz 1y0m P ®) < My (F) ().

By Lemma 2.9, then
R m
”M/Ml’vﬂ(f) ”LP(V,;,) = Cl_[ ”f]t“LI(ng)'
j=1

The inequality ||M,L,<p,n(f)||L1(ﬂ(‘)) < CIT%4 M’”L{ : is equivalent to | My, ()l o) <
viw, W]

C]_[;Zl ”ﬁ”Lf g which was proved in [16]. For some p > 1, using Lemma 2.4, we get
wj

m m
| 70,0 1o,y = €T T804 60 [ TIN50 -
j=1 j=1

Thus, this proof is finished. By the proof of Theorem 4.2, the following results are ob-
tained. O
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Theorem 4.3 Let p > 0 and w be a weight in A% (@), and suppose that T isa multilinear
iterated commutator with b € BMOm(go) Let n > 0 and o is satisfying (4 1). Then there
exist constants C > 0 depending on the A3 (¢) constant of w such that

[ V169l o) < CTThbstavion 0 | Mutostsn ¥ w50
i=1

and
1 -
P oy (b R T 0] > 7))
< Csup 1 w(ly € R": Migognyon () > £7)).
t>0 Plm ( )

Proof The first result is proved in Theorem 4.2, the proof of second result is similar to
the first, also refer to the [8, Theorem 3.19], we need to use Lemma 2.8, Theorem 3.1 and
Theorem 4.1. We omit the details here. O

Lemma 4.4 ([21]) Letw e A?((p) and n > 20. Then there exists a constant C > 0 such that

vw{x eR” IML(logL),(p,r](;)(x) > t”’} < CH(/W q;(m)(m’(tx)' >w,(x) dx) ,
j=1

where ®(t) = t(1 + log"t) and ®"™ = do--- 0 .
[N ————

N

Theorem 4.5 Let T be a multilinear Calderén-Zygmund operator of type w(t) as in Def-
inition 1.1, THE be a multilinear commutator with b e BMOg’((p) and w € A%o((p), assume
that w is satisfying (4.1). Then there exists a constant C > 0 such that

vw{xeR|Tn (f)(x)| >t §CH</W m><[ﬁ(tx)|)wj(x)dx>%.
j=1

Proof Now by Theorem 4.1, Theorem 4.3 and Lemma 4.4, we can get the above result.
Since this argument is the same as the proof of [16, Theorem 4.2], here, we omit the
proof. O

Corollary 4.6 Let T be a multilinear Calderén—Zygmund operator of type w(t) as in Defi-
nition 1.1, Tz, be a multilinear commutator with be BMO}' (¢), assume that  is satisfying
(4.1),0<8 <€ <l/mandn=>20,...,0,)/(1/8 — 1/€). Then there exists a constant C >0
such that

Mie (Ts, () (x <CZ||b||BMoH (ZM‘ ! togDhen (>+Mfw(T(f))(x>>.

j=1
For all m—tuplesf =(f1,....fm) of bounded measurable functions with compact support.

Proof In fact, the multilinear commutator is a special case of iterate commutator, so we
can directly obtain this result through Theorem 4.1. O



Zhao and Zhou Journal of Inequalities and Applications (2021) 2021:29 Page 22 of 23

Corollary 4.7 Let Tgl; be a multilinear commutator with b € BMO%”((p), T be a multi-
linear Calderén—Zygmund operator of type w(t) as in Definition 1.1 and w € Ag"(go) with
lp=1/pi+---+1lppandl<p;<oo,j=1,...,m. If w is satisfying

1 1 m
f @<1+log—) dt < 00,
o t t

then there exists a constant C > 0 such that
m m
| 7530 ;) < €D Ibillemo 0 | 1615
j=1 J=1

Proof Obviously, the multilinear commutator is a special case of the iterate commutator,
then, through Theorem 4.2 we can directly obtain this result. O

Corollary 4.8 Let p> 0 and w be a weight in A3 (p), and suppose that Ty be a multilinear
commutator with b € BMOZ (¢), T be a multilinear Calderén—Zygmund operator of type
w(t) as in Definition 1.1. Let ) > 0 and w is satisfying (4.1). Then there exist constants C > 0
depending on the AS(¢) constant of w such that

/}R |, AW wx <Cy 1511803 ) /R ) D Mg 1y D@ W) dix
i=1 i=1
and

1 N
Stli(? @w({y eR": !T;Z(f)(y)’ > t"‘})

1 AN ) )
Ecstljg @(%)queR :ZML(logL),¢,n(f)(y)>t })

i=1

Proof Similar to the proof of [8, Theorem 3.19], we need to use Lemma 2.7, Lemma 2.8,
Theorem 3.1, and Corollary 4.6. We omit the details here. O

Lemma 4.9 ([16]) Letw € A‘{((p) and n > 20. Then there exists a constant C such that

)wj (x) dx) ,

N

V‘W{x eR” :MQ(IOgL)«p,n(;)(x) > tm} = CH(/RV: (D<lfj(tx)|
j=1

where ®(¢) = £(1 + log™¢).
Corollary 4.10 Let b5 be a multilinear commutator with b BMOg’((p), T be a multilin-

ear Calderén—Zygmund operator of type w(t) as in Definition 1.1 and w € A (@), assume
that w is satisfying (4.1). Then there exists a constant C such that

)w,«(x) dx)

N

) R B " i (%)]
- R”:|Ty. =C
vilx € R": [Ty, ()] > "} < E(/qu( t
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Proof Now by Corollary 4.8 and Lemma 4.9. We can get Corollary 4.10. Since this argu-
ment is the same as the proof of [16, Theorem 4.2], here, we omit the proof. O
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