
Chen Journal of Inequalities and Applications         (2021) 2021:26 
https://doi.org/10.1186/s13660-021-02556-4

R E S E A R C H Open Access

Weak and strong convergence of inertial
algorithms for solving split common fixed
point problems
Hong-Yi Chen1*

*Correspondence:
hongyi0906@gmail.com
1Department of Applied
Mathematics, National Sun Yat-sen
University, 80424, Kaohsiung,
Taiwan

Abstract
In this paper, we propose two iterative schemes for approximating solutions of split
common fixed point problems in multiple linear operators case. The first algorithm
implements the Krasnosel’skĭı–Mann iteration with an inertial effect for which the
weak convergence is established under mild assumptions. With the tool of nearly
contractive mappings, we introduce a viscosity-type iteration which ensures strong
convergence. We apply our results to solve a multiple split monotone variational
inclusion problem. A numerical example is given to demonstrate the efficiency of the
proposed algorithms.
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1 Introduction
Throughout this paper, let H,K1,K2, . . . ,Kr be real Hilbert spaces. Given a not necessarily
linear operator T from H into H, we denote by Fix(T) := {x ∈H | x = Tx} the set of all fixed
points of T . We are interested in the following problem [13].

General Split Common Fixed Point Problem (GSCFPP)

Find a point x ∈
p⋂

i=1

Fix(Ui) such that Ajx ∈ Fix(Tj), ∀j = 1, 2, . . . , r,

where Ui : H →H, Tj : Kj →Kj are operators, and Aj : H →Kj is a bounded linear oper-
ator for all i = 1, 2, . . . , p and j = 1, 2, . . . , r.

If p = r = 1 then the GSCFPP is reduced to the split common fixed point problem.
Split Common Fixed Point Problem (SCFPP)

Find a point x ∈ Fix(U) such that Ax ∈ Fix(T),
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which was first introduced by Censor and Segal [12]. They considered the case of directed
operators U and T . In [23], Moudafi solved the case of demicontractive mappings, and
proposed the following algorithm:

⎧
⎨

⎩
un = xn – γ A∗(I – T)Axn,

xn+1 = (1 – αn)un + αnU(un) for n ∈N,

under suitable conditions of parameters, weak convergence is guaranteed.
Several important inverse problems [5–12, 23], can be rewritten to the description of

the GSCFPP. In order to solve the GSCFPP, Chen, Sahu, and Wong [13] proposed several
weakly and strongly convergent schemes. In this paper, we study the convergence of the
Krasnosel’skĭı–Mann iteration and the nearly contractive viscosity-type iteration, both in-
volving the inertial effect. The inertial terminology greatly improves the performance of
the algorithm (see, e.g. [2, 16, 19, 24]). The inertial method was developed by Polyak [26]
firstly. Álvarez and Attouch [1] employed Polyak’s idea, they constructed an algorithm,
combined with the proximal point algorithm, named inertial proximal point algorithm as
the following form:

⎧
⎨

⎩
zn = xn + ϑn(xn – xn–1),

xn+1 = (I + λnB)–1zn, for n ∈N,
(1.1)

where B is a maximal monotone operator (Sect. 4). Here, ϑn(xn –xn–1) is named the inertial
term. It was proved that the inertial proximal point algorithm (1.1) converges weakly to a
zero point of B if {λn} is non-decreasing and {ϑn} ⊂ [0, 1) satisfies

∞∑

n=1

ϑn‖xn – xn–1‖2 < ∞. (1.2)

As in the common case that incorporating the inertial method in an algorithm greatly
improves the performance numerically. We refer the related research [4, 14, 15, 20, 29–
32] to readers.

In Sect. 2, we review some fundamental tools and results from the convex analysis. In
Sect. 3, we construct algorithms for solving the GSCFPP and study their weak and strong
convergence. In Sect. 4, we study the multiple split monotone variational inclusion prob-
lem. In Sect. 5, we provide a numerical example to demonstrate the performance of our
algorithms.

2 Preliminaries
Let I be the identity operator on H. Given a sequence {xn}n∈N in H and x ∈ H. The nota-
tions “xn → x” and “xn ⇀ x” indicate the strong convergence to x and weak convergence
of {xn} to x, respectively. We denote by ωw(xn) the collection of all points x̄ such that there
is a subsequence of {xn} converges weakly to x̄.

Definition 2.1 A (not necessarily linear) operator T : H →H is said to be
• quasi-nonexpansive if Fix(T) 	= ∅ and ‖Tx – z‖ ≤ ‖x – z‖, ∀x ∈H, z ∈ Fix(T);
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• firmly nonexpansive if ‖Tx – Ty‖2 ≤ 〈Tx – Ty, x – y〉, ∀x, y ∈H, or equivalently,

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈H;

• α-strongly quasi-nonexpansive with α > 0 if Fix(T) 	= ∅ and

〈x – Tx, z – x〉 ≤ –1 – α

2
‖x – Tx‖2, ∀x ∈H, z ∈ Fix(T),

or equivalently,

‖Tx – z‖2 ≤ ‖x – z‖2 – α‖x – Tx‖2, ∀x ∈H, z ∈ Fix(T);

• β-demicontractive with β < 1 if Fix(T) 	= ∅ and

〈x – Tx, z – x〉 ≤ β – 1
2

‖x – Tx‖2, ∀x ∈H, z ∈ Fix(T),

or equivalently,

‖Tx – z‖2 ≤ ‖x – z‖2 + β‖x – Tx‖2, ∀x ∈H, z ∈ Fix(T).

Recall the metric projection PC onto a nonempty, closed and convex subset C of H is
defined with that PC(x) is the unique point in C such that ‖x – PC(x)‖ = infw∈C ‖x – w‖, or
equivalently

〈
x – PC(x), z – PC(x)

〉≤ 0, ∀z ∈ C. (2.1)

It is well known that PC is firmly nonexpansive, 1-strongly quasi-nonexpansive and also
(–1)-demicontractive.

Lemma 2.2 ([21]) If T : H → H is β-demicontractive, then the fixed point set Fix(T) of T
is closed and convex.

Definition 2.3 Let T : H → H. We say that I – T is demiclosed at zero if for any se-
quence {xn} in H converging weakly to x and {xn – Txn} converging strongly to 0, we have
(I – T)x = 0.

For example, when T is nonexpansive, I – T is demiclosed at zero.

Lemma 2.4 ([25]) Let H be a Hilbert space and {xn} a sequence in H such that there exists
a nonempty set D of H satisfying:

(a) For every z ∈ D, limn→∞ ‖xn – z‖ exists.
(b) ωw(xn) ⊂ D.

Then there exists x̄ ∈ D such that xn ⇀ x̄

Lemma 2.5 ([1, 20]) Let {ϕn}, {δn} be two nonnegative sequences, and {ϑn} be a sequence
in [0,ϑ] where ϑ ∈ [0, 1). Assume
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(a) ϕn+1 – ϕn ≤ ϑn(ϕn – ϕn–1) + δn, n ≥ 1,
(b)

∑∞
n=1 δn < ∞.

Then the sequence {ϕn} is convergent and
∑∞

n=1[ϕn+1 – ϕn]+ < ∞, where [t]+ := max{t, 0}.

Lemma 2.6 ([15, 17]) Assume {wn} is a sequence of nonnegative real numbers such that

wn+1 ≤ (1 – νn)wn + νnun, n ≥ 1,

wn+1 ≤ wn – ηn + σn, n ≥ 1,

where {νn}, {un} and {σn} are sequences of real numbers such that
(a) {νn} ⊂ (0, 1) and

∑∞
n=1 νn = ∞,

(b) limn→∞ σn = 0,
(c) lim supk→∞ unk ≤ 0 whenever lim supk→∞ ηnk = 0 for any subsequence of {nk} of {n}.

Then limn→∞ wn = 0.

3 Iterative algorithms for GSCFPP
We consider the following GSCFPP:

Find a point x ∈
p⋂

i=1

Fix(Ui) such that Ajx ∈ Fix(Tj), ∀j = 1, 2, . . . , r, (3.1)

where Ui : H → H an αi-strongly quasi-nonexpansive operator for i = 1, 2, . . . , p, and Tj :
Kj →Kj a βi-demicontractive operator for j = 1, 2, . . . , r.

In this section, we develop two iterative algorithms for solving GSCFPP (3.1) when p = r.
For the case p 	= r, Wang and Xu [33] set Up+1, Up+2, . . . , Ur to be the identity mapping
when p < r, and set Tp+1, Tp+2, . . . , Tr to be the identity mappings when p > r. There is
another option: if p < r, we define Up+1 := U1, Up+2 := U2, . . . , so on; while if p > r, we repeat
members of {Aj}r

j=1 and {Tj}r
j=1 in a similar way. In either way, (3.1) is in the case p = r. Let

� be the solution set of GSCFPP (3.1) and suppose � 	= ∅ throughout this paper.

Lemma 3.1 ([13]) The solution set of GSCFPP (3.1)

� =

{
x ∈

p⋂

i=1

Fix(Ui)
∣∣∣ Ajx ∈ Fix(Tj),∀j = 1, 2, . . . , r

}

is closed and convex.

Definition 3.2 ([13]) Let Ui : H →H be an αi-strongly quasi-nonexpansive operator, Ti :
Ki → Ki be a βi-demicontractive operator, Ai : H → Ki be a bounded linear operator, A∗

i

be the adjoint operator of Ai, and Ii be the identity operator on Ki for i = 1, 2, . . . , p. We
define an operator S : H →H as follows:

Sx =
p∑

i=1

ωiUi
(
I – γiA∗

i (Ii – Ti)Ai
)
x, for x ∈H,

where ωi ∈ (0, 1) with
∑p

i=1 ωi = 1.
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Lemma 3.3 ([13]) Let Ui : H → H be an αi-strongly quasi-nonexpansive operator, Ti :
Ki →Ki be a βi-demicontractive operator, Ai : H →Ki be a bounded linear operator, and
0 < γi < 1–βi

‖Ai‖2 for i = 1, 2, . . . , p. Define a functional r : H →R by

r(x) =
p∑

i=1

ωi
[
γi
(
1 –βi –γi‖Ai‖2)∥∥(Ii – Ti)Aix

∥∥2 +αi‖Vix – UiVix‖2], for x ∈ H , (3.2)

where Vi = I – γiA∗
i (Ii – Ti)Ai for i = 1, 2, . . . , p. Then, for x ∈H and z ∈ �, we have

‖Sx – z‖2 ≤ ‖x – z‖2 – r(x). (3.3)

Remark 3.4 In Lemma 3.3, we observe that r(x) ≥ 0 for all x ∈H. Therefore, the operator
S is quasi-nonexpansive.

Lemma 3.5 If zn := xn + ϑn(xn – xn–1) where 0 ≤ ϑn < 1 for all n ∈N, then, for z ∈H,

‖zn – z‖2 ≤ ‖xn – z‖2 + ϑn
(‖xn – z‖2 – ‖xn–1 – z‖2) + 2ϑn‖xn – xn–1‖2.

Proof Using the identity 2〈a, b〉 = ‖a‖2 + ‖b‖2 – ‖a – b‖2, we have

‖zn – z‖2 =
∥∥xn – z + ϑn(xn – xn–1)

∥∥2

= ‖xn – z‖2 + 2ϑn〈xn – z, xn – xn–1〉 + ϑ2
n‖xn – xn–1‖2

= ‖xn – z‖2 + ϑn
(‖xn – z‖2 + ‖xn – xn–1‖2 – ‖xn–1 – z‖2) + ϑ2

n‖xn – xn–1‖2

= ‖xn – z‖2 + ϑn
(‖xn – z‖2 – ‖xn–1 – p‖2) + ϑn(1 + ϑn)‖xn – xn–1‖2

≤ ‖xn – z‖2 + ϑn
(‖xn – z‖2 – ‖xn–1 – z‖2) + 2ϑn‖xn – xn–1‖2.

Hence, we obtain the desired result. �

3.1 Inertial Krasnosel’skiı̆–Mann algorithm
Algorithm 3.6 (iKMA: Inertial Krasnosel’skĭı–Mann algorithm) Let ϑn ∈ [0,ϑ] with ϑ ∈
[0, 1), {sn} is a sequence in (0, 1], and ωi ∈ (0, 1) with

∑p
i=1 ωi = 1. Set

⎧
⎪⎪⎨

⎪⎪⎩

x0, x1 ∈H,

zn = xn + ϑn(xn – xn–1),

xn+1 = (1 – sn)zn + sn
∑p

i=1 ωiUi(I – γiA∗
i (Ii – Ti)Ai)zn, for n ∈N.

Theorem 3.7 Let Ui : H → H be an αi-strongly quasi-nonexpansive operator, Ti : Ki →
Ki be a βi-demicontractive operator, Ai : H →Ki be a bounded linear operator, and 0 < γi <
1–βi
‖Ai‖2 for i = 1, 2, . . . , p. Assume that I –Ui, Ii –Ti are demiclosed at 0 for all i = 1, 2, . . . , p, and
{sn} is a sequence in [a, 1] for some a > 0. Then the sequence {xn} generated by Algorithm 3.6
converges weakly to a point in �, provide that sequence {ϑn} is chosen in [0,ϑ] with ϑ ∈ [0, 1)
such that

∞∑

n=1

ϑn‖xn – xn–1‖2 < ∞. (3.4)
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Proof Let z ∈ �. Combining Lemma 3.5, we have

‖xn+1 – z‖2

=
∥∥(1 – sn)(zn – z) + sn(Szn – z)

∥∥2

≤ (1 – sn)‖zn – z‖2 + sn‖Szn – z‖2

≤ (1 – sn)‖zn – z‖2 + sn
(‖zn – z‖2 – r(zn)

) (
by (3.3)

)

= ‖zn – z‖2 – snr(zn)

≤ ‖xn – z‖2 + ϑn
(‖xn – z‖2 – ‖xn–1 – z‖2) + 2ϑn‖xn – xn–1‖2 – snr(zn) (3.5)

≤ ‖xn – z‖2 + ϑn
(‖xn – z‖2 – ‖xn–1 – z‖2) + 2ϑn‖xn – xn–1‖2. (3.6)

Applying Lemma 2.5 to (3.6), we conclude that the sequence {‖xn – z‖} is convergent. The
condition (3.4) implies

‖zn – xn‖2 = ϑ2
n‖xn – xn–1‖2 ≤ ϑn‖xn – xn–1‖2 → 0, as n → ∞. (3.7)

It follows from the assumption on parameters and (3.5) that

0 ≤ snr(zn)

≤ ‖xn – z‖2 – ‖xn+1 – z‖2 + ϑn
(‖xn – z‖2 – ‖xn–1 – z‖2)

+ 2ϑn‖xn – xn–1‖2, for all n ∈N. (3.8)

Letting n → ∞ in (3.8), and observing the assumption sn ≥ a for all n ∈ N, we have
r(zn) → 0. Since the coefficients in the finite sum (3.2) are all positive, we obtain

lim
n→∞

∥∥(Ii – Ti)Aizn
∥∥ = lim

n→∞
∥∥(I – Ui)Vizn

∥∥ = 0, ∀i = 1, 2, . . . , p. (3.9)

For any subsequence {xnk } of {xn} which converges weakly to x̃. By (3.7), the subsequence
{znk } of {zn} also converges weakly to x̃. Then Aiznk ⇀ Aix̃ for all i = 1, 2, . . . , p. Hence,
using the demiclosedness of I – Ui and Ii – Ti for all i = 1, 2, . . . , p in (3.9), we conclude that
ωw(xn) ⊂ �. It follows that {xn} converges weakly to a point in � by Lemma 2.4. �

Remark 3.8 (a) Given ϑ ∈ [0, 1), and {εn} is any positive sequence such that
∑∞

n=1 εn < +∞.
The value of ϑn can be chosen from [0, ϑ̄n] where

ϑ̄n =

⎧
⎨

⎩
min{ εn

‖xn–xn–1‖2 ,ϑ}, if xn 	= xn–1;

ϑ , otherwise.

(b) In Theorem 3.7, the parameter sn is a relax condition to the classical Krasnosel’skĭı–
Mann algorithm (see, e.g. [3, Theorem 5.15]). When sn ≡ 1, the Algorithm 3.6 turns to the
Picard iteration.
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3.1.1 Strong convergence: inertial NC-viscosity-type algorithm
Let f be a contraction on H. The viscosity approximation method proposed by Moudafi
[22] generates a strongly convergent sequence:

⎧
⎨

⎩
x0 ∈H,

xn+1 = tnf (xn) + (1 – tn)Txn for n ∈N,

which converges strongly to a fixed point x∗ of T . In [34], Xu further proved that the above
x∗ also satisfies the following variational inequality:

〈
f
(
x∗) – x∗, x – x∗〉≤ 0, ∀x ∈ Fix(T),

provided that {tn} fulfills certain conditions.
Recall that a sequence of mappings {fn} from H into H is called a nearly contractive

mappings with sequence {(κn, an)} in [0, 1) × [0,∞) [18, 27, 28] if an → 0, and for any
x, y ∈H and n ∈ N, we have

∥∥fn(x) – fn(y)
∥∥≤ κn‖x – y‖ + an.

Here, we give two examples of nearly contractive mappings. Let H = R, a sequence of
mappings {fn} defined by

fn(x) =

⎧
⎨

⎩

sin x
n+1 , x ≤ 0,

2
n+1 , x > 0.

Then it can be verified that |fn(x) – fn(y)| ≤ 1
n+1 |x – y| + 3

n+1 , for all x, y ∈ H, n ∈ N. Also,
if fn ≡ f for all n, where f is a contraction on H, then fn is a nearly contractive mappings
with sequences κn ≡ κ , an ≡ 0.

Algorithm 3.9 (iNCVA: Inertial NC-Viscosity-type algorithm) Let {tn}, {sn} be two se-
quences in (0, 1), ϑn ∈ [0,ϑ] with ϑ ∈ [0, 1), and {fn} be a nearly contractive mappings with
{(κn, an)}. Set

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0, x1 ∈H,

zn = xn + ϑn(xn – xn–1),

xn+1 = (1 – sn)zn + sn(tnfn(zn)

+ (1 – tn)
∑p

i=1 ωiUi(I – γiA∗
i (Ii – Ti)Ai)zn), for all n ∈N.

Lemma 3.10 Let Ui : H →H be an αi-strongly quasi-nonexpansive operator, Ti : Ki →Ki

be a βi-demicontractive operator, Ai : H → Ki be a bounded linear operator, and 0 < γi <
1–βi
‖Ai‖2 for i = 1, 2, . . . , p. Given a contraction f with κ ∈ (0, 1) and x∗ = P�f (x∗). Assume that
I – Ui and Ii – Ti are demiclosed at 0 for all i, and {fn} is a nearly contractive mappings
with {(κn, an)} such that κn → κ . Assume that the following conditions are satisfied:

(C1) tn ∈ (0, 1) such that limn→∞ tn = 0 and
∑∞

n=1 tn = ∞;
(C2) 0 < η ≤ sn ≤ ξ < 1 for all n ∈N;
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(C3) limn→∞ fn(x∗) = f (x∗);
(C4) limn→∞ ϑn

tn
‖xn – xn–1‖ = 0.

Then the sequence {xn} generated by Algorithm 3.9 converges strongly to x∗ = P�f (x∗).

Proof Let yn = tnfn(zn) + (1 – tn)Szn, we have

∥∥yn – x∗∥∥

≤ tn
∥∥fn(zn) – x∗∥∥ + (1 – tn)

∥∥Szn – x∗∥∥

≤ tn
(∥∥fn(zn) – fn

(
x∗)∥∥ +

∥∥fn
(
x∗) – x∗∥∥) + (1 – tn)

∥∥zn – x∗∥∥

≤ tn
(
κn
∥∥zn – x∗∥∥ + an

)
+ tn
∥∥fn
(
x∗) – x∗∥∥ + (1 – tn)

∥∥zn – x∗∥∥

≤ (1 – (1 – κn)tn
)∥∥zn – x∗∥∥ + tn

(∥∥fn
(
x∗) – x∗∥∥ + an

)
.

Therefore,

∥∥xn+1 – x∗∥∥

=
∥∥(1 – sn)

(
zn – x∗) + sn

(
yn – x∗)∥∥

≤ (1 – sn)
∥∥zn – x∗∥∥ + sn

∥∥yn – x∗∥∥

≤ (1 – sn)
∥∥zn – x∗∥∥ + sn

(
1 – (1 – κn)tn

)∥∥zn – x∗∥∥ + sntn
(∥∥fn

(
x∗) – x∗∥∥ + an

)

=
(
1 – (1 – κn)sntn

)∥∥zn – x∗∥∥ + sntn
(∥∥fn

(
x∗) – x∗∥∥ + an

)

=
(
1 – (1 – κn)sntn

)∥∥zn – x∗∥∥ + (1 – κn)sntn

(‖fn(x∗) – x∗‖ + an

1 – κn

)

=
(
1 – (1 – κn)sntn

)∥∥xn – x∗ + ϑn(xn – xn–1)
∥∥ + (1 – κn)sntn

(‖fn(x∗) – x∗‖ + an

1 – κn

)

≤ (1 – (1 – κn)sntn
)∥∥xn – x∗∥∥ + ϑn‖xn – xn–1‖ + (1 – κn)sntn

(‖fn(x∗) – x∗‖ + an

1 – κn

)

≤ (1 – (1 – κn)sntn
)∥∥xn – x∗∥∥ + (1 – κn)sntn

(‖fn(x∗) – x∗‖ + an

1 – κn

+
ϑn

(1 – κn)sntn
‖xn – xn–1‖

)
. (3.10)

Since limn→∞ fn(x∗) = f (x∗), limn→∞ κn = κ and limn→∞ an = 0, we conclude that the se-
quence { ‖fn(x∗)–x∗‖+an

1–κn
} is bounded. On the other hand, the conditions (C2) and (C4) imply

the sequence { ϑn
(1–κn)sntn

‖xn – xn–1‖} is also bounded. Let an upper bound of

{‖fn(x∗) – x∗‖ + an

1 – κn
+

ϑn

(1 – κn)sntn
‖xn – xn–1‖

}

be M. Then we write (3.10) as

∥∥xn+1 – x∗∥∥≤ max
{∥∥xn – x∗∥∥, M

}
,

by induction, we have

∥∥xn+1 – x∗∥∥≤ max
{∥∥x1 – x∗∥∥, M

}
.
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Hence, {‖xn – x∗‖} is bounded, so is {‖zn – x∗‖} and {‖yn – x∗‖}. Also,

∥∥fn(zn)
∥∥≤ ∥∥fn(zn) – fn

(
x∗)∥∥ +

∥∥fn
(
x∗)∥∥

≤ κn
∥∥zn – x∗∥∥ + an +

∥∥fn
(
x∗)∥∥.

It follows that {fn(zn)} is bounded. From the inequality

〈u, v〉 ≤ ‖u‖‖v‖ ≤ 1/2
(‖u‖2 + ‖v‖2),

we have

∥∥yn – x∗∥∥2 =
∥∥tn
(
fn(zn) – x∗) + (1 – tn)

(
Szn – x∗)∥∥2

= tn
〈
fn(zn) – x∗, yn – x∗〉 + (1 – tn)

〈
Szn – x∗, yn – x∗〉

= tn
(〈

fn(zn) – fn
(
x∗), yn – x∗〉 +

〈
fn
(
x∗) – f

(
x∗), yn – x∗〉)

+ tn
〈
f
(
x∗) – x∗, yn – x∗〉 + (1 – tn)

〈
Szn – x∗, yn – x∗〉

≤ tn
(∥∥fn(zn) – fn

(
x∗)∥∥ +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥

+ tn
〈
f
(
x∗) – x∗, yn – x∗〉 + (1 – tn)

∥∥Szn – x∗∥∥ · ∥∥yn – x∗∥∥

≤ tn
[(

κn
∥∥zn – x∗∥∥ + an

)
+
∥∥fn
(
x∗) – f

(
x∗)∥∥]∥∥yn – x∗∥∥

+ tn
〈
f
(
x∗) – x∗, yn – x∗〉 + (1 – tn)

∥∥Szn – x∗∥∥ · ∥∥yn – x∗∥∥

≤ tnκn

2
(∥∥zn – x∗∥∥2 +

∥∥yn – x∗∥∥2) +
1 – tn

2
(∥∥Szn – x∗∥∥2 +

∥∥yn – x∗∥∥2)

+ tn
〈
f
(
x∗) – x∗, yn – x∗〉 + tn

(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥

≤ tnκn

2
∥∥zn – x∗∥∥2 +

1
2
∥∥yn – x∗∥∥2 + tn

〈
f
(
x∗) – x∗, yn – x∗〉

+ tn
(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥ +

1 – tn

2
∥∥Szn – x∗∥∥2.

This implies that

∥∥yn – x∗∥∥2 ≤ tnκn
∥∥zn – x∗∥∥2 + 2tn

(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥

+ 2tn
〈
f
(
x∗) – x∗, yn – x∗〉 + (1 – tn)

∥∥Szn – x∗∥∥2.

Then, together with the inequality

∥∥Szn – x∗∥∥2 ≤ ∥∥zn – x∗∥∥2 – r(zn),

we have

∥∥yn – x∗∥∥2 ≤ tnκn
∥∥zn – x∗∥∥2 + 2tn

(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥

+ 2tn
〈
f
(
x∗) – x∗, yn – x∗〉 + (1 – tn)

∥∥zn – x∗∥∥2 – (1 – tn)r(zn)

≤ [1 – (1 – κn)tn
]∥∥zn – x∗∥∥2 + 2tn

(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥
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+ 2tn
〈
f
(
x∗) – x∗, yn – x∗〉 – (1 – tn)r(zn).

Hence,

∥∥xn+1 – x∗∥∥2 =
∥∥(1 – sn)

(
zn – x∗) + sn

(
yn – x∗)∥∥2

= (1 – sn)
∥∥zn – x∗∥∥2 + sn

∥∥yn – x∗∥∥2 – sn(1 – sn)‖zn – yn‖2

≤ (1 – sn)
∥∥zn – x∗∥∥2 – sn(1 – sn)‖zn – yn‖2

+ sn
[
1 – (1 – κn)tn

]∥∥zn – x∗∥∥2 + 2sntn
〈
f
(
x∗) – x∗, yn – x∗〉

+ 2sntn
(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥ – sn(1 – tn)r(zn)

=
[
1 – (1 – κn)sntn

]∥∥zn – x∗∥∥2 + 2sntn
〈
f
(
x∗) – x∗, yn – x∗〉

+ 2sntn
(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥ – sn(1 – sn)‖zn – yn‖2

– sn(1 – tn)r(zn). (3.11)

Using the inequality ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉, we get

∥∥zn – x∗∥∥2 =
∥∥xn – x∗ + ϑn(xn – xn–1)

∥∥2

≤ ∥∥xn – x∗∥∥2 + 2ϑn
〈
xn – xn–1, zn – x∗〉

≤ ∥∥xn – x∗∥∥2 + 2ϑn‖xn – xn–1‖
∥∥zn – x∗∥∥. (3.12)

Combining (3.11) and (3.12), we have

∥∥xn+1 – x∗∥∥2

≤ [1 – (1 – κn)sntn
](∥∥xn – x∗∥∥2 + 2ϑn‖xn – xn–1‖

∥∥zn – x∗∥∥)

+ 2sntn
〈
f
(
x∗) – x∗, yn – x∗〉 + 2sntn

(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥

– sn(1 – sn)‖zn – yn‖2 – sn(1 – tn)r(zn)

≤ [1 – (1 – κn)sntn
]∥∥xn – x∗∥∥2 + 2sntn

〈
f
(
x∗) – x∗, yn – x∗〉

+ 2ϑn‖xn – xn–1‖
∥∥zn – x∗∥∥ + 2sntn

(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥

– sn(1 – sn)‖zn – yn‖2 – sn(1 – tn)r(zn). (3.13)

Set wn = ‖xn – x∗‖2, τn = sn(1 – sn)‖zn – yn‖2 + sn(1 – tn)r(zn), and

un =
2

(1 – κn)

((
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥ +

〈
f
(
x∗) – x∗, yn – x∗〉

+
ϑn

sntn
‖xn – xn–1‖

∥∥zn – x∗∥∥
)

.

Then we rewrite (3.13) as

wn+1 ≤ [1 – (1 – κn)sntn
]
wn + (1 – κn)sntnun, (3.14)
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wn+1 ≤ wn – τn + σn, (3.15)

where

σn = 2sntn
〈
f
(
x∗) – x∗, yn – x∗〉 + 2ϑn‖xn – xn–1‖

∥∥zn – x∗∥∥

+ 2sntn
(
an +

∥∥fn
(
x∗) – f

(
x∗)∥∥)∥∥yn – x∗∥∥.

Since
∑∞

n=1 tn = ∞ and (C2) holds, limn→∞ κn = κ . It follows that

∞∑

n=1

(1 – κn)sntn = ∞.

Because tn ∈ (0, 1) and (C4), we see that limn→∞ ϑn‖xn – xn–1‖ = 0. Together with the
boundedness of {‖zn – x∗‖}, {‖yn – x∗‖} and limn→∞ tn = 0, we have limn→∞ σn = 0.

In order to prove limn→∞ wn = 0, with Lemma 2.6, it remains to show that limk→∞ τnk = 0
implies lim supk→∞ unk ≤ 0 for any subsequence of {nk} of {n}. Let {τnk } be a subsequence
of {τn} such that limk→∞ τnk = 0. Since limk→∞ tnk = 0, 0 < η ≤ snk ≤ ξ < 1, we have

lim
k→∞

‖znk – ynk ‖2 = 0, (3.16)

and limk→∞ r(znk ) = 0, that is,

lim
k→∞

∥∥(Ii – Ti)Aiznk

∥∥2 = lim
k→∞

∥∥(I – Ui)Viznk

∥∥2 = 0, ∀i = 1, 2, . . . , p. (3.17)

Taking a subsequence {ynkj
} of {ynk } such that

lim sup
k→∞

〈
f
(
x∗) – x∗, ynk – x∗〉 = lim

j→∞
〈
f
(
x∗) – x∗, ynkj

– x∗〉.

Since {yn} is bounded, we further assume that {ynkj
} converges weakly to a point ỹ. It fol-

lows from (3.16) that {znkj
} also converges weakly to the same point ỹ. Due to (3.17), we get

ỹ = Uiỹ and Aiỹ = TiAiỹ for all i = 1, 2, . . . , p by the demiclosedness of {I – Ui} and {Ii – Ti}.
Then ỹ is a point in �. It follows, from equation (2.1), that

lim sup
k→∞

〈
f
(
x∗) – x∗, ynk – x∗〉 = lim

j→∞
〈
f
(
x∗) – x∗, ynkj

– x∗〉

=
〈
f
(
x∗) – P�f

(
x∗), ỹ – P�f

(
x∗)〉≤ 0. (3.18)

Together with limn→∞ an = 0, limn→∞ fn(x∗) = f (x∗) and limn→∞ ϑn
tn

‖xn –xn–1‖ = 0, we con-
clude that

lim sup
k→∞

unk = lim sup
k→∞

2
(1 – κnk )

〈
f
(
x∗) – x∗, ynk – x∗〉≤ 0.

Hence, xn → x∗ as n → ∞. �
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Remark 3.11 The value of ϑn can be chosen from [0, ϑ̄n], where

ϑ̄n =

⎧
⎨

⎩
min{ tnεn

‖xn–xn–1‖ ,ϑ}, if xn 	= xn–1;

ϑ , otherwise,

and {εn} is a positive sequence such that limn→∞ εn = 0.

Theorem 3.12 Let Ui : H → H be an αi-strongly quasi-nonexpansive operator, Ti : Ki →
Ki be a βi-demicontractive operator, Ai : H → Ki be a bounded linear operator, and 0 <
γi < 1–βi

‖Ai‖2 for i = 1, 2, . . . , p. Given a sequence {vn} in H strongly converges to some vector v.
Assume that I – Ui and Ii – Ti are demiclosed at 0 for all i, and the following conditions are
satisfied:

(C1) tn ∈ (0, 1) such that limn→∞ tn = 0 and
∑∞

n=1 tn = ∞,
(C2) 0 < η ≤ sn ≤ ξ < 1 for all n ∈ N,
(C3’) limn→∞ ϑn

tn
‖xn – xn–1‖ = 0.

Then the sequence {xn} generated by the following:

⎧
⎪⎪⎨

⎪⎪⎩

x0, x1 ∈H,

zn = xn + ϑn(xn – xn–1),

xn+1 = (1 – sn)zn + sn(tnvn + (1 – tn)Szn) for all n ∈ N,

converges strongly to P�v. In particularly, if vn → 0, then the sequence {xn} converges
strongly to the solution xmin which satisfies ‖xmin‖ = min{‖x‖ : x ∈ �}.

Proof Define contraction mappings f (x) := v, and fn(x) := vn. Then {fn(x)} satisfies the con-
ditions in Lemma 3.10. Hence, the proof is done. �

Remark 3.13 When we set fn ≡ f for some contraction mapping, the Algorithm 3.9 be-
comes the viscosity algorithm. The condition (C3) in Lemma 3.10 is satisfied automati-
cally.

4 Applications
Definition 4.1 A set-valued operator B : H → 2H is said to be

• monotone if for all (x, u), (y, v) ∈ graph B, i.e., u ∈ Bx and v ∈ By, we have

〈x – y, u – v〉 ≥ 0;

• maximal monotone if it is monotone and its graph is not properly contained in
another the graph of monotone operator;

• η-strongly monotone if there exists η > 0 such that for all (x, u), (y, v) ∈ graph B, we
have 〈x – y, u – v〉 ≥ η‖x – y‖2;

• ν-inverse strongly monotone (or ν-cocoercive) if there exists ν > 0 such that

〈x – y, u – v〉 ≥ ν‖u – v‖2,

for all (x, u), (y, v) ∈ graph B.
We denote zero(B) = {x ∈H | 0 ∈ Bx}.
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Definition 4.2 Let B : H → 2H be a set-valued operator and λ > 0. The resolvent of B is
defined as follows:

JλB := (I + λB)–1.

Proposition 4.3 ([3]) Let B1 : H → 2H be maximal monotone and B2 : H → H is ν-
inverse strongly monotone. Then, for λ ∈ (0, 2ν), the forward–backward operator JλB1 (I –
λB2) is 2ν

4ν–λ
-averaged, or equivalently,

∥∥JλB1 (I – λB2)x – JλB1 (I – λB2)y
∥∥2

≤ ‖x – y‖2 –
2ν – λ

2ν

∥∥(I – JλB1 (I – λB2)
)
x –
(
I – JλB1 (I – λB2)

)
y
∥∥2, (4.1)

for all x, y ∈H.

Remark 4.4 As a consequence of Proposition 4.3, if the set zero(B1 +B2) is non-empty, then
zero(B1 + B2) = Fix(JλB1 (I – λB2)) and JλB1 (I – λB2) is 2ν–λ

2ν
-strongly quasi-nonexpansive

(–( 2ν2–λ

2ν2
)-demicontractive) for λ ∈ (0, 2ν). Also, the forward–backward operator U =

JλB1 (I – λB2) is nonexpansive, thus I – U is demiclosed at zero.

We propose the multiple-set split monotone variational inclusion problem (MSSMVIP)
as follows:

Find a point x ∈H such that 0 ∈
p⋂

i=1

(
fi(x) + Fi(x)

)
and 0 ∈

r⋂

j=1

(
gj(Ax) + Gj(Ax)

)
, (4.2)

where Fi : H → 2H, Gj : K → 2K are set-valued maximal monotone operators, fi : H →H,
gj : K → K are inverse strongly monotone operators for i = 1, 2, . . . , p, j = 1, 2, . . . , r, and
A : H →K is a bounded linear operator.

We remark that there are some cases, fi(x)+Fi may not be a maximal monotone operator,
even if it is so, the resolvent Jλ(fi(x)+Fi) might not be able to carry an analytic form easily.

Set Ui = JλFi (I – λfi) for all i = 1, 2, . . . , p and Tj = JλGj (I – λgj) for all j = 1, 2, . . . , r, respec-
tively. Hence, according Remark 4.4, the operator Ui is a strongly quasi-nonexpansive and
the operator Tj is a demicontractive operator for all i, j. Also, I – Ui and I – Tj are demi-
closed at zero. Then MSSMVIP (4.2) becomes to GSCFPP (3.1) where K1 = K2 = · · · =
Kr = K and A1 = A2 = · · · = Ar = A. Assume that p = r and the solution set of MSSMVIP
(4.2) (denoted �M) is not empty. The associated operator is

S =
p∑

i=1

ωiJλFi (I – λfi)
(
I – γiA∗(I – JλGi (I – λgi)

)
A
)
,

where ωi ∈ (0, 1) with
∑p

i=1 ωi = 1.

Theorem 4.5 Let H and K be two real Hilbert spaces and A : H →K be a bounded linear
operator. Let fi : H →H and gj : K →K be νi-inverse strongly monotone for all i = 1, 2, . . . , p
and μj-inverse strongly monotone for all j = 1, 2, . . . , p onH andK, respectively. Let {Fi}, {Gj}
be two families of maximal monotone operators. Set μ := min{ν1,ν2, . . . ,νp,μ1,μ2, . . . ,μp},
λ ∈ [0, 2μ], and γj ∈ (0, 2–λ/2μj

‖A‖2 ) for j = 1, 2, . . . , p.
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• (iKMA) If {sn} is a sequence in (a, 1] for some a > 0, then the sequence {xn} generated by

⎧
⎪⎪⎨

⎪⎪⎩

x0, x1 ∈H,

zn = xn + ϑn(xn – xn–1),

xn+1 = (1 – sn)zn + snSzn, n ∈N,

converges weakly to a point in �M provided that the sequence {ϑn} ⊂ [0,ϑ] with
ϑ ∈ [0, 1) satisfies the following condition:

∞∑

n=1

ϑn‖xn – xn–1‖2 < ∞.

• (iNCVA) Given a contraction h with κ ∈ (0, 1) and x∗ = P�M h(x∗). Suppose that {hn} is
a sequence of nearly contractive mappings with {(κn, an)} such that κn → κ , and the
following conditions are satisfied:

(C1) tn ∈ (0, 1) such that limn→∞ tn = 0 and
∑∞

n=1 tn = ∞,
(C2) 0 < η ≤ sn ≤ ξ < 1 for all n ∈N,
(C3) limn→∞ hn(x∗) = h(x∗),
(C4) limn→∞ ϑn

tn
‖xn – xn–1‖ = 0.

Then the sequence {xn} generated by

⎧
⎪⎪⎨

⎪⎪⎩

x0, x1 ∈H,

zn = xn + ϑn(xn – xn–1),

xn+1 = (1 – sn)zn + sn(tnhn(zn) + (1 – tn)Szn), for all n ∈N,

converges strongly to x∗.

5 Numerical experience
In this section, we utilize those results to demonstrate convergence of our algorithms
for solving GSCFPP in finite dimensional Hilbert spaces. We present the behavior of
these inertial-iterations in a synthetic experiment. The codes were written by MATLAB
(R20013b) and run on a ASUS laptop with RAM 8 GB and Intel(R) Core(TM) i5-4200H
CPU @ 2.80 GHz. We consider the following GSCFPP.

Example 5.1 Let p = r = 3, H = R
2, K1 = K2 = R

2, and K3 = R
3. The three closed balls in

H are as follows:

C1 =
{(

x1, x2)T ∈H |
√(

x1 – 2
)2 +

(
x2 – 2

)2 ≤ 5
}

,

C2 =
{(

x1, x2)T ∈H |
√(

x1 – 1
)2 +

(
x2 – 3

)2 ≤ 4
}

,

C3 =
{(

x1, x2)T ∈H |
√(

x1 – 3
)2 +

(
x2 – 2

)2 ≤ 4
}

.

The three sets Q1, Q2, Q3 are setting as

Q1 =
{(

y1, y2)T ∈K1 | –8 ≤ y1 ≤ –5 and 4 ≤ y2 ≤ 7
}

,
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Q2 =
{(

y1, y2)T ∈K2 | 12 ≤ y1 ≤ 15 and – 6 ≤ y2 ≤ –2
}

,

Q3 =
{(

y1, y2, y3)T ∈K3 | –7 ≤ y1 ≤ –5, –2 ≤ y2 ≤ 2, and 9 ≤ y3 ≤ 11
}

.

The three matrices are

A1 =

(
2 –5
0 3

)
, A2 =

(
5 2
0 –2

)
, and A3 =

⎛

⎜⎝
–3 0
3 –3
3 2

⎞

⎟⎠ .

Checking the point (2, 2)T is in the solution set

� =

{
x =
(
x1, x2)T ∈H

∣∣∣ x ∈
3⋂

i=1

Ci and Ajx ∈ Qj for j = 1, 2, 3

}
.

The iKMA is set as

⎧
⎪⎪⎨

⎪⎪⎩

x0, x1 ∈H,

zn = xn + ϑn(xn – xn–1),

xn+1 = 0.2zn + 0.8
∑3

i=1
1
3 PCi (zn – γiAT

i (I – PQi )Aizn), for n ∈N.

The iNCVA is set as

⎧
⎪⎪⎨

⎪⎪⎩

x0, x1 ∈H,

zn = xn + ϑn(xn – xn–1),

xn+1 = 0.2zn + 0.8[ 1
n v0 + (1 – 1

n )
∑3

i=1
1
3 PCi (zn – γiAT

i (I – PQi )Aizn)], for all n ∈N,

where ϑn ∈ [0,ϑ] with ϑ ∈ [0, 1), and the parameters γj = 0.9 × 1/‖Aj‖2 for all j = 1, 2, 3.
The initial points are chosen by x0 = (0, 3)T , x1 = (3, 2)T and v0 = (2, 2)T . We present the
behavior of the value of the function φ at each iteration, where φ is defined by

φ(x) =
1
2

p∑

i=1

1
p
‖x – PCi x‖2 +

1
2

r∑

j=1

1
r
‖Ajx – PQj Ajx‖2, x ∈H.

The Remark 3.8 illustrates whereby to choose the parameter sequence {ϑn}. For the Ex-
ample 5.1, the parameter sequence {ϑn} is chosen as follows:

ϑn =

⎧
⎨

⎩
min{ 1

n2‖xn–xn–1‖2 ,ϑ}, if xn 	= xn–1;

ϑ , otherwise,

where ϑ is a real number in [0, 1).
Figure 1 (a), (b) show that the performance of iKMA and iNCVA with ϑ = 0.8 and ϑ = 0

(i.e., without the inertial terms), respectively. To be properly presented, we use the semilog
plotting. Figure 1 (c) demonstrates the inertial action of iKMA of each even terms.
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Figure 1 (a) Behavior of φ(xn) (n = 1, 2, . . . , 20) of KMA and iKMA for Example 5.1. (b) Behavior of φ(xn)
(n = 1, 2, . . . , 5) of NCVA and iNCVA for Example 5.1. (c) The graph of level curve of φ in Example 5.1 with
sequence {x2k | k = 1, 2, . . . , 9} which is generated by iKMA

6 Conclusion
We present weak convergence and strong convergence results with inertial method for the
split common fixed point problem with multiple-sets, multiple-operators and the wide
class of quasi-nonexpansive type operators. Numerical simulations show that the algo-
rithms involving the inertial effect converge more quickly than without inertial terms.
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