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Abstract
For a connected graph, the first Zagreb eccentricity index ξ1 is defined as the sum of
the squares of the eccentricities of all vertices, and the second Zagreb eccentricity
index ξ2 is defined as the sum of the products of the eccentricities of pairs of adjacent
vertices. In this paper, we mainly present a different and universal approach to
determine the upper bounds respectively on the Zagreb eccentricity indices of trees,
unicyclic graphs and bicyclic graphs, and characterize these corresponding extremal
graphs, which extend the ordering results of trees, unicyclic graphs and bicyclic
graphs in (Du et al. in Croat. Chem. Acta 85:359–362, 2012; Qi et al. in Discrete Appl.
Math. 233:166–174, 2017; Li and Zhang in Appl. Math. Comput. 352:180–187, 2019).
Specifically, we determine the n-vertex trees with the i-th largest indices ξ1 and ξ2 for
i up to �n/2 + 1� compared with the first three largest results of ξ1 and ξ2 in (Du et al.
in Croat. Chem. Acta 85:359–362, 2012), the n-vertex unicyclic graphs with
respectively the i-th and the j-th largest indices ξ1 and ξ2 for i up to �n/2 – 1� and j up
to �2n/5 + 1� compared with respectively the first two and the first three largest
results of ξ1 and ξ2 in (Qi et al. in Discrete Appl. Math. 233:166–174, 2017), and the
n-vertex bicyclic graphs with respectively the i-th and the j-th largest indices ξ1 and
ξ2 for i up to �n/2 – 2� and j up to �2n/15 + 1� compared with the first two largest
results of ξ2 in (Li and Zhang in Appl. Math. Comput. 352:180–187, 2019), where n≥ 6.
More importantly, we propose two kinds of index functions for the eccentricity-based
topological indices, which can yield more general extremal results simultaneously for
some classes of indices. As applications, we obtain and extend some ordering results
about the average eccentricity of bicyclic graphs, and the eccentric connectivity
index of trees, unicyclic graphs and bicyclic graphs.

Keywords: Zagreb eccentricity index; Tree; Unicyclic graph; Bicyclic graph;
Eccentricity-based topological index; Index function

1 Introduction
Topological indices are numerical graph invariants that quantitatively characterize molec-
ular structure, which are useful molecular descriptors that found considerable use in QSPR
and QSAR studies [20, 21]. Several graph invariants based on vertex eccentricities have
attracted much attention and have been subject to a large number of studies. We mainly
study two kinds of eccentricity-based topological indices, that is, the first Zagreb eccen-
tricity index and the second Zagreb eccentricity index, special cases of which have been
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studied due to their predictive capabilities for the physical and chemical properties of
molecules.

All graphs considered in this paper are finite, simple, and connected. Let G be a graph
with a vertex set V (G) and an edge set E(G). For u ∈ V (G), eG(u) denotes the eccentricity
of u in G, which is equal to the largest distance from u to other vertices of G.

The first Zagreb eccentricity index of G is defined as

ξ1(G) =
∑

u∈V (G)

e2
G(u),

while the second Zagreb eccentricity index of G is defined as

ξ2(G) =
∑

uv∈E(G)

eG(u)eG(v).

These two types of Zagreb eccentricity indices were introduced by Vukičević and Graovac
[22]. Some mathematical and computational properties of the Zagreb eccentricity indices
have been obtained in [4, 6, 12, 13, 15, 16, 24]. Du et al. [6] determined the n-vertex trees
with maximum, second-maximum, and third-maximum Zagreb eccentricity indices. Qi
and Du [15] determined the trees with minimum Zagreb eccentricity indices when dom-
ination number, maximum degree, and bipartition size are respectively given, and they
discussed the trees with maximum Zagreb eccentricity indices when domination number
is given. Qi et al. [16] determined the n-vertex unicyclic graphs with maximum, second-
maximum eccentricity index ξ1, and maximum, second-maximum, and third-maximum
eccentricity index ξ2. Li and Zhang [12] determined the n-vertex bicyclic graphs with max-
imum and second-maximum eccentricity index ξ2.

For a connected graph, the first Zagreb eccentricity index ξ1 is defined as the sum of
the squares of the eccentricities of all vertices, and the second Zagreb eccentricity index
ξ2 is defined as the sum of the products of the eccentricities of pairs of adjacent vertices.
In this paper, we mainly present a different and universal approach to determine the up-
per bounds respectively on the Zagreb eccentricity indices of trees, unicyclic graphs and
bicyclic graphs, and characterize these corresponding extremal graphs, which extend the
ordering results of trees, unicyclic graphs, and bicyclic graphs in [6, 12, 16]. Specifically, we
determine the n-vertex trees with the i-th largest indices ξ1 and ξ2 for i up to �n/2+1� com-
pared with the first three largest results of ξ1 and ξ2 in [6], the n-vertex unicyclic graphs
with respectively the i-th and the j-th largest indices ξ1 and ξ2 for i up to �n/2 – 1� and j
up to �2n/5 + 1� compared with respectively the first two and the first three largest results
of ξ1 and ξ2 in [16], and the n-vertex bicyclic graphs with respectively the i-th and the j-th
largest indices ξ1 and ξ2 for i up to �n/2 – 2� and j up to �2n/15 + 1� compared with the first
two largest results of ξ2 in [12], where n ≥ 6. More importantly, we propose two kinds of
index functions for the eccentricity-based topological indices, which can yield more gen-
eral extremal results simultaneously for some classes of indices. As applications, we obtain
and extend some ordering results about the average eccentricity of bicyclic graphs and the
eccentric connectivity index of trees, unicyclic graphs and bicyclic graphs.

2 Preliminaries
Let n0 and d0 be positive integers. Let Tn≥n0

(res. Un≥n0
, Bn≥n0

) be the set of n-vertex trees
(res. unicyclic graphs, bicyclic graphs), where n ≥ n0. Let T(n≥n0 , d≤d0 ) (res. U(n≥n0 , d≤d0 ),
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Figure 1 The graph T in

B(n≥n0 , d≤d0 )) be the set of n-vertex trees (res. unicyclic graphs, bicyclic graphs) with the
diameter d, where n ≥ n0 and d ≤ d0.

Let Pn be the path on n vertices. For 2 ≤ d ≤ n – 1, let T (n,d) = {Ta
n,d : 1 ≤ a ≤ �(n + 1 –

d)/2�}, where Ta
n,d is the n-vertex tree obtained by attaching a and n + 1 – a – d pendent

vertices respectively to the two end vertices of the path Pd–1. For n ≥ 4, let Ti
n be the tree

formed by attaching a pendent vertex vn–1 to a vertex vi of the path Pn–1 = v0v1 · · · vn–2,
where 1 ≤ i ≤ � n–2

2 � (see Fig. 1). In particular, T0
n = Pn.

The following observation is obvious.

Observation 2.1 If G is a connected graph such that G – e is also connected for e ∈ E(G),
then eG(u) ≤ eG–e(u) for u ∈ V (G), and thus ξ1(G) ≤ ξ1(G – e).

Lemma 2.2 ([6]) Let G ∈ T(n≥3, d≤n–1). Then

ξ1(G) ≤ f1(n, d), ξ2(G) ≤ f2(n, d)

with equality if and only if G ∈ T (n,d), where

f1(n, d) =

⎧
⎨

⎩
d2n – 5d3–2d

12 if d is even,

d2n – 5d3–5d
12 if d is odd,

f2(n, d) =

⎧
⎨

⎩
d(d – 1)n – 5d3–8d

12 if d is even,

d(d – 1)n – 5d3–11d–6
12 if d is odd,

and f1(n, d) and f2(n, d) are increasing for 2 ≤ d ≤ n – 1.

For n ≥ 3 and 0 ≤ i ≤ � n–3
2 �, let Pn,3(i) be the n-vertex unicyclic graph formed by attach-

ing two pendent paths with i and n – 3 – i vertices respectively to the two vertices of a
triangle (see Fig. 2). For n ≥ 4 and 0 ≤ i ≤ � n–4

2 �, let Pn,4(i) be the n-vertex unicyclic graph
formed by attaching two pendent paths with i and n – 4 – i vertices respectively to the two
non-adjacent vertices of a quadrangle (see Fig. 3). For n ≥ 4 and 0 ≤ i ≤ � n–4

2 �, let Bn(i) be
the n-vertex bicyclic graph formed by adding an edge between vn–1 and vi+1 in Pn,4(i) (see
Fig. 4).

Lemma 2.3 (1) For 1 ≤ i ≤ � n–4
2 �, ξ1(Bn(i – 1)) = ξ1(Pn,4(i – 1)) = ξ1(Pn,3(i)) = ξ1(Ti+1

n ) and
ξ1(Pn,3(0)) = ξ1(T1

n );
(2) For 1 ≤ i ≤ � n–6

2 �, ξ1(Pn,3(i – 1)) > ξ1(Pn,3(i)) > ξ1(Pn,3(i + 1)), ξ1(Pn,4(i – 1)) > ξ1(Pn,4(i)),
and ξ1(Bn(i – 1)) > ξ1(Bn(i));

(3) For 1 ≤ i ≤ � n–6
2 �, ξ2(Pn,3(i–1)) > ξ2(Pn,4(i–1)) > ξ2(Pn,3(i)) > ξ2(Pn,4(i)) > ξ2(Pn,3(i+1))

and ξ2(Bn(i – 1)) > ξ2(Bn(i)).
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Figure 2 The graph Pn,3(i)

Figure 3 The graph Pn,4(i)

Figure 4 The graph Bn(i)

Proof Note that Pn,3(i) (res. Pn,4(i – 1), Bn(i – 1)) with 0 ≤ i ≤ � n–4
2 � (res. 1 ≤ i ≤ � n–4

2 �) can
be obtained from Ti+1

n by adding an edge vivn–1 (res. vivn–1, two edges vivn–1 and vi–1vn–1).
From the above fact we may easily find that vertices in Pn,3(i), Pn,4(i – 1), Bn(i – 1), and
Ti+1

n with the same label have equal eccentricity for 1 ≤ i ≤ � n–4
2 �, and so do the vertices

in Pn,3(0) and T1
n . Thus result (1) follows.

Note that eTi+1
n

(vj) = eTi
n
(vj) for 0 ≤ j ≤ n – 2 and eTi

n
(vn–1) = n – 1 – i for 0 ≤ i ≤ � n–2

2 �.
Then, for 0 ≤ i ≤ � n–4

2 �, we have ξ1(Ti+1
n ) < ξ1(Ti

n) and ξ2(Ti+1
n ) < ξ2(Ti

n). Thus, combining
result (1), we have result (2) directly.

For 0 ≤ i ≤ � n–4
2 �,

ξ2
(
Pn,3(i)

)
= ξ2

(
Ti+1

n
)

+ (n – i – 2)2.

For 1 ≤ i ≤ � n–4
2 �,

ξ2
(
Pn,4(i – 1)

)
= ξ2

(
Ti+1

n
)

+ (n – i – 1)(n – i – 2).

For 0 ≤ i ≤ � n–6
2 �,

ξ2
(
Bn(i)

)
= ξ2

(
Ti+2

n
)

+ (n – 3 – i)(2n – 5 – 2i).

Then, combining the fact that ξ2(Ti+1
n ) < ξ2(Ti

n), result (3) follows easily. �

3 Main results of Zagreb eccentricity indices
3.1 Ordering trees with large Zagreb eccentricity indices
Theorem 3.1 Among the graphs in Tn≥3 , Pn for n ≥ 3 is the unique graph with the largest
eccentricity indices ξ1 and ξ2, and Ti

n for n ≥ 4 and 1 ≤ i ≤ �n/2 – 1� is the unique graph
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with the (i + 1)th largest eccentricity indices ξ1 and ξ2, where

ξ1(Pn) =

⎧
⎨

⎩

7n3–9n2+2n
12 if n is even,

7n3–9n2–n+3
12 if n is odd,

ξ2(Pn) =

⎧
⎨

⎩

7n3–21n2+20n
12 if n is even,

7n3–21n2+17n–3
12 if n is odd,

ξ1
(
Ti

n
)

=

⎧
⎨

⎩

7n3–30n2+38n–12
12 + (n – i – 1)2 if n is even,

7n3–30n2+41n–18
12 + (n – i – 1)2 if n is odd,

ξ2
(
Ti

n
)

=

⎧
⎨

⎩

7n3–42n2+80n–48
12 + (n – i – 1)(n – i – 2) if n is even,

7n3–42n2+83n–48
12 + (n – i – 1)(n – i – 2) if n is odd.

Proof Let T ∈ T(n≥3, d≤n–1). If n = 3 or n = 4, then the result follows easily. Suppose that
n ≥ 5. Note that f1(n, d) and f2(n, d) are increasing for 2 ≤ d ≤ n – 1 by Lemma 2.2. Then
ξk(T) ≤ fk(n, d) ≤ fk(n, n – 3) < fk(n, n – 2) < fk(n, n – 1) for any T ∈ T(n≥5, d≤n–3), where k =
1, 2. Note that T (n,n–1) = {Pn} and T (n,n–2) = {T1

n}. Then Pn and T1
n for n ≥ 5 are respectively

the unique n-vertex trees with the largest and the second largest eccentricity indices ξ1

and ξ2.
Suppose that 2 ≤ i ≤ �n/2 – 1�. Among the graphs in Tn≥3 , the (i + 1)th largest eccen-

tricity indices ξ1 and ξ2 are achieved by the trees in T(n≥5, d=n–2) \ {Tj
n : 1 ≤ j ≤ i – 1} or in

T (n,n–3) with the largest eccentricity indices ξ1 and ξ2.
Let T1 ∈ T(n≥5, d=n–2) \ {Tj

n : 1 ≤ j ≤ i – 1}. Since ξ1(Ti
n) < ξ1(Ti–1

n ) and ξ2(Ti
n) < ξ2(Ti–1

n ),
we have ξ1(T1) ≤ ξ1(Ti

n) and ξ2(T1) ≤ ξ2(Ti
n), where the equalities hold if and only if T1 =

Ti
n. For T2 ∈ T (n,n–3), by direct calculation, we have

ξ1
(
T�n/2–1�

n
)

– ξ1(T2) =

⎧
⎨

⎩
5n – 11 if n is even,

6n – 12 if n is odd,

> 0,

ξ2
(
T�n/2–1�

n
)

– ξ2(T2) =

⎧
⎨

⎩

9n
2 – 13 if n is even,

11n–27
2 if n is odd,

> 0.

Thus Ti
n is the unique n-vertex tree with the (i + 1)th largest eccentricity indices ξ1 and ξ2,

where 1 ≤ i ≤ �n/2 – 1�. The result follows. �

In fact, from the proof of Theorem 3.1, we have the following corollary easily.

Corollary 3.2 Among the graphs in Tn≥3 , T (n,n–3) is the set of graphs with the �n/2 + 1�th

largest eccentricity indices ξ1 and ξ2, and fk(n, n – 3) < ξk(T� n–2
2 �

n ) for k = 1, 2.
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3.2 Ordering unicyclic graphs with large Zagreb eccentricity indices
Lemma 3.3 Let G ∈ U(n≥6, d=n–2) \ ({Pn,3(i) : 0 ≤ i ≤ � n–4

2 �} ∪ {Pn,4(i) : 0 ≤ i ≤ � n–6
2 �}).

Then ξk(G) < ξk(Pn,3(� n–4
2 �)) for k = 1, 2.

Proof If n is even, then G = Pn,4( n–4
2 ). If n is odd, then G ∈ {Pn,3( n–3

2 ), Pn,4( n–5
2 )}. By direct

computation, we have

ξ1

(
Pn,4

(⌊
n – 4

2

⌋))
– ξ1

(
Pn,3

(⌊
n – 4

2

⌋))
=

⌈
n – 2

2

⌉2

–
⌈

n
2

⌉2

< 0,

ξ2

(
Pn,4

(⌊
n – 4

2

⌋))
– ξ2

(
Pn,3

(⌊
n – 4

2

⌋))
=

⎧
⎨

⎩
– n

2 if n is even,

–n if n is odd,

< 0,

and for odd n,

ξ1

(
Pn,3

(
n – 3

2

))
– ξ1

(
Pn,3

(
n – 5

2

))
=

(
n – 1

2

)2

–
(

n + 1
2

)2

< 0,

ξ2

(
Pn,3

(
n – 3

2

))
– ξ2

(
Pn,3

(
n – 5

2

))
=

–3n + 1
2

< 0.

Thus the result follows. �

Theorem 3.4 Among the graphs in Un≥6 , Pn,3(0) is the unique graph with the largest ec-
centricity index ξ1, and Pn,3(i) and Pn,4(i – 1) with 1 ≤ i ≤ � n–4

2 � are the graphs with the
(i + 1)th largest eccentricity index ξ1, where

ξ1
(
Pn,3(0)

)
=

⎧
⎨

⎩

7n3–30n2+38n–12
12 + (n – 2)2 if n is even,

7n3–30n2+41n–18
12 + (n – 2)2 if n is odd,

ξ1
(
Pn,3(i)

)
= ξ1

(
Pn,4(i – 1)

)
=

⎧
⎨

⎩

7n3–30n2+38n–12
12 + (n – i – 2)2 if n is even,

7n3–30n2+41n–18
12 + (n – i – 2)2 if n is odd.

Proof Let G ∈ U(n≥6, d≤n–2). From Lemmas 2.3(2) and 3.3, we only need to show that
ξ1(G) < ξ1(Pn,3(� n–4

2 �)) for G ∈ U(n≥6, d≤n–3).
It is easy to find that there exists an edge e on the cycle of G such that the diameter

of G – e is at most n – 3. Note that f1(n, n – 3) < ξ1(T� n–2
2 �

n ) by Corollary 3.2. Then, by
Observation 2.1 and Lemmas 2.2 and 2.3(1), we have

ξ1(G) ≤ ξ1(G – e) ≤ f1(n, n – 3) < ξ1
(
T� n–2

2 �
n

)
= ξ1

(
Pn,3

(⌊
n – 4

2

⌋))
.

Thus we have the result. �
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Combining Lemmas 2.3(3) and 3.3, we have the following proposition.

Proposition 3.5 Among the graphs in U(n≥6, d=n–2), Pn,3(i) with 0 ≤ i ≤ � n–4
2 � is the unique

graph with the (2i + 1)th largest eccentricity index ξ2, and Pn,4(i – 1) with 1 ≤ i ≤ � n–4
2 � is

the unique graph with the (2i)th largest eccentricity index ξ2.

Theorem 3.6 Among the graphs in Un≥6 , Pn,3(i) with 0 ≤ i ≤ � n
5 � is the unique graph with

the (2i + 1)th largest eccentricity index ξ2, and Pn,4(i – 1) with 1 ≤ i ≤ � n
5 � is the unique

graph with the (2i)th largest eccentricity index ξ2, where

ξ2
(
Pn,3(i)

)
=

⎧
⎨

⎩

7n3–42n2+80n–48
12 + (2n – 2i – 5)(n – i – 2) if n is even,

7n3–42n2+83n–48
12 + (2n – 2i – 5)(n – i – 2) if n is odd,

ξ2
(
Pn,4(i – 1)

)
=

⎧
⎨

⎩

7n3–42n2+80n–48
12 + (2n – 2i – 4)(n – i – 2) if n is even,

7n3–42n2+83n–48
12 + (2n – 2i – 4)(n – i – 2) if n is odd.

Proof Suppose that G ∈ U(n≥6, d≤n–2). By Proposition 3.5, we only need to show that
ξ2(G) < ξ2(Pn,3(� n

5 �)) for G ∈ U(n≥6, d≤n–3).
Note that there exists an edge e such that G – e is a spanning tree with the diameter at

most n – 3 and the maximum eccentricities of the two vertices on the edge e are n – 3 and
n – 3. Then, by Observation 2.1 and Lemma 2.2, we have

ξ2(G) ≤ ξ2(G – e) + (n – 3)(n – 3) ≤ f2(n, n – 3) + (n – 3)(n – 3).

Thus, by direct calculation, for 0 ≤ i ≤ n
5 , we have

ξ2
(
Pn,3(i)

)
– ξ2(G) ≥

⎧
⎨

⎩

3n2

4 – (4i – 2)n + 2i2 + 9i – 12 if n is even,
3n2

4 – (4i – 5
2 )n + 2i2 + 9i – 49

4 if n is odd,

≥
⎧
⎨

⎩

3n2

100 + 19n
5 – 12 if n is even,

3n2

100 + 43n
10 – 49

4 if n is odd,

> 0,

and the result follows. �

3.3 Ordering bicyclic graphs with large Zagreb eccentricity indices
Lemma 3.7 Let G ∈ B(n≥6, d=n–2) \ {Bn(i) : 0 ≤ i ≤ � n–6

2 �}. Then ξk(G) < ξk(Bn(� n–6
2 �)) for

k = 1, 2.

Proof If n is even, then G = Bn( n–4
2 ). If n is odd, then G = Bn( n–5

2 ). By direct computation,
we have

ξ1

(
Bn

(⌊
n – 4

2

⌋))
– ξ1

(
Bn

(⌊
n – 6

2

⌋))
=

⌈
n – 2

2

⌉2

–
⌈

n
2

⌉2

< 0,
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ξ2

(
Bn

(⌊
n – 4

2

⌋))
– ξ2

(
Bn

(⌊
n – 6

2

⌋))
=

⎧
⎨

⎩
–2n + 1 if n is even,

– 5n+1
2 if n is odd,

< 0.

Thus the result follows. �

Theorem 3.8 Among the graphs in Bn≥6 , Bn(i) with 0 ≤ i ≤ � n–6
2 � is the unique graph with

the (i + 1)th largest eccentricity index ξ1, where

ξ1
(
Bn(i)

)
=

⎧
⎨

⎩

7n3–30n2+38n–12
12 + (n – i – 3)2 if n is even,

7n3–30n2+41n–18
12 + (n – i – 3)2 if n is odd.

Proof Suppose that G ∈ B(n≥6, d≤n–2). From Lemmas 2.3(2) and 3.7, we only need to show
that ξ1(G) < ξ1(Bn(� n–6

2 �)) and G ∈ B(n≥6, d≤n–3).
It is easy to find that there exist two edges e1 and e2 on the cycle of G such that the

diameter of G – e1 – e2 is at most n – 3. Note that f1(n, n – 3) < ξ1(T� n–2
2 �

n ) by Corollary 3.2.
Then, by Observation 2.1 and Lemmas 2.2 and 2.3(1), we have

ξ1(G) ≤ ξ1(G – e1 – e2) ≤ f1(n, n – 3) < ξ1
(
T� n–2

2 �
n

)
= ξ1

(
Bn,2

(⌊
n – 6

2

⌋))
.

Thus the result follows. �

Combining Lemmas 2.3(3) and 3.3, we have the following proposition.

Proposition 3.9 Among the graphs in B(n≥6, d=n–2), Bn(i) with 0 ≤ i ≤ � n–6
2 � is the unique

graph with the (i + 1)th largest eccentricity index ξ2.

Theorem 3.10 Among all the graphs in Bn≥6 , Bn(i) is the (i + 1)th largest eccentricity index
ξ2 with 0 ≤ i ≤ � 2n

15 �, where

ξ2
(
Bn(i)

)
=

⎧
⎨

⎩

7n3–42n2+80n–48
12 + 3(n – i – 3)2 if n is even,

7n3–42n2+83n–48
12 + 3(n – i – 3)2 if n is odd.

Proof Suppose that G ∈ B(n≥6, d≤n–2). Then, by Proposition 3.9, we only need to show
that ξ2(G) < ξ2(Bn(� 2n

15 �)) for G ∈ B(n≥6, d≤n–3).
Note that there exist two edges e1, e2 on the cycle(s) such that G – e1 – e2 is a spanning

tree with the diameter at most n – 3, and all the vertices incident to the edges e1, e2 have
eccentricities at most n – 3. Then, by Observation 2.1 and Lemma 2.2, we have

ξ2(G) ≤ ξ2(G – e1 – e2) + 2(n – 3)2 ≤ f2(n, n – 3) + 2(n – 3)2.

Thus, for 0 ≤ i ≤ 2n
15 , we have

ξ2
(
Bn(i)

)
– ξ2(G) ≥

⎧
⎨

⎩

3n2

4 – (6i + 1)n + 3i2 + 18i – 4 if n is even,
3n2

4 – (6i + 1
2 )n + 3i2 + 18i – 17

4 if n is odd,
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≥
⎧
⎨

⎩

n2

300 + 7n
5 – 4 if n is even,

n2

300 + 19n
10 – 17

4 if n is odd,

> 0,

and the result follows. �

4 Ordering graphs with large eccentricity-based topological indices
Most papers on this topic study just one topological index and find its extremal values
(or perhaps several near-extreme values) over n-vertex trees or other simple classes. We
propose studying such problems in terms of general properties of some index functions
for the eccentricity-based topological indices. Requiring only the properties needed for
the argument yields a more general extremal result simultaneously for a class of indices.
In the following, we consider two kinds of index functions, that is, a vertex-weight index
function and an edge-weight index function.

Definition 4.1 The weight ω(u) of a vertex u in a graph G is eG(u). Given a positive real-
valued function tv, the vertex-weight index function for a graph G is defined by f (G; v) =∑

u∈V (G) tv(ω(u)).

The total eccentricity index of G, introduced by Farooq et al. [8], is defined as τ (G) =∑
u∈V (G) eG(u) using tv(ω(u)) = ω(u); the average eccentricity of G, introduced by Bukley

et al. [1], is defined as avec(G) = 1
nτ (G) using tv(ω(u)) = 1

nω(u). For more recent results on
average eccentricity, see [2, 3, 5, 11].

The first Zagreb eccentricity index of G is defined as ξ1(G) =
∑

u∈V (G) e2
G(u) using

tv(ω(u)) = ω2(u).
Note that those above indices have similar extremal values (or perhaps several near-

extremal values) over n-vertex trees, unicyclic graphs, and bicyclic graphs. Tang and Zhou
have determined similar extremal values of the average eccentricity over n-vertex trees
[18] and unicyclic graphs [19]. Like the discussion of the first Zagreb eccentricity index, we
also obtain a similar result about the average eccentricity of bicyclic graphs in the following
Theorem 4.2, whose proof is omitted since we use a similar method.

Theorem 4.2 Among the graphs in Bn≥6 , Bn(i) is the unique graph with the (i + 1)th largest
average eccentricity, equal to 3(n–1)2+2n–4i–11

4n for even n and 3(n–1)2+2n–4i–10
4n for odd n, where

0 ≤ i ≤ � n
2 � – 3.

Definition 4.3 The weight ω(e) of an edge e = uv in a graph G is eG(u)eG(v), and the weight
ω∗(e) of an edge e = uv in a graph G is eG(u) + eG(v). Given a positive real-valued function
te, the edge-weight index functions for a graph G are defined by f1(G; e) =

∑
e∈E(G) te(ω(e)),

f2(G; e) =
∑

e∈E(G) te(ω∗(e)), and f3(G; e) =
∑

e∈E(G) te(ω(e),ω∗(e)), respectively.

The second Zagreb eccentricity index of G is defined as ξ2(G) =
∑

uv∈E(G) eG(u)eG(v) us-
ing te(ω(e)) = ω(e). The eccentric connectivity index of G, introduced by Sharma et al. in
[17], is defined as ξ c(G) =

∑
v∈V (G) eG(v)dG(v) =

∑
uv∈E(G)(eG(u) + eG(v)) using te(ω∗(e)) =

ω∗(e), which is also called the third Zagreb eccentricity index by Ghorbani et al. [10]. For
some recent results of the eccentric connectivity index, see [14, 23].
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Like the discussion of the second Zagreb eccentricity index, we also obtain similar re-
sults about the eccentric connectivity index of trees, unicyclic graphs, and bicyclic graphs
in the following propositions and theorems (omitting their proofs).

Theorem 4.4 Among the graphs in Tn≥3 , Pn for n ≥ 3 is the unique graph with the largest
eccentricity connectivity index ξ c, equal to 1

2 (3n2 – 6n + 4) for even n and 1
2 (3n2 – 6n + 3)

for odd n, and Ti
n is the unique graph with the (i + 1)th largest eccentricity connectivity

index ξ c, equal to 1
2 (3n2 – 8n – 4i + 6) for even n and 1

2 (3n2 – 8n – 4i + 7) for odd n, where
1 ≤ i ≤ �n/2 – 1�.

Proposition 4.5 Among the graphs in U(n≥6, d=n–2), Pn,3(i) with 0 ≤ i ≤ � n–4
2 � is the unique

graph with the (2i + 1)th largest eccentricity connectivity index ξ c, and Pn,4(i – 1) with 1 ≤
i ≤ � n–4

2 � is the unique graph with the (2i)th largest eccentricity index ξ c.

Theorem 4.6 Among the graphs in Un≥6 , Pn,3(i) with 0 ≤ i ≤ �(n+3)/4� is the unique graph
with the (2i + 1)th largest eccentricity connectivity index ξ c, equal to 1

2 (3n2 – 4n – 8i – 6) for
even n and 1

2 (3n2 –4n–8i–5) for odd n, and Pn,4(i–1) with 1 ≤ i ≤ �(n+3)/4� is the unique
graph with the (2i)th largest eccentricity connectivity index ξ c, equal to 1

2 (3n2 – 4n – 8i – 4)
for even n and 1

2 (3n2 – 4n – 8i – 3) for odd n.

Proposition 4.7 Among the graphs in B(n≥6, d=n–2), Bn(i) with 0 ≤ i ≤ � n–6
2 � is the unique

graph with the (i + 1)th largest eccentricity connectivity index ξ c.

Theorem 4.8 Among all the graphs in Bn≥6 , Bn(i) is the (i + 1) th largest eccentricity con-
nectivity index ξ c, equal to 1

2 (3n2 – 12i – 24) for even n and 1
2 (3n2 – 12i – 23) for odd n,

where 0 ≤ i ≤ � n
6 �.

In addition, the eccentricity based geometric-arithmetic (GA) index of G, introduced by

Ghorbani and Khaki [9], is defined as GA4(G) =
∑

uv∈E(G)
2
√

eG(u)eG(v)
eG(u)+eG(v) using te(ω(e),ω∗(e)) =

2
√

ω(e)
ω∗(e) . The ABC eccentric index of G (a new version of the ABC index), introduced

by Farahani [7], is defined as ABC5(G) =
∑

uv∈E(G)

√
eG(u)+eG(v)–2

eG(u)eG(v) using te(ω(e),ω∗(e)) =
√

ω∗(e)–2
ω(e) . We speculate that the extremal problems for GA4(G) and ABC5(G) can be solved

by using some similar methods.
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