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1 Introduction
Assuming that 0 < Y ", a% < oo and 0 < ) o2, b% < 00, we have the following Hilbert’s
inequality with the best possible constant factor 7 (cf. [1], Theorem 315):

o oo 172
ZZ <71(Za Zb2) . (1)
m=1 n=1

Ifo< fo f?(x)dx < oo and 0 < fo g2(y) dy < oo, then we still have the following integral
analogue of (1), named Hilbert’s integral inequality (cf. [1], Theorem 316):

/ /oof;)f;y) dxdy<n</ X x)dx/O g (y)dy)m, 2)

where the constant factor 7 is the best possible. Inequalities (1) and (2) play an important
role in analysis and its applications (cf. [2-13]).

The following half-discrete Hilbert-type inequality was provided: If K(x) (x > 0) is
a decreasing function, p > 1,}17 + % =1,0 < ¢(s) = fooo K(x)xtdx < oo, f(x) > 0,0 <
fooof”(x) dx < 0o, then (cf. [1], Theorem 351)

0011’”2 - d < P(x)d.
> ( /0 K(n)f () x) ¢P( ) / P dx. 3
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In recent years, some new extensions of (3) were provided by [14—19].

In 2006, by using Euler—Maclaurin summation formula, Krnic et al. [20] gave an exten-
sion of (1) with the kernel m (0 < A <4).In 2019, following the result of [20], Adiya-
suren et al. [21] considered an extension of (1) involving the partial sums. In 2016-2017,
by applying the weight functions, Hong [22, 23] obtained some equivalent statements of
the extensions of (1) and (2) with a few parameters. A few similar works were provided by
[24-38].

In this paper, following the idea of [21], by using the weight functions, the way of intro-
ducing parameters and the technique of real analysis, a new multiple Hilbert-type integral
inequality with the kernel m (A > 0) involving the upper limit functions is given.
The constant factor related to the gamma function is proved to be the best possible in a
condition. A corollary about the case of the nonhomogeneous kernel and some particular
inequalities are obtained.

2 Some lemmas
In what follows, we assume that n € N\{1} := {2,3,...},p,ri >1 (i=1,...,n), Z?:l;% =

1LA>0,¢ :=(1- 27:1 rl/))\,f,«(x) (i = 1,...,n) are nonnegative measurable functions in

R, = (0,00) such that f(x) = 0(e”) (¢ > 0;x — 00), and for any A = (0,a) (a > 0),f; € L*(A),
the upper limit functions are defined by F;(x) := f: fi(t)dt (x > 0), satisfying

Py
—Pi i —Cr

%) 1
0</ X Fli(x;)dx;<oo (i=1,...,n).
0

By the definition of the gamma function, for x; >0 (i = 1,..., n), the following expression
holds:

1 _ 1 /m Pl t Sl gy (4)
Chix) T Jo '

Lemma 1 Fort >0, we have the following expressions:

/ T et dr=t / TetERdr (i51,0m) ©)
0 0

Proof In view of F;(0) = 0,we find

/OO e fi(x)dx = /*00 e ™ dF;(x)

0 0
= e " Fi(x)|° —/ Fi(x)de™
0

. Fix)
= lim

x—o0 el*

+t / e F;(x) dx.
0

If F;(00) = constant, then lim,_, o, % =0 and (5) follows; if F;(co) = 00, since fi(x) =

o(e™) (x — oo), we find

/ e “fi(x)dx = lim - ()
0 x—

+t e F(x)dx
oo (e™);, /0
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= lim

x—00 tel* 0

i) + t/ e*Fi(x)dx =0+ t/ e ™ Fi(x) dx,
0

and then (5) follows, too.
The lemma is proved.

Lemma?2 Forx; >0 (i=1,...,n), the following expression holds:

1

n Iy n rA_q]pi
(2-1)(1-py) Loy
An[x [T+ } 1
i=1

J=10)
Proof We have
1 1
G ovappa-z S B | Gy 1 (e B\
P o (i s P s (Pt B
= X; %; = x; %;
i=1 j=1 i=1 j=1
1
n A n A_q ;‘:11;7 n A n A
_ -5 7 _ =5 A
TI(IT) T (1T ) -
i=1 j=1 i=1 j=1

and then (6) follows.
The lemma is proved.

Lemma 3 For n € N\{1}, defining the following weight functions:

A o0 o0
0 7 o / / 1
09(x) 1= x. U R S
' 0 o (X))t 1050

we have

roa-2) ILre)

(@) (@
w, x) =k, = .
A ( z) A F(Z;[:l(j;!i) %) F()»)

R, (i=1,...,n).

In particular, for Y - L =1, we have

O 1 & A )
=k =——1[r(= =1,...,n).
k. =k, NOLE (V,) ¢ ")

Proof For j #i, setting u; = i—’ in (7), we have
1

(@)

L

w, (x;) =

i (1) /0 /0 (oo + - -ui g+ 1+ uiyg + - + uy)

n A
Aq
X 1_[ uj’ duy - du;_1 du, - - - duy,.
j=1()

Then by Lemma 9.15 and (9.1.19) (cf. [2], p. 341-342), we obtain (8).

The lemma is proved.

n A
2
l_[ xj’ dxy - dxi_ dxig - - dxy,

(6)

@)

8)

)
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Lemma 4 We have the following inequality:

/ / S z)* 1_[1-" (i) dxy - -

n 00 Py -
i Pi(l—ri)—cx—l ; Pi
T [ <xi>dxz}
i=1

Proof By (6) and Holder’s integral inequality (cf. [39]), we obtain

- 7 ~D-p; -1 1’%‘
HA_/ / (Zz lxl))\ 1_[|: ' 7)) 1_[ x :| E(xl)dxldxn

Jj=1(#i)

i/ [/ / 7 ) Hx Cdxy - dis dr -

J=10#i)

pl(l )C 1 . ki
X & R (x,»)dxi]

a-2)-c-1_, i
1‘[[ / o)l 1Pf”<xi)dxi}”

=1

If (11) takes the form of an equality, then there exist constants C;, Cx (i # k) such that

they are not all zero and
_+C - -1 .
g H x xi g P (x;)
j=1(#0)

Py n A_q X
e 5l p=g)-a-1 .
= Crxy! H x % F (%) ae.inR,.
Jj=1(#k)

pil-%) pi(1-
namely, Cix; " F'(x;) = Coxy

pil-f)-6-1 C -
x; TP (x) = o 1 aeinR,,
i

oo Pil=2)-c-1

which contradicts the fact that 0 < x Ff “(x;)dx; < 0o, in view of

4

[ %% dx; = 00. Then by (8) and (11), we have (10).

The lemma is proved.

Remark 1 Replacing A (resp. - ) byi+n (resp o+ 1) in (10), we have

0 00 1 n
Hon= [ [ s [ B dn - i,
g 0 0 (Zizlxi)}‘mg !
1

= =(i) ® —pig—c-1 pi
< 1_[ (kAl+n / X l Flpl (xl) dxz) ’
i=1 0

(10)

dx,,:|

(11)

)
*'FY*(x) = C a.e. in R,. Assuming that C; # 0, we have

O

(12)
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where we denote

o _rea- D=1 TLTG+D)

0 - T2 ) [0 eR, (i=1,...,n).

3 Main results and a corollary
Theorem 1 We have the following inequality:

/ / T l)* l_lfx, dx, - - dx,

F()L+}’Z) z (~(-) /oo *Pi%*orl . Pi
KYolox T ) dx ). (13)
r() [T(% 0

i=1

In particular, for Y ., + = 1, we have

llr
© pro1

0</ x T F(x)dxi<oo (i=1,...,n),
0

and the following inequality:

/ / = A]‘[ﬂx,)dxl

lll i=1

1 Zh (AN [ pia, b
<WHEF<Z>(/O x, Ff(x,«)dxi> ) (14)

Proof By (4) and (5), we have

1 00 oo M oo il ( )
= — ,»(xi)/ et ) e dey - - - dxy,
r(x)/o /0 l_llf 0 '
- / T / " et ) e
re) Jo 1 Jo R
1 00 . . n o0
= —— e / e‘txiFi(xi) dx; dt
1—‘()»)/o !:1[ 0
Fi(x,»)/ Pl ettt gp gy L dx,
m)/ / H 0 '

_T'(h+n)
= WHX“T

Then by (12), we have (13).
The theorem is proved. d

n
llrl

Theorem 2 The constant factor ﬁ I ( ) in (14) is the best possible.
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Proof Forany O< ¢ < )Lmin1<i<y,{%}, we set
- L

- 0, O<x; <1,
Jilx) =9 2 e (i=1,...,n).

We obtain thatf,»(xi) = 0(e™) (¢ > 0;x; — 00), and Fi(x;) =0 (0 <x; < 1),

A_& A_&
Xi Xi 5 e i Pi -1 T Pi
~ A_e 4 X X; .
F,-(x,»):/ ﬁ(t)dt:/ tioP dt= ’&_i < Al_i (x;>1;i=1,...,n).
0 1 ri o pi Y pi

If there exists a positive constant M(M < ﬁ [T, :‘F( -)) such that (14) is valid

when replacing ﬁ I, - F( ) by M, then in particular, by substitution of fi(x;) =
ﬁ(xi) and F;(x;) = I-",~(x,«), we have

/ / llxz)k fol dxy - dx,

i e —pi%—l~pi ‘ ‘ Pi
<M£1[</0 x; F; (x,)dx,)
T ([ etae) 2

11rl =1 r;

In view of Lemma 9.1.4 (9.1.5) in [2], we find

I:=¢l = g/ f ,N@)Aerl hi” dx1 dxy =k +o(1) (e —0%).

Hence, we have

1 A 1
mgr(r)mu) ki +0(1) =

tlrz Pi

For ¢ — 0%, we find

1 <A (A
—[]=r(%) =M
() L i\

which yields that the constant factor M = %\) I I'( ) in (14) is the best possible.

llr

The theorem is proved. O

Setting x = xil,f(x) =x""%f(1) in I of (14), we have

/ / a+y; zxxl,\!:[f(xl dxdx,--- dx,
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For f1(£) = (), we find

X1 X1 1
- dt= | 22(2)d
R - [ A fo ¢ f<t> .

Then, replacing back x (resp. f(x)) by x; (resp. fi(x1)), we have

Corollary 1 IfF;(x;) = S h(d) dt,
Fi i) = K i d ’22,»“, )
(x:) /O filtydt (i n)

then we have the following inequality with the nonhomogeneous kernel:

/ / 1+ Z o X1%i)* l_[f (xi) ey -

i=1

1
1 A (A © pik-l., bi
<L rie(t /x,-p‘ Fiwyds )", (15)
F@)rr \ri/\Jo

where the constant factor ﬁ I, f F( ) in (15) is the best possible.
Remark 2 (i) For n = 2, (14) reduces to (cf. [40])

/Oo % filx)fa(x2)
o Jo

(%1 + x2)k

1 1
A2 A A © _prro1 L[ —pial )
< _B<_y_> (/ lel 1 Ffl (xl)dx1> ' (/ xzpz 2 ng(xz)de) ’ (16)
riry r.r 0 0

and (15) reduces to the following new inequality:
/ /Oofl Ge1lfo xZ) dxi dx
(1 +x1%0)* L
1 1
A A © pr-1. PL © o1l )
B( )( / 7 Pfl(xl)dm) 1( / x 7 F§2(x2)dx2) )
Fli‘z n'r 0 0

(ii) For r; = p; (i = 1,...,n), (14) reduces to

/ / x)\ fx,dxl - dx,
lll

i=1

1

1 A A o ) pi
— —I( — X LFP (xy dxi) , 18
“T() i1 D <Pz>(/o PR 19

and (15) reduces to

dxl de

/ / 1 Zl o) U fix) dxy - - - dx,
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(AN e ds)
<F()»)!—[pir<pi>(/o X" F (x,)dx,) . (19)

The constant factors in the above inequalities are the best possible.

4 Conclusions
In this paper, following the idea of [21], by the use of the weight functions, the way of intro-

ducing parameters and the technique of real analysis, a new multiple Hilbert-type integral

1

inequality with the kernel ooy (A > 0) involving the upper limit functions is given in

Theorem 1. In a condition, the best possible constant factor related to the gamma function
and a few parameters is proved in Theorem 2. A corollary about the case of nonhomoge-
neous kernel and some particular inequalities are obtained in Corollary 1 and Remark 2.
The lemmas and theorems provide an extensive account of this type of inequalities.
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