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Abstract
In this paper, the complete moment convergence for the partial sum of moving
average processes {Xn =∑∞

i=–∞ aiYi+n,n ≥ 1} is established under some mild
conditions, where {Yi , –∞ < i <∞} is a sequence of m-widely orthant dependent
(m-WOD, for short) random variables which is stochastically dominated by a random
variable Y , and {ai , –∞ < i <∞} is an absolutely summable sequence of real numbers.
These conclusions promote and improve the corresponding results from m-extended
negatively dependent (m-END, for short) sequences to m-WOD sequences.
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1 Introduction and main results
Let {Yi, –∞ < i < ∞} be a sequence of random variables and {ai, –∞ < i < ∞} be an abso-
lutely summable sequence of real numbers, and for n ≥ 1 set Xn =

∑∞
i=–∞ aiYi+n. The limit

properties of the moving average process {Xn, n ≥ 1} have been extensively investigated by
many authors. For example, Burton and Dehling [1] obtained a large deviation principle,
Ibragimov [2] established the central limit theorem, Račkauskas and Suquet [3] proved the
functional central limit theorems for self-normalized partial sums of linear processes, and
An [4], Chen et al. [5], Kim and Ko [6], Li et al. [7], Li and Zhang [8], Wang and Hu [9],
Yang and Hu [10], Zhang [11], Zhou [12], Zhou and Lin [13], Zhang [14], Zhang and Ding
[15], Song and Zhu [16, 17] got the complete (moment) convergence of moving average
process based on a sequence of different dependent (or mixing) random variables, respec-
tively. But few results for moving average process based on m-WOD random variables are
known. Firstly, we introduce some definitions.

Definition 1.1 A sequence {Yi, –∞ < i < ∞} of random variables is said to be stochasti-
cally dominated by a random variable Y if there exists a constant C such that

P
{|Yi| > x

} ≤ CP
{|Y | > x

}
, x ≥ 0, –∞ < i < ∞.

Definition 1.2 A real-valued function l(x), positive and measurable on [a,∞), a > 0, is
said to be slowly varying at infinity if, for each λ > 0, limx→∞ l(λx)

l(x) = 1.
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The concept of widely orthant dependence structure was introduced by Wang et al. [18]
as follows.

Definition 1.3 For the random variables {Xn, n ≥ 1}, if there exists a finite positive se-
quence {gU (n), n ≥ 1} satisfying, for each n ≥ 1 and for all xi ∈ R, 1 ≤ i ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)
n∏

i=1

P(Xi > xi), (1.1)

then we say that the random variables {Xn, n ≥ 1} are widely upper orthant dependent
(WUOD, for short); if there exists a finite positive sequence {gL(n), n ≥ 1} satisfying, for
each n ≥ 1 and for all xi ∈ R, 1 ≤ i ≤ n,

P(X1 < x1, X2 < x2, . . . , Xn < xn) ≤ gL(n)
n∏

i=1

P(Xi < xi), (1.2)

then we say that the random variables {Xn, n ≥ 1} are widely lower orthant dependent
(WLOD, for short); if they are both WUOD and WLOD, then we say that the random
variables {Xn, n ≥ 1} are widely orthant dependent (WOD, for short), and gU (n), gL(n),
n ≥ 1, are called dominated coefficients.

Inspired by WOD and m-NA, Fang et al. [19] introduced the following notion.

Definition 1.4 Let m ≥ 1 be a fixed integer. A sequence of random variables {Xn, n ≥ 1}
is said to be m-WOD if, for any n ≥ 2 and i1, i2, . . . , in such that |ik – ij| ≥ m for all 1 ≤ k �=
j ≤ n, we have that Xi1 , Xi2 , . . . , Xin are WOD.

By (1.1) and (1.2), we can see that gU (n) ≥ 1 and gL(n) ≥ 1. Recall that when gU (n) =
gL(n) = M for some positive constant M and any n ≥ 1, then the random variables {Xn, n ≥
1} are called extended negatively dependent (END, for short). The definition of END was
introduced by Liu [20]. If both (1.1) and (1.2) hold for gU (n) = gL(n) = 1 for any n ≥ 1,
then the random variables {Xn, n ≥ 1} are called negatively orthant dependent (NOD, for
short), which was introduced by Ebrahimi and Ghosh [21]. It is well known that nega-
tively associated (NA, for short) random variables are NOD. Hu [22] pointed out that
negatively superadditive dependent (NSD, for short) random variables are NOD. Hence,
the class of m-WOD random variables includes independent sequence, m-NA sequence,
NSD sequence, m-NOD sequence, and m-END sequence as special cases. Studying the
probability limit theory and its applications for m-WOD random variables is of great in-
terest. But there are few results on the complete moment convergence of moving average
process based on an m-WOD sequence. Therefore, in this paper, we establish some results
on the complete moment convergence for partial sums for moving average process.

Throughout the sequel, C represents a positive constant although its value may change
from one appearance to the next, I{A} denotes the indicator function of the set A, [x]
denotes the integer part of x, X+ = max{X, 0}, X– = max{–X, 0}.

2 Preliminary lemmas
In this section, we give some lemmas which will be useful to prove our main results.
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Lemma 2.1 (Fang et al. [19]) Let {Xn, n ≥ 1} be a sequence of m-WOD random variables
with dominating coefficients g(n) = max{gL(n), gU (n)}). If {fn(·), n ≥ 1} are all nondecreas-
ing (or nonincreasing), then {fn(Xn), n ≥ 1} are still m-WOD with dominating coefficients
{g(n), n ≥ 1}.

Lemma 2.2 (Fang et al. [19]) For a positive real number q ≥ 2, if {Xn, n ≥ 1} is a
sequence of mean zero m-WOD random variables with dominating coefficients g(n) =
max{gL(n), gU (n)}. If E|Xi|q < ∞ for every i ≥ 1, then for all n ≥ 1 there exist positive con-
stants C1(m, q) and C2(m, q) depending on q and m such that

E

(∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣

q)

≤ C1(m, q)
n∑

i=1

E|Xi|q + C2(m, q)g(n)

( n∑

i=1

EX2
i

) q
2

.

Lemma 2.3 (Zhou [12]) If l is slowly varying at infinity, then
(1)

∑m
n=1 nsl(n) ≤ Cms+1l(m) for s > –1 and positive integer m,

(2)
∑∞

n=m nsl(n) ≤ Cms+1l(m) for s < –1 and positive integer m.

Lemma 2.4 (Wang et al. [23]) Let {Xn, n ≥ 1} be a sequence of random variables which is
stochastically dominated by a random variable X. Then, for any a > 0 and b > 0,

E|Xn|aI
{|Xn| ≤ b

} ≤ C
[
E|X|aI

{|X| ≤ b
}

+ baP
(|X| > b

)]
,

E|Xn|aI
{|Xn| > b

} ≤ CE|X|aI
{|X| > b

}
.

3 Main results and proofs
Theorem 3.1 Let l be a function slowly varying at infinity, p ≥ 1, α > 1/2, αp > 1. Assume
that {ai, –∞ < i < ∞} is an absolutely summable sequence of real numbers. Suppose that
{Xn =

∑∞
i=–∞ aiYi+n, n ≥ 1} is a moving average process generated by a sequence {Yi, –∞ <

i < ∞} of m-WOD random variables with dominating coefficients g(n) = O(nδ) for some
δ ≥ 0 which is stochastically dominated by a random variable Y . If EYi = 0 for 1/2 < α ≤ 1,
E|Y |pl(|Y |1/α) < ∞ for p > 1, and E|Y |1+λ < ∞ for p = 1 and some λ > 0, then for any ε > 0

∞∑

n=1

nαp–2–αl(n)E

{∣
∣
∣
∣
∣

n∑

j=1

Xj

∣
∣
∣
∣
∣

– εnα

}+

< ∞. (3.1)

Proof Let f (n) = nαp–2–αl(n) and Y (1)
xj = –xI{Yj < –x} + YjI{|Yj| ≤ x} + xI{Yj > x} and Y (2)

xj =
Yj – Y (1)

xj be the monotone truncations of {Yj, –∞ < j < ∞} for x > 0. Then, by Lemma 2.1, it
is easy to know that {Y (1)

xj – EY (1)
xj , –∞ < j < ∞} and {Y (2)

xj , –∞ < j < ∞} are two sequences of
m-WOD random variables. Note that

∑n
k=1 Xk =

∑∞
i=–∞ ai

∑i+n
j=i+1 Yj and

∑∞
i=–∞ |ai| < ∞,

then by Lemma 2.4 we have, for x > nα , if α > 1

x–1

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (1)
xj

∣
∣
∣
∣
∣

≤ x–1
∞∑

i=–∞
|ai|

i+n∑

j=i+1

[
E|Yj|I

{|Yj| ≤ x
}

+ xP
(|Yj| > x

)]



Guan et al. Journal of Inequalities and Applications         (2021) 2021:16 Page 4 of 12

≤ Cx–1n
[
E|Y |I{|Y | ≤ x

}
+ xP

(|Y | > x
)] ≤ Cn1–α → 0, as n → ∞.

If 1/2 < α ≤ 1, note that αp > 1, this means p > 1. By E|Y |pl(|Y |1/α) < ∞ and l is slowly
varying at infinity, it is easy to conclude that, for any 0 < ε < p – 1/α, we have E|Y |p–ε < ∞.
Then, noting EYi = 0, by Lemma 2.4 we can obtain

x–1

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (1)
xj

∣
∣
∣
∣
∣

= x–1

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (2)
xj

∣
∣
∣
∣
∣

≤ Cx–1
∞∑

i=–∞
|ai|

i+n∑

j=i+1

E|Yj|I
{|Yj| > x

} ≤ Cx–1nE|Y |I{|Y | > x
}

≤ Cx1/α–1E|Y |I{|Y | > x
} ≤ CE|Y |1/αI

{|Y | > x
}

≤ E|Y |p–εI
{|Y | > x

} → 0, as x → ∞.

Therefore, by the above discussion, for x > nα large enough, we know

x–1

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (1)
xj

∣
∣
∣
∣
∣

< ε/4.

Then

∞∑

n=1

f (n)E

{∣
∣
∣
∣
∣

n∑

j=1

Xj

∣
∣
∣
∣
∣

– εnα

}+

≤
∞∑

n=1

f (n)
∫ ∞

εnα

P

{∣
∣
∣
∣
∣

n∑

j=1

Xj

∣
∣
∣
∣
∣
≥ x

}

dx

≤ C
∞∑

n=1

f (n)
∫ ∞

nα

P

{∣
∣
∣
∣
∣

n∑

j=1

Xj

∣
∣
∣
∣
∣
≥ εx

}

dx

≤ C
∞∑

n=1

f (n)
∫ ∞

nα

P

{∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (2)
xj

∣
∣
∣
∣
∣
≥ εx/2

}

dx

+ C
∞∑

n=1

f (n)
∫ ∞

nα

P

{∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

(
Y (1)

xj – EY (1)
xj

)
∣
∣
∣
∣
∣
≥ εx/4

}

dx

=: I1 + I2. (3.2)

Firstly we prove I1 < ∞. Noting |Y (2)
xj | < |Yj|I{|Yj| > x}, then by Markov’s inequality and

Lemma 2.4, we have

I1 ≤ C
∞∑

n=1

f (n)
∫ ∞

nα

x–1E

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (2)
xj

∣
∣
∣
∣
∣
dx

≤ C
∞∑

n=1

f (n)
∫ ∞

nα

x–1
∞∑

i=–∞
|ai|

i+n∑

j=i+1

E
∣
∣Y (2)

xj
∣
∣dx
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≤ C
∞∑

n=1

nf (n)
∫ ∞

nα

x–1E|Y |I{|Y | > x
}

dx

= C
∞∑

n=1

nf (n)
∞∑

m=n

∫ (m+1)α

mα

x–1E|Y |I{|Y | > x
}

dx

≤ C
∞∑

n=1

nf (n)
∞∑

m=n
m–1E|Y |I{|Y | > mα

}

= C
∞∑

m=1

m–1E|Y |I{|Y | > mα
} m∑

n=1

nαp–1–αl(n).

If p > 1, then αp – 1 – α > –1, by Lemma 2.3, we can get

I1 ≤ C
∞∑

m=1

mαp–1–αl(m)E|Y |I{|Y | > mα
}

= C
∞∑

m=1

mαp–1–αl(m)
∞∑

k=m

E|Y |I{kα < |Y | ≤ (k + 1)α
}

= C
∞∑

k=1

E|Y |I{kα < |Y | ≤ (k + 1)α
} k∑

m=1

mαp–1–αl(m)

≤ C
∞∑

k=1

kαp–αl(k)E|Y |I{kα < |Y | ≤ (k + 1)α
}

≤ CE|Y |pl
(|Y |1/α)

< ∞.

If p = 1, E|Y |1+λ < ∞ implies E|Y |1+λ′ l(|Y |1/α) < ∞ for any 0 < λ′ < λ, then by Lemma 2.3
we get

I1 ≤ C
∞∑

m=1

m–1E|Y |I{|Y | > mα
} m∑

n=1

n–1l(n)

≤ C
∞∑

m=1

m–1E|Y |I{|Y | > mα
} m∑

n=1

n–1+αλ′
l(n)

≤ C
∞∑

m=1

mαλ′–1l(m)E|Y |I{|Y | > mα
}

≤ CE|Y |1+λ′
l
(|Y |1/α)

< ∞.

So, we conclude

I1 < ∞. (3.3)

Next we show I2 < ∞. By Markov’s inequality, Hőlder’s inequality, and Lemma 2.2, we can
obtain

I2 ≤ C
∞∑

n=1

f (n)
∫ ∞

nα

x–rE

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

(
Y (1)

xj – EY (1)
xj

)
∣
∣
∣
∣
∣

r

dx
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≤ C
∞∑

n=1

f (n)
∫ ∞

nα

x–rE

[ ∞∑

i=–∞

(|ai| r–1
r

)
(

|ai|1/r

∣
∣
∣
∣
∣

i+n∑

j=i+1

(
Y (1)

xj – EY (1)
xj

)
∣
∣
∣
∣
∣

)]r

dx

≤ C
∞∑

n=1

f (n)
∫ ∞

nα

x–r

( ∞∑

i=–∞
|ai|

)r–1( ∞∑

i=–∞
|ai|E

∣
∣
∣
∣
∣

i+n∑

j=i+1

(
Y (1)

xj – EY (1)
xj

)
∣
∣
∣
∣
∣

r)

dx

≤ C
∞∑

n=1

f (n)
∫ ∞

nα

x–r
∞∑

i=–∞
|ai|

i+n∑

j=i+1

E
∣
∣Y (1)

xj – EY (1)
xj

∣
∣r dx

+ C
∞∑

n=1

f (n)g(n)
∫ ∞

nα

x–r
∞∑

i=–∞
|ai|

( i+n∑

j=i+1

E
∣
∣Y (1)

xj – EY (1)
xj

∣
∣2

)r/2

dx

= : I21 + I22, (3.4)

where r ≥ 2 will be given later.
For I21, if p > 1, taking r > max{2, p}, then by Cr inequality, Lemma 2.3, and Lemma 2.4,

we know

I21 ≤ C
∞∑

n=1

f (n)
∫ ∞

nα

x–r
∞∑

i=–∞
|ai|

i+n∑

j=i+1

[
E|Yj|rI

{|Yj| ≤ x
}

+ xrP
(|Yj| > x

)]
dx

≤ C
∞∑

n=1

nf (n)
∫ ∞

nα

x–r[E|Y |rI
{|Y | ≤ x

}
+ xrP

(|Y | > x
)]

dx

≤ C
∞∑

n=1

nf (n)
∞∑

m=n

∫ (m+1)α

mα

[
x–rE|Y |rI

{|Y | ≤ x
}

+ P
(|Y | > x

)]
dx

≤ C
∞∑

n=1

nf (n)
∞∑

m=n

[
mα(1–r)–1E|Y |rI

{|Y | ≤ (m + 1)α
}

+ mα–1P
(|Y | > mα

)]

= C
∞∑

m=1

[
mα(1–r)–1E|Y |rI

{|Y | ≤ (m + 1)α
}

+ mα–1P
(|Y | > mα

)] m∑

n=1

nf (n)

≤ C
∞∑

m=1

mα(p–r)–1l(m)
m∑

k=1

E|Y |rI
{

kα < |Y | ≤ (k + 1)α
}

+ C
∞∑

m=1

mαp–1l(m)
∞∑

k=m

EI
{

kα < |Y | ≤ (k + 1)α
}

= C
∞∑

k=1

E|Y |rI
{

kα < |Y | ≤ (k + 1)α
} ∞∑

m=k

mα(p–r)–1l(m)

+ C
∞∑

k=1

EI
{

kα < |Y | ≤ (k + 1)α
} k∑

m=1

mαp–1l(m)

≤ C
∞∑

k=1

kα(p–r)l(k)E|Y |p|Y |r–pI
{

kα < |Y | ≤ (k + 1)α
}

+ C
∞∑

k=1

kαpl(k)E|Y |p|Y |–pI
{

kα < |Y | ≤ (k + 1)α
}

≤ CE|Y |pl
(|Y |1/α)

< ∞. (3.5)
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For I21, if p = 1, taking r > max{1 + λ′, 2}, where 0 < λ′ < λ, then by the same argument as
above we know

I21 ≤ C
∞∑

m=1

[
mα(1–r)–1E|Y |rI

{|Y | ≤ (m + 1)α
}

+ mα–1P
(|Y | > mα

)] m∑

n=1

nf (n)

≤ C
∞∑

m=1

[
mα(1–r)–1E|Y |rI

{|Y | ≤ (m + 1)α
}

+ mα–1P
(|Y | > mα

)] m∑

n=1

n–1+αλ′
l(n)

≤ C
∞∑

m=1

mα(1–r+λ′)–1l(m)E|Y |rI
{|Y | ≤ (m + 1)α

}

+ mα(1+λ′)–1l(m)EI
{|Y | > mα

}

≤ CE|Y |1+λ′
l
(|Y |1/α)

< ∞. (3.6)

For I22, if 1 ≤ p < 2, noting that g(n) = O(nδ), taking r > 2 such that αp + r/2 – αpr/2 – 1 +
δ = (αp – 1)(1 – r/2) + δ < 0, then by Cr inequality, Lemma 2.3, and Lemma 2.4, we obtain

I22 ≤ C
∞∑

n=1

nr/2f (n)g(n)
∫ ∞

nα

x–r[(E|Y |2I
{|Y | ≤ x

})r/2 + xrPr/2(|Y | > x
)]

dx

≤ C
∞∑

n=1

nr/2f (n)g(n)
∞∑

m=n

∫ (m+1)α

mα

[
x–r(E|Y |2I

{|Y | ≤ x
})r/2 + Pr/2(|Y | > x

)]
dx

≤ C
∞∑

n=1

nr/2f (n)g(n)
∞∑

m=n

[
mα(1–r)–1(E|Y |2I

{|Y | ≤ (m + 1)α
})r/2

+ mα–1Pr/2(|Y | > mα
)]

= C
∞∑

m=1

[
mα(1–r)–1(E|Y |2I

{|Y | ≤ (m + 1)α
})r/2

+ mα–1Pr/2(|Y | > mα
)] m∑

n=1

nr/2f (n)g(n)

≤ C
∞∑

m=1

mα(p–r)+r/2+δ–2l(m)
(
E|Y |p|Y |2–pI

{|Y | ≤ (m + 1)α
})r/2

+ C
∞∑

m=1

mαp+r/2+δ–2l(m)
(
E|Y |p|Y |–pI

{|Y | > mα
})r/2

≤ C
∞∑

m=1

mαp+r/2–αpr/2+δ–2l(m)
(
E|Y |p)r/2 < ∞. (3.7)

For I22, if p ≥ 2, noting that g(n) = O(nδ), taking r > (αp – 1)/(α – 1/2) ≥ p such that α(p –
r) + r/2 + δ – 1 < 0, then by Cr inequality, Lemma 2.3, and Lemma 2.4, similar to the proof
of (3.7), one gets

I22 ≤ C
∞∑

m=1

[
mα(1–r)–1(E|Y |2I

{|Y | ≤ (m + 1)α
})r/2
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+ mα–1Pr/2(|Y | > mα
)] m∑

n=1

nr/2f (n)g(n)

≤ C
∞∑

m=1

mα(p–r)+r/2+δ–2l(m)
(
E|Y |2I

{|Y | ≤ (m + 1)α
})r/2

+ C
∞∑

m=1

mαp+r/2+δ–2l(m)
(
E|Y |2|Y |–2I

{|Y | > mα
})r/2

≤ C
∞∑

m=1

mα(p–r)+r/2+δ–2l(m)
(
E|Y |2)r/2 < ∞. (3.8)

Thus, (3.1) can be deduced immediately by combining (3.2)–(3.8). �

The next theorem will discuss the case αp = 1.

Theorem 3.2 Let l be a function slowly varying at infinity, 1 ≤ p < 2. Assume that
∑∞

i=–∞ |ai|θ < ∞, where θ belongs to (0, 1) if p = 1 and θ = 1 if 1 < p < 2. Suppose that
{Xn =

∑∞
i=–∞ aiYi+n, n ≥ 1} is a moving average process generated by a sequence {Yi, –∞ <

i < ∞} of m-WOD random variables with dominating coefficients g(n) = O(nδ) for some
0 ≤ δ < (2 – p)/p which is stochastically dominated by a random variable Y . If EYi = 0 and
E|Y |p(1+δ)l(|Y |p) < ∞, then for any ε > 0

∞∑

n=1

n–1–1/pl(n)E

{∣
∣
∣
∣
∣

k∑

j=1

Xj

∣
∣
∣
∣
∣

– εn1/p

}+

< ∞. (3.9)

Proof Let h(n) = n–1–1/pl(n). Similar to the proof of (3.2), we obtain

∞∑

n=1

h(n)E

{∣
∣
∣
∣
∣

n∑

j=1

Xj

∣
∣
∣
∣
∣

– εn1/p

}+

≤ C
∞∑

n=1

h(n)
∫ ∞

n1/p
P

{∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (2)
xj

∣
∣
∣
∣
∣
≥ εx/2

}

dx

+ C
∞∑

n=1

h(n)
∫ ∞

n1/p
P

{∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

(
Y (1)

xj – EY (1)
xj

)
∣
∣
∣
∣
∣
≥ εx/4

}

dx

=: J1 + J2. (3.10)

For J1, by Markov’s inequality, Cr inequality, Lemma 2.3, and Lemma 2.4, one gets

J1 ≤ C
∞∑

n=1

h(n)
∫ ∞

n1/p
x–θ E

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

Y (2)
xj

∣
∣
∣
∣
∣

θ

dx

≤ C
∞∑

n=1

nh(n)
∫ ∞

n1/p
x–θ E|Y |θ I

{|Y | > x
}

dx

= C
∞∑

n=1

nh(n)
∞∑

m=n

∫ (m+1)1/p

m1/p
x–θ E|Y |θ I

{|Y | > x
}

dx
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≤ C
∞∑

n=1

nh(n)
∞∑

m=n
m(1–θ )/p–1E|Y |θ I

{|Y | > m1/p}

= C
∞∑

m=1

m(1–θ )/p–1E|Y |θ I
{|Y | > m1/p}

m∑

n=1

nh(n)

≤ C
∞∑

m=1

m–θ/pl(m)E|Y |θ I
{|Y | > m1/p}

= C
∞∑

m=1

m–θ/pl(m)
∞∑

k=m

E|Y |θ I
{

k1/p < |Y | < (k + 1)1/p}

= C
∞∑

k=1

E|Y |θ I
{

k1/p < |Y | < (k + 1)1/p}
k∑

m=1

m–θ/pl(m)

≤ C
∞∑

k=1

k1–θ/pl(k)E|Y |θ I
{

k1/p < |Y | < (k + 1)1/p}

≤ CE|Y |pl
(|Y |p) < ∞. (3.11)

For J2, as the same argument of I2, noting that g(n) = O(nδ) for some 0 ≤ δ < (2 – p)/p,
taking r = 2, by Lemma 2.2, Lemma 2.3, and Lemma 2.4, we conclude

J2 ≤ C
∞∑

n=1

h(n)
∫ ∞

n1/p
x–2E

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+n∑

j=i+1

(
Y (1)

xj – EY (1)
xj

)
∣
∣
∣
∣
∣

2

dx

≤ C
∞∑

n=1

nh(n)
(
1 + g(n)

)
∫ ∞

n1/p
x–2[E|Y |2I

{|Y | ≤ x
}

+ x2P
(|Y | > x

)]
dx

= C
∞∑

n=1

nh(n)
(
1 + g(n)

) ∞∑

m=n

∫ (m+1)1/p

m1/p
x–2[E|Y |2I

{|Y | ≤ x
}

+ x2P
(|Y | > x

)]
dx

≤ C
∞∑

n=1

nh(n)
(
1 + g(n)

) ∞∑

m=n

[
m–1–1/pE|Y |2I

{|Y | ≤ (m + 1)1/p}

+ m1/p–1P
(|Y | > m1/p)]

= C
∞∑

m=1

[m–1–1/p[E|Y |2I
{|Y | ≤ (m + 1)1/p}

+ m1/p–1P
(|Y | > m1/p)]

m∑

n=1

nh(n)
(
1 + g(n)

)

≤ C
∞∑

m=1

[
m–2/p+δl(m)E|Y |2I

{|Y | ≤ (m + 1)1/p} + mδl(m)P
(|Y | > m1/p)]

≤ C
∞∑

m=1

m–2/p+δl(m)
m∑

k=1

E|Y |2I
{

k1/p < |Y | ≤ (k + 1)1/p}

+ C
∞∑

m=1

mδl(m)
∞∑

k=m

EI
{

k1/p < |Y | ≤ (k + 1)1/p}
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≤ C
∞∑

k=1

E|Y |2I
{

k1/p < |Y | ≤ (k + 1)1/p}
∞∑

m=k

m–2/p+δl(m)

+ C
∞∑

k=1

EI
{

k1/p < |Y | ≤ (k + 1)1/p}
k∑

m=1

mδl(m)

≤ C
∞∑

k=1

k–2/p+δ+1l(k)E|Y |2I
{

k1/p < |Y | ≤ (k + 1)1/p}

+ C
∞∑

k=1

kδ+1l(k)EI
{

k1/p < |Y | ≤ (k + 1)1/p}

≤ C
∞∑

k=1

l(k)E|Y |p(1+δ)I
{

k1/p < |Y | ≤ (k + 1)1/p}

≤ CE|Y |p(1+δ)l
(|Y |p) < ∞. (3.12)

Hence, by combining (3.10)–(3.12), (3.9) holds. �

For the complete convergence, we have the following corollary from the above theorems
immediately.

Corollary 3.3 Under the assumptions of Theorem 3.1, for any ε > 0, we have

∞∑

n=1

nαp–2l(n)P

{∣
∣
∣
∣
∣

n∑

j=1

Xj

∣
∣
∣
∣
∣

> εnα

}

< ∞. (3.13)

Under the assumptions of Theorem 3.2, for any ε > 0, we have

∞∑

n=1

n–1l(n)P

{∣
∣
∣
∣
∣

n∑

j=1

Xj

∣
∣
∣
∣
∣

> εn1/p

}

< ∞. (3.14)

Remark 3.4 Since m-WOD random variables include independent, m-NA, NSD, WOD,
m-NOD, and m-END random variables, so our results also hold for independent, m-NA,
NSD, WOD, m-NOD, and m-END random variables, and therefore Theorem 3.1 and The-
orem 3.2 improve upon the known results.

Remark 3.5 Obviously, the assumption that {Yi, –∞ < i < ∞} is stochastically dominated
by a random variable Y is weaker than the assumption of identical distribution of the
random variables {Yi, –∞ < i < ∞}, therefore the results of Theorem 3.1 and Theorem 3.2
also hold for identically distributed random variables.

Remark 3.6 Let a0 = 1, ai = 0, i �= 0, then Sn =
∑n

k=1 Xk =
∑n

k=1 Yk . Hence the results of
Theorem 3.1 and Theorem 3.2 also hold when {Xk , k ≥ 1} is a sequence of m-WOD ran-
dom variables which is stochastically dominated by a random variable Y .

Remark 3.7 The results obtained by this paper and Fang et al. [19] are different. In our
paper, we mainly discuss the complete moment convergence of moving average processes
for an m-WOD sequence, Fang et al. [19] proved the asymptotic approximations of ratio
moments based on the m-WOD sequence.
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4 Conclusions
In this paper, using the moment inequality for m-WOD sequences and truncation method,
the complete moment convergence for the partial sum of moving average processes
{Xn =

∑∞
i=–∞ aiYi+n, n ≥ 1} is established, where {Yi, –∞ < i < ∞} is a sequence of m-

WOD random variables which is stochastically dominated by a random variable Y , and
{ai, –∞ < i < ∞} is an absolutely summable sequence of real numbers. These conclusions
obtained extend and improve the corresponding results from m-END sequences to m-
WOD sequences.
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