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Abstract
In the setting of real ordered positive Hilbert spaces, a nonlinear fuzzy ordered
variational inclusion problem with its corresponding nonlinear fuzzy ordered
resolvent equation problem involving XOR operation has been recommended and
solved by employing an iterative algorithm. We establish the equivalence between
nonlinear fuzzy ordered variational inclusion problem and nonlinear fuzzy ordered
resolvent equation problem. The existence and convergence analysis of the solution
of nonlinear fuzzy ordered variational inclusion problem involving XOR operation has
been substantiated by applying a new resolvent operator method with XOR
operation technique. The iterative algorithm and results demonstrated in this article
have witnessed a significant improvement in many previously known results of this
domain.
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1 Introduction
A number of solutions of nonlinear equations were introduced and studied by Amann [1]
in 1972. In recent past, the fixed point theory and its applications have been intensively
studied in real ordered Banach spaces. Therefore, it is very important and natural for gen-
eralized nonlinear ordered variational inequalities (ordered equations) to be studied and
discussed, see [2–4]. In 1994, Hassouni and Moudafi [5] used the resolvent operator tech-
nique form maximal monotone mapping to study a class of mixed type variational inequal-
ities with single-valued mappings, which was called variational inclusions, and developed
a perturbed algorithm for finding approximate solutions of the mixed variational inequal-
ities, see [6]. It has been proved that the theory of variational inequalities (inclusions) is
quite application-oriented and thus it has been generalized in several different directions.
This theory is used to solve efficiently many problems related to economics, optimization,
transportation, elasticity, basic and applied sciences, etc., see [7–16] and the references
therein.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-2308-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-2308-z&domain=pdf
http://orcid.org/0000-0002-4613-3269
mailto:shakaib@qec.edu.sa


Ahmad et al. Journal of Inequalities and Applications         (2020) 2020:36 Page 2 of 18

In 2008, Li [17–19] studied the nonlinear ordered variational inequalities and proposed
an algorithm to approximate the solution for a class of nonlinear ordered variational in-
equalities (ordered equations) in real ordered Banach spaces. Very recently, Ahmad et al.
[20–22] considered some classes of ordered variational inclusions involving XOR operator
in different settings.

A lot of work has been done by Li [17–19, 23–25] to approximate the solution of gen-
eral nonlinear ordered variational inequalities and ordered equations in ordered Banach
spaces. On the other hand, the fuzzy set theory due to Zadeh [26] was specifically de-
signed to mathematically represent uncertainty and vagueness and to provide formalized
tools for dealing with the imprecision intrinsic to many problems, see [10–12, 27–30].

In this paper, we consider a new resolvent operator and prove that it is single-valued,
compression as well as Lipschitz continuous. We establish the equivalence between non-
linear fuzzy ordered variational inclusion problem and nonlinear fuzzy ordered resolvent
equation problem. Then these new results are used to solve a nonlinear fuzzy ordered
variational inclusion problem with its corresponding nonlinear fuzzy ordered resolvent
equation problem involving XOR operation after defining an iterative algorithm by ap-
plying a new resolvent operator method with XOR operation technique. We claim that
all the results of this paper, either preliminary or main, are the extension of results of Li
[17–19, 23, 24].

2 Preliminaries
Throughout this paper, we assume that Hp is a real ordered positive Hilbert space en-
dowed with a norm ‖ · ‖ and an inner product 〈·, ·〉. Let 2Hp (respectively, CB(Hp)) be a
family of all nonempty (respectively, nonempty closed and bounded) subsets of Hp.

Let F (Hp) be a collection of all fuzzy sets over Hp. A mapping F : Hp → F (Hp) is said
to be a fuzzy mapping on Hp. For each p ∈ Hp, F(p) (in the sequel, it will be denoted by
Fp) is a fuzzy set on Hp and Fp(q) is the membership function of q in Fp.

A fuzzy mapping F : Hp → F (Hp) is said to be closed if, for each p ∈ Hp, the function
q → Fp(q) is upper semi-continuous, that is, for any given net {qα} ⊂Hp, satisfying qα →
q0 ∈Hp, we have

lim
α

sup Fp(qα) ≤ Fp(q0).

For R ∈F (Hp) and λ ∈ [0, 1], the set (R)λ = {p ∈Hp : R(p) ≥ λ} is called a λ-cut set of R.
Let F : Hp →F (Hp) be a closed fuzzy mapping satisfying the following condition.

Condition (∗): If there exists a function a : Hp → [0, 1] such that, for each p ∈ Hp, the
set (Fp)a(p) = {q ∈Hp : Fp(q) ≥ a(p)} is a nonempty bounded subset of Hp.

If F is a closed fuzzy mapping satisfying condition (∗), then for each p ∈ Hp, (Fp)a(p) ∈
CB(Hp). In fact, let {qα} ⊂ (Fp)a(p) be a net and qα → q0 ∈Hp, then (Fp)a(p) ≥ a(p) for each
α. Since F is closed, we have

Fp(q0) ≥ lim
α

sup Fp(qα) ≥ a(p),

which implies that q0 ∈ (Fp)a(p), and so (Fp)a(p) ∈ CB(Hp).
For the presentation of the results, let us demonstrate some known definitions and re-

sults.
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Definition 2.1 ([7, 31]) A nonempty closed convex subset C of Hp is said to be a cone if:
(i) for any p ∈ C and any λ > 0, then λp ∈ C;

(ii) if p ∈ C and –p ∈ C, then p = 0.

Definition 2.2 ([31, 32]) A nonempty subset C of Hp is called
(i) a normal cone if there exists a constant δN > 0 such that, for 0 ≤ p ≤ q, we have

‖p‖ ≤ δN‖q‖ for any p, q ∈Hp;
(ii) for any p, q ∈Hp, p ≤ q if and only if q – p ∈ C;

(iii) p and q are said to be comparative to each other if and only if we have either p ≤ q
or q ≤ p, which is denoted by p ∝ q.

Definition 2.3 ([31]) An ordered Hilbert space H is said to be a positive Hilbert space
with a partially ordered relation “≤” (denoted by Hp) if, for any p, q ∈H, p ≥ 0 and q ≥ 0,
then 〈p, q〉 ≥ 0.

Example 2.4 Let H = R
2 with the usual inner product and norm, and let C = {(p, q)|p, q ≥

0, p ≤ q and p, q ∈ R} be a closed convex subset, and let ≤ defined by a normal cone C be
a partial ordered relation in R

2. It is clear that R2
p is a positive Hilbert space with partial

ordered relation ≤. However, when letting C1 = {(p, q)|q ≥ 0, |p| ≤ 4q, p, q ∈ R}, then C1

is a closed convex subset. Obviously, R2 is a nonpositive Hilbert space with ≤ because
〈(–2.5p, p), (p, p)〉 = –1.5p2 < 0 for (–2.5p, p), (p, p) ∈ C1.

Definition 2.5 ([31]) For arbitrary elements p, q ∈ Hp, lub{p, q} and glb{p, q} mean the
least upper bound and the greatest upper bound of the set {p, q}. Suppose that lub{p, q}
and glb{p, q} exist, some binary operations are defined as follows:

(i) p ∨ q = lub{p, q};
(ii) p ∧ q = glb{p, q};

(iii) p ⊕ q = (p – q) ∨ (q – p);
(iv) p � q = (p – q) ∧ (q – p).

The operations ⊕, �, ∨, and ∧ are called XOR, XNOR, OR, and AND operations, respec-
tively.

Lemma 2.6 ([32]) For any natural number n, p ∝ qn and qn → q∗ as n → ∞, then p ∝ q∗.

Proposition 2.7 ([17, 19, 23–25]) Let � be an XNOR operation and ⊕ be an XOR opera-
tion. Then the following relations hold:

(i) p � p = p ⊕ p = 0, p � q = q � p = –(p ⊕ q) = –(q ⊕ p);
(ii) if p ∝ 0, then –p ⊕ 0 ≤ p ≤ p ⊕ 0;

(iii) (λp) ⊕ (λq) = |λ|(p ⊕ q);
(iv) 0 ≤ p ⊕ q if p ∝ q;
(v) if p ∝ q, then p ⊕ q = 0 if and only if p = q;

(vi) (p + q) � (u + v) ≥ (p � u) + (q � v);
(vii) (p + q) � (u + v) ≥ (p � v) + (q � u);

(viii) if p, q, and w are comparative to each other, then (p ⊕ q) ≤ p ⊕ w + w ⊕ q;
(ix) if p ∝ q, then ((p ⊕ 0) ⊕ (q ⊕ 0)) ≤ (p ⊕ q) ⊕ 0 = p ⊕ q;
(x) αp ⊕ βp = |α – β|p = (α ⊕ β)p if p ∝ 0, for all p, q, u, v, w ∈Hp and α,β ,λ ∈R.
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Proposition 2.8 ([32]) Let C be a normal cone in Hp with normal constant δN , then, for
each p, q ∈Hp, the following relations hold:

(i) ‖0 ⊕ 0‖ = ‖0‖ = 0;
(ii) ‖p ∨ q‖ ≤ ‖p‖ ∨ ‖q‖ ≤ ‖p‖ + ‖q‖;

(iii) ‖p ⊕ q‖ ≤ ‖p – q‖ ≤ δN‖p ⊕ q‖;
(iv) if p ∝ q, then ‖p ⊕ q‖ = ‖p – q‖.

Definition 2.9 ([24, 25]) Let g : Hp →Hp be a single-valued mapping. Then
(i) g is said to be a strongly comparison mapping if g is a comparison mapping and

g(p) ∝ g(q) if and only if p ∝ q for all p, q ∈Hp;
(ii) g is said to be a β-ordered compression mapping if G is a comparison mapping and

g(p) ⊕ g(q) ≤ β(p ⊕ q) for 0 < β < 1.

Definition 2.10 ([23, 24]) A mapping N : Hp × Hp → Hp is said to be (κ ,ν)-ordered
Lipschitz continuous if p ∝ q, u ∝ v, then N(p, u) ∝ N(q, v) and there exist constants κ ,ν >
0 such that

N(p, u) ⊕ N(q, v) ≤ κ(p ⊕ q) + ν(u ⊕ v) for all p, q, u, v ∈Hp.

Definition 2.11 A set-valued mapping A : Hp → CB(Hp) is said to be D-Lipschitz con-
tinuous if, for any p, q ∈Hp, p ∝ q, there exists a constant λDA > 0 such that

D
(
A(p), A(q)

) ≤ λDA (p ⊕ q) for all p, q, u, v ∈Hp.

Definition 2.12 ([17, 25, 33]) Let A : Hp → 2Hp be a set-valued mapping. Then
(i) A is said to be a weak comparison mapping if, for any vp ∈ A(p), p ∝ vp, and if

p ∝ q, then for any vp ∈ A(p) and vq ∈ A(q), vp ∝ vq for all p, q ∈Hp;
(ii) a weak comparison mapping A is said to be α-weak-nonordinary difference

mapping if, for each p, q ∈Hp, there exist α > 0 and vp ∈ A(p) and vq ∈ A(q) such
that

(vp ⊕ vq) ⊕ α(p ⊕ q) = 0;

(iii) a weak comparison mapping A is said to be a λ-XOR-ordered different weak
compression mapping if, for each p, q ∈Hp, there exist a constant λ > 0 and
vp ∈ A(p), vq ∈ A(q) such that

λ(vp ⊕ vq) ≥ p ⊕ q.

Now, we introduce some new definitions of an XOR-weak-NODD set-valued mapping
and a resolvent operator associated with the XOR-weak-NODD set-valued mapping.

Definition 2.13 A comparison mapping M : Hp → 2Hp is said to be an (α,λ)-XOR-weak-
NODD set-valued mapping if A is an α-weak-nonordinary difference mapping and a λ-
XOR-ordered different weak compression mapping, and [I ⊕λA](Hp) = Hp for λ,β ,α > 0.
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Definition 2.14 Let A : Hp → 2Hp be an (α,λ)-XOR-weak-NODD set-valued mapping.
The resolvent operator J λ

A : Hp →Hp associated with A is defined by

J λ
A (p) = [I ⊕ λA]–1(p), ∀p ∈Hp, (2.1)

where λ > 0 is a constant.

Now, we show that the resolvent operator defined by (2.1) is a single-valued, comparison
mapping as well as Lipschitz continuous.

Lemma 2.15 Let A : Hp → 2Hp be an α-nonordinary difference comparison mapping with
α > 1

λ
. Then the resolvent operator J λ

A : Hp →Hp is single-valued for all λ > 0.

Proof Proof is similar to Proposition 2.15 in [33]. �

Lemma 2.16 Let A : Hp → 2Hp be an (α,λ)-XOR-weak-NODD set-valued mapping with
respect to J λ

A . Then the resolvent operator J λ
A : Hp →Hp is a comparison mapping.

Proof Let A be an (α,λ)-XOR-weak-NODD set-valued mapping with respect to J λ
A . That

is, A is α-nonordinary difference and λ-XOR-ordered different weak comparison mapping
with respect to J λ

A , so that p ∝ J λ
A (p). For any p, q ∈Hp, let p ∝ q and

vp =
1
λ

(
p ⊕J λ

A (p)
) ∈ A

(
J λ

A (p)
)

(2.2)

and

vq =
1
λ

(
q ⊕J λ

A (q)
) ∈ A

(
J λ

A (q)
)
. (2.3)

Since A is a λ-XOR-ordered different weak comparison mapping, using (2.2) and (2.3), we
have

p ⊕ q ≤ λ(vp ⊕ vq) =
(
p ⊕J λ

A (p)
) ⊕ (

q ⊕J λ
A (q)

)
,

p ⊕ q ≤ (p ⊕ q) ⊕ (
J λ

A (p) ⊕J λ
A (q)

)
,

0 ≤ J λ
A (p) ⊕J λ

A (q) =
[
J λ

A (p) – J λ
A (q)

] ∨ [
J λ

A (q) – J λ
A (p)

]
,

0 ≤ J λ
A (p) – J λ

A (q) or 0 ≤ J λ
A (q) – J λ

A (p).

Thus, we have

J λ
A (p) ≤ J λ

A (q) or J λ
A (q) ≤ J λ

A (p),

which implies that

J λ
A (p) ∝ J λ

A (q).

Therefore, the resolvent operator J λ
A is a comparison mapping. �
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Lemma 2.17 Let A : Hp → 2Hp be an (α,λ)-XOR-weak-NODD mapping with respect to
J λ

A for αλ > μ and μ ≥ 1. Then the resolvent operator J λ
A satisfies the following condition:

J λ
A (p) ⊕J λ

A (q) ≤ μ

(αλ ⊕ μ)
(p ⊕ q), ∀p, q ∈Hp,

i.e., the resolvent operator J λ
A is λ

(αλ⊕μ) -Lipschitz type continuous mapping.

Proof Let p, q ∈Hp, up = J λ
A (p), uq = J λ

A (q), and let

vp =
1
λ

(p ⊕ up) ∈ A(up) and vq =
1
λ

(q ⊕ uq) ∈ A(uq).

As A is an (α,λ)-XOR-weak-NODD set-valued mapping with respect to J λ
A , it follows that

A is also an α-nonordinary weak difference mapping with respect to J λ
A , we have

(vp ⊕ vq) ⊕ α(up ⊕ uq) = 0 (2.4)

and

vp ⊕ vq =
1
λ

[
(p ⊕ up) ⊕ (q ⊕ uq)

]

=
1
λ

[
(p ⊕ q) ⊕ (up ⊕ uq)

]

≤ μ

λ

[
(p ⊕ q) ⊕ (up ⊕ uq)

]
for μ ≥ 1.

From (2.4), we have

α(up ⊕ uq) = vp ⊕ vq

≤ μ

λ

[
(p ⊕ q) ⊕ (up ⊕ uq)

]
,

[
αλ

μ
⊕ 1

]
(up ⊕ uq) ≤ p ⊕ q.

It follows that up ⊕ uq ≤ ( μ

(αλ⊕μ) )(p ⊕ q) and, consequently, we have

J λ
A (p) ⊕J λ

A (q) ≤ μ

(αλ ⊕ μ)
(p ⊕ q), ∀p, q ∈Hp.

Therefore, the resolvent operator J λ
A is a λ

(αλ⊕μ) -Lipschitz type continuous mapping. �

Proposition 2.18 Let g : Hp → Hp be a strongly comparison and β-ordered compression
mapping. Let A : Hp ×Hp → 2Hp be an (α,λ)-XOR-weak-NODD set-valued mapping with
respect to the first argument. The resolvent operator J λ

A : Hp → Hp associated with A is
defined by

J λ
A(·,z)(p) =

[
I ⊕ λA(·, z)

]–1(p), for z ∈Hp. (2.5)
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Then, for any given z ∈Hp, the resolvent operator J λ
A(·,z) : Hp →Hp is well-defined, single-

valued, continuous, comparison, and μ

(λα⊕μ) -nonexpansive mapping with λα > μ and μ ≥
1, that is,

J λ
A(·,z)(p) ⊕J λ

A(·,z)(q) ≤ μ

(λα ⊕ μ)
(p ⊕ q), for all p, q ∈Hp. (2.6)

3 Formulation of the problem and iterative algorithm
Let Hp be a real ordered positive Hilbert space and C be a normal cone with normal
constant δN . Let S, T , U , V : Hp → F (Hp) be closed fuzzy mappings satisfying the fol-
lowing condition (∗), with functions a, b, c, d : H → [0, 1] such that, for each p ∈ Hp, we
have (Sp)a(p), (Tp)b(p), (Up)c(p), and (Vp)d(p) in CB(Hp), respectively, and let G, g : Hp →Hp

be surjective single-valued mappings. Let A : Hp × Hp → 2Hp be an (α,λ)-XOR-weak-
NODD set-valued mapping with respect to the first argument. For a given nonlinear map-
ping N : Hp × Hp → Hp, we consider a problem of finding p, u, v, w, z ∈ Hp such that
Sp(u) ≥ a(p), Tp(v) ≥ b(p), Up(w) ≥ c(w), and Vp(z) ≥ d(z), i.e., u ∈ (Sp)a(p), v ∈ (Tp)b(p),
w ∈ (Up)c(p), z ∈ (Vp)d(p),

0 ∈ G(w) ⊕ N(u, v) + A
(
g(p), z

)
. (3.1)

Problem (3.1) is called nonlinear fuzzy ordered variational inclusion problem involving ⊕
operation.

It is clear that, for suitable choices of mappings involved in the formulation of nonlinear
fuzzy ordered variational inclusion problem (3.1), one can obtain many variational inclu-
sion problems studied in recent past, i.e., [17–19, 25].

Putting a(p) = b(p) = c(p) = d(p) = 1 for all p ∈Hp, problem (3.1) includes many kinds of
variational inequalities and variational inclusion problems [17, 19, 22–25].

In support of our problem (3.1), we provide the following examples.

Example 3.1 The continuum of players problem can be obtained from nonlinear fuzzy
ordered variational inclusion problem (3.1). For more details, see Chap. 13 and exercise
13.2 of the book “Optima and Equilibria” by Aubin [34] and Example 2.1 in [35].

If we can take Hp = R
n
p , U = I (identity mapping) and T is a single-valued mapping, and

the other functions, that is, G, S, V , A, g , are equal to zero. Define N : Hp ×Hp →Hp by

N
(
p, T(p)

)
=

∫

L
Q

(
u, T(u)

)
h(u) du.

We associate each player with its action Q(u, ·), where Q : Hp × O →R
n
p , O is a nonempty

subset of Rn
p , and each fuzzy coalition h(u) with its action

∫
L Q(u, T(u))h(u) du.

Example 3.2 Let Hp = [0, 10] and C = {p ∈ Hp : 0 ≤ p ≤ 4} be the normal cone. Let
S, T , U , V : Hp → F (Hp) be the closed fuzzy mappings defined by, for all p, q, u, v, w, z ∈
Hp:

Sp(u) =

⎧
⎨

⎩

1
3+|u–2| if p ∈ [0, 1],

1
3+p|u–2| if p ∈ (1, 10],

Tp(v) =

⎧
⎨

⎩

1
2+(v–2)2 if p ∈ [0, 1],

1
2+p(v–2)2 if p ∈ (1, 10],
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Up(w) =

⎧
⎨

⎩

1
1+|w–2| if p ∈ [0, 1],

1
1+p|w–2| if p ∈ (1, 10],

and Vp(z) =

⎧
⎨

⎩

1
2+p|z–2| if p ∈ [0, 1],

1
2+|z–2| if p ∈ (1, 10].

We define the mappings a, b, c, d : Hp → [0, 1] by

a(p) =

⎧
⎨

⎩

1
5 if p ∈ [0, 1],

1
3+2p if p ∈ (1, 10],

b(p) =

⎧
⎨

⎩

1
6 if p ∈ [0, 1],

1
2+4p if p ∈ (1, 10],

c(p) =

⎧
⎨

⎩

1
3 if p ∈ [0, 1],

1
1+2p if p ∈ (1, 10],

and d(p) =

⎧
⎨

⎩

1
2(1+p) if p ∈ [0, 1],
1
4 if p ∈ (1, 10].

For any p ∈ [0, 1], we have

(Sp)a(p) =
{

u : Sp(u) ≥ 1
5

}
= {

{
u :

1
3 + |u – 2| ≥ 1

5

}
= [0, 4],

(Tp)b(p) =
{

u : Tp(v) ≥ 1
6

}
=

{
u :

1
2 + (v – 2)2 ≥ 1

6

}
= [0, 4],

(Up)c(p) =
{

u : Up(w) ≥ 1
3

}
=

{
u :

1
1 + |w – 2| ≥ 1

3

}
= [0, 4],

(Vp)d(p) =
{

u : Vp(z) ≥ 1
2(1 + p)

}
=

{
u :

1
2 + p|z – 2| ≥ 1

2(1 + p)

}
= [0, 4],

and for any p ∈ (1, 10], we have

(Sp)a(p) =
{

u : Sp(u) ≥ 1
3 + 2p

}
=

{
u :

1
3 + p|u – 2| ≥ 1

3 + 2p

}
= [0, 4],

(Tp)b(p) =
{

u : Tp(v) ≥ 1
2 + 4p

}
=

{
u :

1
2 + 2p(v – 2)2 ≥ 1

2 + 4p

}
= [0, 4],

(Up)c(p) =
{

u : Up(w) ≥ 1
1 + 2p

}
=

{
u :

1
1 + p|w – 2| ≥ 1

1 + 2p

}
= [0, 4],

(Vp)d(p) =
{

u : Vp(z) ≥ 1
4

}
=

{
u :

1
2 + |z – 2| ≥ 1

4

}
= [0, 4].

Now, we define the single-valued mappings G, g : Hp →Hp and N : Hp ×Hp →Hp by

G(w) =
w
2

, g(p) =
p
5

and N(u, v) =
u
2

+
v
3

,

and the set-valued mapping A : Hp ×Hp → 2Hp is defined by

A
(
g(p), z

)
=

{
g(p) +

z
3

: p ∈ [0, 10] and z ∈ (Vp)d(p)

}
.

In view of the above, it is easy to verify that 0 ∈ G(w)⊕N(u, v) + A(g(p), z), that is, problem
(3.1) is satisfied.

Related to the nonlinear fuzzy ordered variational inclusion problem (3.1), we consider
the following nonlinear fuzzy ordered resolvent equation problem:
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Find p, q, u, v, w, z ∈ Hp such that (Sp)(u) ≥ a(p), (Tp)(v) ≥ b(p), (Up)(w) ≥ c(p), and
(Vp)(z) ≥ d(z),

G(w) ⊕ λ–1RA(·,z)(q) = N(u, v), (3.2)

where λ > 0 is a constant and RA(·,z) = [I ⊕J λ
A(·,z)].

Now, we establish the equivalence between nonlinear fuzzy ordered variational inclu-
sion problem and nonlinear fuzzy ordered resolvent equation problem.

Lemma 3.3 Assume that S, T , U , V : Hp →F (Hp) are closed fuzzy mappings satisfying the
following condition (∗), with functions a, b, c, d : H → [0, 1], respectively. Let G, g : Hp →
Hp and N : Hp × Hp → Hp be single-valued mappings. Let A : Hp × Hp → 2Hp be an
(α,λ)-XOR-weak-NODD set-valued mapping with respect to the first argument. Then the
following are equivalent:

(i) (p, u, v, w, z), where p, u, v, w, z ∈Hp such that Sp(u) ≥ a(p), Tp(v) ≥ b(p),
Up(w) ≥ c(w), and Vp(z) ≥ d(z) is a solution of problem (3.1);

(ii) p ∈Hp is a fixed point of the mapping Q : Hp → 2Hp defined by

Q(p) = G(w) ⊕ N(u, v) + A
(
g(p), z

)
+ p; (3.3)

(iii) (p, u, v, w, z), where p, u, v, w, z ∈Hp such that Sp(u) ≥ a(p), Tp(v) ≥ b(p),
Up(w) ≥ c(w), and Vp(z) ≥ d(z), is a solution of the following equation:

g(p) = J λ
A(·,z)

[
g(p) ⊕ λ

(
G(w) � N(u, v)

)]
; (3.4)

(iv) (p, q, u, v, w, z), where p, u, v, w, z ∈Hp such that Sp(u) ≥ a(p), Tp(v) ≥ b(p),
Up(w) ≥ c(w), and Vp(z) ≥ d(z), is a solution of problem (3.2), where

q = g(p) ⊕ λ
(
G(w) � N(u, v)

)
,

g(p) = J λ
A(·,z)(q).

(3.5)

Proof (i) �⇒ (ii) Adding p to both sides of (3.1), we have

0 ∈ G(w) ⊕ N(u, v) + A
(
g(p), z

)

�⇒ p ∈ G(w) ⊕ N(u, v) + A
(
g(p), z

)
+ p = Q(p).

Hence, a is a fixed point of Q.
(ii) �⇒ (iii) Let p be a fixed point of Q, then

p ∈ G(w) ⊕ N(u, v) + A
(
g(p), z

)
+ p = Q(p)

�⇒ 0 ∈ G(w) ⊕ N(u, v) + A
(
g(p), z

)

�⇒ 0 ∈ λ
(
G(w) ⊕ N(u, v)

)
+ λA

(
g(p), z

)

�⇒ λ
(
G(w) � N(u, v)

) ∈ λA
(
g(p), z

)

�⇒ g(p) ⊕ λ
(
G(w) � N(u, v)

) ∈ g(p) ⊕ λA
(
g(p), z

)



Ahmad et al. Journal of Inequalities and Applications         (2020) 2020:36 Page 10 of 18

�⇒ g(p) ⊕ λ
(
G(w) � N(u, v)

) ∈ [
I ⊕ λA(·, z)

](
g(p)

)
.

Hence g(p) = J λ
A(·,z)[g(p) ⊕ λ(G(w) � N(u, v))].

(iii) �⇒ (iv) Taking q = g(p) ⊕λ(G(w) � N(u, v)), from (3.4), we have g(p) = J λ
A(·,z)(q), so

q = J λ
A(·,z)(q) ⊕ λ

(
G(w) � N(u, v)

)
,

which implies that

q ⊕J λ
A(·,z)(q) = λ

(
G(w) � N(u, v)

)
,

�⇒ [
I ⊕J λ

A(·,z)
]
(q) = λ

(
G(w) � N(u, v)

)

�⇒ RA(·,z)(q) = λ
(
G(w) � N(u, v)

)

�⇒ λ–1RA(·,z)(q) = G(w) � N(u, v)

�⇒ G(w) � λ–1RA(·,z)(q) = N(u, v).

Consequently, (p, q, u, v, w, z) is a solution of the fuzzy resolvent equation problem (3.2).
(iv) �⇒ (i), from (3.5) we have

g(q) = J λ
A(·,z)(q)

= J λ
A(·,z)

[
g(p) ⊕ λ

(
G(w) � N(u, v)

)]
,

i.e.,

g(p) =
(
I ⊕ λA(·, z)

)–1[g(p) ⊕ λ
(
G(w) � N(u, v)

)]
,

so

g(p) ⊕ λ
(
G(w) � N(u, v)

) ∈ (
I ⊕ λA(·, z)

)
g(p),

which implies

0 ∈ G(w) ⊕ N(u, v) + A
(
g(p), z

)
.

Therefore, (p, u, v, w, z), where p ∈ Hp such that Sp(u) ≥ a(p), Tp(v) ≥ b(p), Up(w) ≥ c(w),
and Vp(z) ≥ d(z) is a solution of problem (3.1). �

Based on Lemma 3.3, we construct an iterative algorithm for finding approximate solu-
tions of problem (3.1).

Iterative Algorithm 3.4 Let S, T , U , V : Hp → F (Hp) be the closed fuzzy mappings sat-
isfying the following condition (∗), with functions a, b, c, d : H → [0, 1], respectively. Let
G, g : Hp → Hp and N : Hp × Hp → Hp be single-valued mappings. Let A : Hp × Hp →
2Hp be an (α,λ)-XOR-weak-NODD set-valued mapping with respect to the first argument.
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We assume that g is surjective. For any given p0, q0 ∈ Hp, u0 ∈ (Sp0 )a(p0), v0 ∈ (Tp0 )b(p0),
w0 ∈ (Up0 )c(p0), and z0 ∈ (Vp0 )d(p0), let

q1 = g(p0) ⊕ λ
(
G(w0) � N(u0, v0)

)
.

Since g is surjective, there exists p1 ∈Hp such that

p1 = (1 – β)q0 + β
[
p0 ⊕ (

g(p0) ⊕J λ
A(·,z0)(q1)

)]
.

On the other hand, by Nadler [36], there exist u1 ∈ (Sp1 )a(p1), v0 ∈ (Tp1 )b(p1), w0 ∈ (Up1 )c(p1),
and z1 ∈ (Vp1 )d(p1), and suppose that p0 ∝ p1, u0 ∝ u1, v0 ∝ v1, w0 ∝ w1, and z0 ∝ z1 such
that

u1 ∈ (Sp1 )a(p1), u1 ⊕ u0 ≤ (1 + 1)D
(
(Sp1 )a(p1), (Sp0 )a(p0)

)
,

v1 ∈ (Tp1 )b(p1), v1 ⊕ v0 ≤ (1 + 1)D
(
(Tp1 )b(p1), (Tp0 )b(p0)

)
,

w1 ∈ (Up1 )c(p1), w1 ⊕ w0 ≤ (1 + 1)D
(
(Up1 )c(p1), (Up0 )c(p0)

)
,

z1 ∈ (Vp1 )d(p1), z1 ⊕ z0 ≤ (1 + 1)D
(
(Vp1 )d(p1), (Vp0 )d(p0)

)
.

Let

q2 = g(p1) ⊕ λ
(
G(w1) � N(u1, v1)

)
.

Since g is surjective, there exists p2 ∈Hp such that

p2 = (1 – β)p1 + β
[
p1 ⊕ (

g(p1) ⊕J λ
A(·,z1)(q2)

)]
.

On the other hand, by Nadler [36], there exist u2 ∈ (Sp2 )a(p2), v2 ∈ (Tp2 )b(p2), w2 ∈ (Up2 )c(p2),
and z2 ∈ (Vp2 )d(p2), and suppose that p1 ∝ p2, u1 ∝ u2, v1 ∝ v2, w1 ∝ w2, and z1 ∝ z2 such
that

u2 ∈ (Sp2 )a(p2), u2 ⊕ u1 ≤
(

1 +
1
2

)
D

(
(Sp2 )a(p2), (Sp1 )a(p1)

)
,

v2 ∈ (Tp2 )b(p2), v2 ⊕ v1 ≤
(

1 +
1
2

)
D

(
(Tp2 )b(p2), (Tp1 )b(p1)

)
,

w2 ∈ (Up2 )c(p2), w2 ⊕ w1 ≤
(

1 +
1
2

)
D

(
(Up2 )c(p2), (Up1 )c(p1)

)
,

z2 ∈ (Vp2 )d(p2), z2 ⊕ z1 ≤
(

1 +
1
2

)
D

(
(Vp2 )d(p2), (Vp1 )d(p1)

)
.
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Continuing the above process inductively with the supposition that pn+1 ∝ pn, un+1 ∝ un,
vn+1 ∝ vn, wn+1 ∝ wn, and zn+1 ∝ zn, for all n = 0, 1, 2, . . . ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn+1 = g(pn) ⊕ λ(G(wn) � N(un, vn)),

pn+1 = (1 – β)pn + β[pn ⊕ (g(pn) ⊕J λ
A(·,zn)(qn+1))],

un+1 ∈ (Spn+1 )a(pn+1), un+1 ⊕ un ≤ (1 + 1
n+1 )D((Spn+1 )a(pn+1), (Spn )a(pn)),

vn+1 ∈ (Tpn+1 )b(pn+1), vn+1 ⊕ vn ≤ (1 + 1
n+1 )D((Tpn+1 )b(pn+1), (Tpn )b(pn)),

wn+1 ∈ (Upn+1 )c(pn+1), wn+1 ⊕ wn ≤ (1 + 1
n+1 )D((Upn+1 )c(pn+1), (Upn )c(pn)),

zn+1 ∈ (Vpn+1 )d(pn+1), zn+1 ⊕ zn ≤ (1 + 1
n+1 )D((Vpn+1 )d(pn+1), (Vpn )d(pn)).

(3.6)

4 Main results
In this section, we prove an existence and convergence result for nonlinear fuzzy ordered
variational inclusion problem (3.1) and its corresponding nonlinear fuzzy ordered resol-
vent equation problem (3.2).

Theorem 4.1 Let Hp be a real ordered positive Hilbert space and C be a normal cone with
normal constant δN . Let S, T , U , V : Hp → F (Hp) be the closed fuzzy mappings satisfying
condition (∗), with functions a, b, c, d : H → [0, 1], respectively. Let G, g : Hp → Hp and
N : Hp × Hp → Hp be the single-valued mappings. Let A : Hp × Hp → 2Hp be an (α,λ)-
XOR-weak-NODD set-valued mapping with respect to the first argument. Suppose that the
following conditions hold:

(i) G is comparison and λG-ordered compression mapping, λG ∈ (0, 1);
(ii) g is comparison and λg -ordered compression mapping, λg ∈ (0, 1);

(iii) N is comparison and (κ ,ν)-ordered Lipschitz continuous mapping;
(iv) S, T , U , and V are ordered Lipschitz type continuous mappings with constants λDS ,

λDT , λDU , and λDV , respectively.
If the following conditions

(a) J λ
A(·,s)(p) ⊕J λ

A(·,t)(p) ≤ ξ (s ⊕ t) for all p, s, t ∈Hp, ξ > 0,

(b)

⎧
⎨

⎩
|μ(λg ⊕ λ(λGλDU ⊕ (κλDS + νλDT ))) + ξλDV (λα ⊕ μ)| < |(λα ⊕ μ)λg |,
λα > μ, μ ≥ 1,

(4.1)

are satisfied, then there exist p, q ∈ Hp such that u ∈ (Sp)a(p), v ∈ (Tp)b(p), w ∈ (Up)c(p), and
z ∈ (Vp)d(p) satisfying the nonlinear fuzzy ordered resolvent equation equation (3.2), and
so (p, u, v, w, z) is a solution of the nonlinear fuzzy ordered variational inclusion problem
(3.1), and the iterative sequences {pn}, {un}, {vn}, {wn}, and {zn} generated by Algorithm 3.4
converge strongly to p, v, u, w, and z in Hp, respectively.

Proof Since g is a λg -ordered compression mapping, V is a λDV -ordered Lipschitz contin-
uous mapping. By Algorithm 3.4, Proposition 2.7, and Proposition 2.18, we have

0 ≤ pn+1 ⊕ pn

=
[
(1 – β)pn + β

(
pn ⊕ (

g(pn) ⊕J λ
A(·,zn)(qn+1)

))]

⊕ [
(1 – β)pn–1 + β

(
pn–1 ⊕ (

g(pn–1) ⊕J λ
A(·,zn–1)(qn)

))]
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≤ (1 – β)(pn ⊕ qn–1) + β
[(

pn ⊕ (
g(pn) ⊕J λ

A(·,zn)(qn+1)
))

⊕ (
pn–1 ⊕ (

g(pn–1) ⊕J λ
A(·,zn–1)(qn)

))]

= (1 – β)(pn ⊕ pn–1) + β
[
(1 ⊕ λg)(pn ⊕ pn–1) ⊕ (

J λ
A(·,zn)(qn+1)

⊕J λ
A(·,zn–1)(qn)

)]

= (1 – β)(pn ⊕ pn–1) + β
[
(1 ⊕ λg)(pn ⊕ pn–1)

⊕ (
J λ

A(·,zn)(qn+1) ⊕J λ
A(·,zn)(qn) + J λ

A(·,zn)(qn) ⊕J λ
A(·,zn–1)(qn)

)]

= (1 – β)(pn ⊕ pn–1) + β

[
(1 ⊕ λg)(pn ⊕ pn–1) ⊕

(
μ

(λα ⊕ μ)
(qn+1 ⊕ qn)

+ ξ (zn ⊕ zn–1)
)]

= (1 – β)(pn ⊕ pn–1) + β

[
(1 ⊕ λg)(pn ⊕ pn–1)

⊕
(

μ

(λα ⊕ μ)
(qn+1 ⊕ qn) + ξ

(
1 +

1
n + 1

)
D

(
(Vpn+1 )d(pn+1), (Vpn+1 )d(pn+1)

))]

= (1 – β)(pn ⊕ pn–1) + β

[
(1 ⊕ λg)(pn ⊕ pn–1)

⊕
(

μ

(λα ⊕ μ)
(qn+1 ⊕ qn) + ξ

(
1 +

1
n + 1

)
λDV (pn+1 ⊕ pn+1)

)]
. (4.2)

Since G is a λG-ordered compression mapping, N(·, ·) is a (κ ,ν)-ordered Lipschitz con-
tinuous and g is a λG-ordered compression mapping and D-Lipschitz continuous of T , U ,
and V with constants λDT ,λDU , and λDV . Using Proposition 2.7, we have

qn+1 ⊕ qn =
[
g(pn) ⊕ λ

(
G(wn) � N(un, vn)

)] ⊕ [
g(pn–1) ⊕ λ

(
G(wn–1)

� N(un–1, vn–1)
)]

≤ (
g(pn) ⊕ g(pn–1)

) ⊕ λ
[(

G(wn) � N(un, vn)
) ⊕ (

G(wn–1)

� N(un–1, vn–1)
)]

≤ (
g(pn) ⊕ g(pn–1)

) ⊕ λ
[
–
(
G(wn) ⊕ N(un, vn)

) ⊕ –
(
G(wn–1)

⊕ N(un–1, vn–1)
)]

≤ (
g(pn) ⊕ g(pn–1)

) ⊕ λ|–1|[(G(wn) ⊕ N(un, vn)
) ⊕ (

G(wn–1)

⊕ N(un–1, vn–1)
)]

≤ λg(pn ⊕ pn–1) ⊕ λ
[(

G(wn) ⊕ G(wn–1)
) ⊕ (

N(un, vn)

⊕ N(un–1, vn–1)
)]

≤ λg(pn ⊕ pn–1) ⊕ λ
[
λG(wn ⊕ wn–1) ⊕ (

κ(un ⊕ un–1) + ν(vn ⊕ vn–1)
)]

≤ λg(pn ⊕ pn–1) ⊕ λ

[
λG

(
1 +

1
n + 1

)
D

(
(Upn+1 )c(pn+1), (Upn )c(pn)

)

⊕
(

κ

(
1 +

1
n + 1

)
D

(
(Spn+1 )a(pn+1), (Spn )a(pn)

)
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+ ν

(
1 +

1
n + 1

)
D

(
(Tpn+1 )b(pn+1), (Tpn )b(pn)

))]

≤ λg(pn ⊕ pn–1) ⊕ λ[λGλDU

(
1 +

1
n + 1

)
(pn ⊕ pn–1)

⊕
(

κλDS

(
1 +

1
n + 1

)
(pn ⊕ pn–1) + νλDT

(
1 +

1
n + 1

)
(pn ⊕ pn–1)

)

≤
[
λg ⊕ λ

(
λGλDU ⊕ (κλDS + νλDT )

)
(

1 +
1

n + 1

)]
(pn ⊕ pn–1). (4.3)

Using (4.3), (4.2) becomes

0 ≤ pn+1 ⊕ pn

=
[

(1 – β) + β

(
(1 ⊕ λg) ⊕

(
μ(λg ⊕ λ(λGλDU ⊕ (κλDS + νλDT )))

(λα ⊕ μ)

(
1 +

1
n + 1

)

+ ξ

(
1 +

1
n + 1

)
λDV

))]
(pn ⊕ pn–1)

=
[

(1 – β

(
1 –

(
(1 ⊕ λg) ⊕

((
μ(λg ⊕ λ(λGλDU ⊕ (κλDS + νλDT )))

(λα ⊕ μ)

+ ξλDV

)(
1 +

1
n + 1

))))]
(pn ⊕ pn–1)

= Ωn(pn ⊕ pn–1), (4.4)

where

Ωn =
[

1 – β

(
1 – (1 ⊕ λg) ⊕

((
μ(λg ⊕ λ(λGλDU ⊕ (κλDS + νλDT )))

(λα ⊕ μ)

+ ξλDV

)(
1 +

1
n + 1

)))]
.

Letting

Ω =
[

1 – β

(
1 – (1 ⊕ λg) ⊕

((
μ(λg ⊕ λ(λGλDU ⊕ (κλDS + νλDT )))

(λα ⊕ μ)
+ ξλDV

)))]
.

By condition (4.1), we have 0 < Ω < 1, thus {pn} is a Cauchy sequence in Hp and as Hp is
complete, there exists p ∈ Hp such that pn → p as n → ∞. From (3.6) of Algorithm 3.4
and D-Lipschitz continuity of S, T , U , and V , we have

un+1 ⊕ un ≤
(

1 +
1

n + 1

)
D

(
(Spn+1 )a(pn+1), (Spn )a(pn)

)

≤
(

1 +
1

n + 1

)
λDS (pn+1 ⊕ pn), (4.5)

vn+1 ⊕ vn ≤
(

1 +
1

n + 1

)
D

(
(Tpn+1 )b(pn+1), (Tpn )b(pn)

)

≤
(

1 +
1

n + 1

)
λDT (pn+1 ⊕ pn), (4.6)
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wn+1 ⊕ wn ≤
(

1 +
1

n + 1

)
D

(
(Upn+1 )c(pn+1), (Upn )c(pn)

)

≤
(

1 +
1

n + 1

)
λDU (pn+1 ⊕ pn), (4.7)

zn+1 ⊕ zn ≤
(

1 +
1

n + 1

)
D

(
(Vpn+1 )d(pn+1), (Vpn )d(pn)

)

≤
(

1 +
1

n + 1

)
λDV (pn+1 ⊕ pn). (4.8)

It is clear from (4.5)–(4.8) that {un}, {vn}, {wn}, and {zn} are also Cauchy sequences in Hp,
so there exist u, v, w, and z inHp such that un → u, vn → v, wn → w, and zn → z as n → ∞.
By using the continuity of the operators S, T , U , V , J λ

A(·,z) and iterative Algorithm 3.4, we
have

p = (1 – β)p + β
[
p ⊕ (

g(p) ⊕J λ
A(·,z)

(
g(p) ⊕ λ

(
G(w) � N(u, v)

)))]
,

which implies that

g(p) = J λ
A(·,z)

(
g(p) ⊕ λ

(
G(w) � N(u, v)

))
.

By Lemma 3.3, we conclude that (p, u, v, w, z) is a solution of problem (3.1). It remains to
show that u ∈ (Sp)a(p), v ∈ (Tp)b(p), w ∈ (Up)c(p), and z ∈ (Vp)d(p). Using Proposition 2.8, in
fact

d
(
u, (Sp)a(p)

) ≤ ‖u ⊕ un‖ + d
(
un, (Sp)a(p)

)

≤ ‖u ⊕ un‖ + D
(
(Spn )a(pn), (Sp)a(p)

)

≤ ‖u – un‖ + λDS (pn ⊕ p) → 0, as n → ∞.

Hence u ∈ (Sp)a(p). Similarly, we can show that v ∈ (Tp)b(p), w ∈ (Up)c(p), and z ∈ (Vp)d(p).
This completes the proof. �

Taking β = 1 in Algorithm 3.4, we can also prove the existence and convergence result for
nonlinear fuzzy ordered variational inclusion problem (3.1) and nonlinear fuzzy ordered
resolvent equation problem (3.2).

Theorem 4.2 Let S, T , U , V : Hp → F (Hp) be the closed fuzzy mappings satisfying the
following condition (∗), with functions a, b, c, d : H → [0, 1], respectively. Let G, g : Hp →
Hp and N : Hp ×Hp → Hp be the single-valued mappings. Let A : Hp ×Hp → 2Hp be an
(α,λ)-XOR-weak-NODD set-valued mapping with respect to the first argument. Suppose
that the following conditions hold:

(i) G is comparison and λG-ordered compression mapping, λG ∈ (0, 1);
(ii) g is comparison and λg -ordered compression mapping, λg ∈ (0, 1);

(iii) N is comparison and (κ ,ν)-ordered Lipschitz continuous mapping;
(iv) S, T , U , and V are ordered Lipschitz type continuous mappings with constants λDS ,

λDT , λDU , and λDV , respectively.
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For given p0 ∈H, let the sequences pn, un, vn, wn, and zn defined by the following schemes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn+1 = g(pn) ⊕ λ(G(wn) � N(un, vn)),

pn+1 = pn ⊕ (g(pn) ⊕J λ
A(·,zn)(qn+1)),

un+1 ∈ (Spn+1 )a(pn+1), un+1 ⊕ un ≤ (1 + 1
n+1 )D((Spn+1 )a(pn+1), (Spn )a(pn)),

vn+1 ∈ (Tpn+1 )b(pn+1), vn+1 ⊕ vn ≤ (1 + 1
n+1 )D((Tpn+1 )b(pn+1), (Tpn )b(pn)),

wn+1 ∈ (Upn+1 )c(pn+1), wn+1 ⊕ wn ≤ (1 + 1
n+1 )D((Upn+1 )c(pn+1), (Upn )c(pn)),

zn+1 ∈ (Vpn+1 )d(pn+1), zn+1 ⊕ zn ≤ (1 + 1
n+1 )D((Vpn+1 )d(pn+1), (Vpn )d(pn)).

(4.9)

If the following conditions

(a) J λ
A(·,s)(p) ⊕J λ

A(·,t)(p) ≤ ξ (s ⊕ t), for all p, s, t ∈Hp, ξ > 0,

(b)

⎧
⎨

⎩
|μ(λg⊕λ(λGλDU ⊕(κλDS +νλDT )))

(λα⊕μ)λg
+ ξλDV

λg
| < 1,

λα > μ,μ ≥ 1,

(4.10)

are satisfied, then there exist p, q ∈ Hp such that u ∈ (Sp)a(p), v ∈ (Tp)b(p), w ∈ (Up)c(p), and
z ∈ (Vp)d(p) satisfying the generalized nonlinear mixed ordered fuzzy resolvent equation
(3.2), and so (p, u, v, w, z) is a solutions of the generalized nonlinear mixed ordered fuzzy
variational inclusion problem (3.1), and the iterative sequences {pn}, {un}, {vn}, {wn}, and
{zn} generated by Algorithm 3.4 converge strongly to p, v, u, w and z in Hp, respectively.

5 Conclusion
The aim of this paper is to introduce a resolvent operator, and we demonstrate some of
its properties. The resolvent operator is used to define an iterative algorithm for solving
a nonlinear fuzzy ordered variational inclusion problem and its corresponding nonlinear
fuzzy ordered resolvent equation problem based on XOR operator in real ordered pos-
itive Hilbert spaces. Some preliminary results are proved to obtain the main result. We
prove the convergence analysis of our proposed iterative algorithm which assumes that
the suggested algorithm converges to a unique solution of our considered problem with
some consequence. Our results extend and generalize most of the results involving fuzzy
mappings of different authors existing in the literature.
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