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1 Introduction and preliminaries

We denote the C*-algebra of all bounded linear operators on a separable complex Hilbert
space H with L£(#). An operator X € L(H) is called positive if (Xx,x) > O for every x €
‘H, and in this case we write X > 0. The numerical range and numerical radius of X €
L(H) are respectively defined by W(X) := {(Xf.f) : f € H, |If|| = 1} and w(X) := sup{|f] :
f € W(X)}. We denote by F(§2) the set of all complex-valued functions on a nonempty
set 2. Let H = H(§2) C F(§2) be a Hilbert space. The Riesz representation theorem makes
certain that a functional Hilbert space has a reproducing kernel, which is a function k; :
£2 x 2 — H, that is called the reproducing kernel enjoying the reproducing property
k. :=k(-,1) € H (A € £2) such that f(X) = {f, k) )3, in which A € 2 and f € H (see [18]).
For {£,(2)},>0, an orthonormal basis of the space H($2), the reproducing kernel can be
presented as follows:

ki(2) = ) E,(M)E(2)
n=0

(see [2, 18] and the references therein). Throughout the paper, H = H($2) for some
nonempty set £2. If X € L(H), then the Berezin symbol of X is the function X with

X(u) = Xk k) (1€ £2),
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where 7(\,\ = ”lzﬁ is the normalized reproducing kernel of H (see [7]). Karaev in [13-15]
defined the Berezin set and the Berezin number for operator X as follows:

Ber(X):= {X(1): 2 € 2} and ber(X):=sup{|X(1)|:1 e 2},

respectively. Moreover, the Berezin number of two operators X, Y satisfies the following
properties:

(i) ber(vX) = |v|ber(X) forall v e C;

(ii) ber(X +Y) < ber(X) + ber(X).

Also, we know that

ber(X) < w(X) < | X||

for all X € L(H). In some recent papers, several Berezin number inequalities have been
investigated by authors [3-6, 9, 10, 12, 21, 22].

Assumethat X, ..., X, € L(H) and p > 1.1In [3], the generalized Euclidean Berezin num-
ber of X3,...,X,, is defined as follows:

1
n b
ber,(X;,...,X,) = sup (Z“Xikx»kx)’p) .

ref2 i-1
If p,g > 1 with }9 + % = 1, then the Young inequality is the inequality

P ad
xy§%+y;, (1)

where x and y are positive real numbers (see [11]). A refinement of (1) was obtained by
Kittaneh and Manasrah [17]

»
xy+r0(x}77 —y%)2§x—+y—q, ()
p q
where ry = min{ }7, %1} or equivalently
v, 1-v 1 1\2
x"y +r0(x2 -y2)" <vx+(1-v)y, (3)

in which v € [0,1] and 7y = min{v, 1 — v}.

For positive operators X, Y € L(H), the operator geometric mean is the positive opera-
torXgY = X%(X‘% YX"%)%X%, where it has the property X #f Y = Y £ X. A matrix mean
inequality was established by Bhatia and Kittaneh in [8], and later this inequality was gen-
eralized in [18]. A matrix Young inequality was obtained by Ando in [1]. The matrix mean
inequality and the matrix Young inequality were considered with the numerical radius
norm by Salemi and Sheikhhosseini in [19, 20].

In this paper, we get some upper bounds for the Berezin number of the (X £ Y)Z on
reproducing kernel Hilbert spaces (RKHS), where Z € L(H) is arbitrary, and give some
Berezin number inequalities. We also present some inequalities for the generalized Eu-
clidean Berezin number.
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2 Main results

We need the following lemma to prove our results (see [16]).

Lemma 1 Let X € L(H) be a positive operator, and let x € H be any unit vector. If r > 1,
then

(Xx,x)" < (X"x,x) (4)
and if 0 <r <1, then
(X’x, x) < (Xx,x)".

Before giving our next result, we set || X||per := supf| (X7<\A,7<\M)| : A€ 2} and m(X) :=
infco [X()].

Theorem 2 Let X, Y,Z € L(H) be operators such that X, Y are positive. If p > q > 1 with

Ly 11 then
rq

, Xt @yn?\ 1 o m oo
ber' (X £ 1)2) < ber<7 . T) - () - (@) )

forallr> %1'

Proof Using the Cauchy—Schwarz inequality, we get

for all A € £2. By using the Young inequality and (2), we get

(X))} (zYz()? < é()@,m% ¥ é(z*yzﬂ,?ﬁ
7_

1 o~ -~ o~ o~ 1]
- (0K R (z'YZk, &) )2,

and it follows from inequality (4) that

;Q@,m% + %I(z*yzﬂ,ﬂ)% - ;(Q@,@% _ (z*yzﬁ,ﬂ)%)z

g~
2

(X%)/Z)‘,’i(\)) + l<(Z*)/Z) k)t,)/;)\)

q

=

=
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_Ilg(< Tk ¥ - (2vZk, ) )
w * i r
TEREIEE—

» 171
for all A € £2. Since ()% + %)(A) is positive, then we have

sup|(X 2 Y)Z(1)|"
rESR

P

(X’f (z*YZ)?
<sup| —+ ——

Lt (R1% - [(Z12) ] F)?
sup (% 2B N - i ([Xe0) - [(zv2) 00 )

for all A € £2. This implies that

w rq
. X2 (Z°YZ2)2 1. ~ w gt 4
ber' (X £ 1)2) < ber<7 . T) - (o) - (@] ©
O
Taking the Z = I in inequality (5), we have the following result.
Corollary 3 Let X,Y € L(H) be positive operators, and let p > q > 1 with }7 + % =1. Then
X% v?\ 1 » rq
ber'(XgY) < ber(— + —) - = inf ([XW)]* - [Y(A)]I)2
p q p ren
forallr> %.

Corollary 4 Let X,Y € L(H) be positive operators. Then
VZber(X £ Y) < bery(X, Y) < ber? (X2 + Y?).

Proof As in the same arguments in the proof of Theorem 2, if we put r = p = g = 2, then
we get

00| = 5 (R + [T

—~—

< (X200 + Y2(0) = %(x2 +Y2)(0) (Lef).

N =

Since [X(2)]2 > 0, [Y(A)]? > 0, and (X/Z:/Yz)()\) > 0, taking the supremum over A € 2, we
get that

V2ber(X #Y) <bery(X,Y) < ber? (X2 + Yz). O

Proposition 5 Let X, Y,Z € L(H) such that X, Y are positive, and let 117 + é =1. Then

p
X7z

p

R (XK, k) % _(Z*YZE,E)%)2

r
”(Xﬁ Y)Z”ber = ber P wreR

‘ (z*vz)?
q

+ ‘

ber
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forallr> 2.
—q’

Proof Indeed, for every A, u € £2, we have

(X 207, )|

< ||<mx‘7 X7 kxn nm ||

- <XZM,EM>%(Z*YZE,E)§

1 o~ o~ T 1 ~ o~
< —(Xk, k) T + =(Z*YZK,, k)
p q

;(mq,kl)cx —(zYZK, &) ®)® (by (1) and (2))
1, w~ ~ 1, . /PPN
< ;(X T ko k) + q((z YZ)? k., ky)

- (0 R - (Y7 ) ) by @)

1 e~ A~ 1 "~ ~
VST R AR
p( )+ q<( )? ki ks)
Lt (KRR - 2y ZR, B 1Y ©)

p LAES2

so that if we take the supremum over A, 1 € £2 in inequality (6), we get

» v
lecenz), <| 2]+ ” (z¥2)"
p ber q ber
1 . ~ p . ~ o~ 1
- ]_9 M,l/\nefg((kakM) - <Z YZkMk)») ' )2' 0

Remark 6 1t follows from inequality

inf (XK, k)~ (z7vZR, k) )

LAES2

= int (KR ® + (27 K)* —20R, R F (2 12k K] )
T e TR A fn o Ky 2 K

~ o~ 1 ~ o~ 7 ~ ~ .1
> inf (Xk,, ko) 2 + inf(Z°YZhy, &) 2 =2 sup (XK k) © sup(Z*YZky, k)
nes2 ref2 neR reQ

/2 . rq . rq %
=m(X)? +m(Z*'YZ)? =2||Z*YZ| 21X,
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and inequality (6) that

p

o

(z*vz)?
q

[xcenz]y,, < +

ber ber

7 rq 9 »
n0? s mzv2)? —2lzvz) ),

Proposition 7 Let X,Y,Z € L(H) such that X, Y are positive, and let p > q > 1, where

1. 1-1 Then
pq

P 7*YZ)?
(IXllber | 27 YZ] ,,.)? H— +H¥

ber ber

forallr

QIM

—}9(<XZM,/?H)% 2z YZk B) T )

for all A, 1 € £2 and taking supremum over A, . € £2 in the above inequality, we get

(X oo | 2 Y2, ) < H H (z*v2)?
ber ber
S CONAR BN 0

Now, we present the next lemma to obtain our last results.

Lemma 8 ([16]) If f,g : [0,00) —> R are nonnegative continuous such that f(t)g(t) = t
(t € [0,00)), then

|| = (1) (1)«

where X € L(H) and x,y € H.

In the next theorem we show an upper bound for the generalized Euclidean Berezin
number.

Page 6 of 9
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Theorem 9 Let X;,Y;,Z;,€ L(H) (1 <i<n). Then

bert (X1 Z1Y1, ..., X3 Z, Yn)

n-r

Foer (SO s e (7))

2r i=1

1

- (S - oz i) o

i=

where f,g : [0,00) — R are nonnegative continuous such that f(t)g(t) = t (¢ € [0,00)) and
pr>1.

Proof For any k. e H(§2), we have

n
> G zivik, & )P
i=1
n

= Z|(ZiYilA<xyXi/A<,\>|p

i=1

<Y IF(z) Yk | |e(|Z: ) Xik. | (by Lemma 8)
i=1

n

= S NF1Zi) Yoo f (1Z1) Yik) 2 e (|2 )Xo g (1 27 Ko )
i=1

= Y1z ik ko) (G125 ) 2k, )
i=1

= (1) ) ko k)2 (G2 (12 )z ko) by @)

1

= 3| (Gl 0zn) o k) « 50602k k)) | oy o)

‘% (V1212 )26 koo - 1720200 ) )

<~i([ iz e ]>)m>%

- 3 Y02 )X ko) 220 Y Rl

By taking the supremum on /Aq € H with ||IA<A | = 1, we reach the desired inequality. O

Selecting X; =Y; =1 fori=1,2,...,nin Theorem 9, we get the next result.

Page 7 of 9
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Corollary 10 Let Z; € L(H) (1 <i<mn)andr,p > 1. Then

1It—t

-4 p
ber’(Zs, .., Z,) < - berr(Z[f2 1Zil) +g2(|27|)p)

i=1

__Z\/ (| ;| k,\,kx) \/(fzp(lzi|)i<x»i<k>)2’

where f,g : [0,00) — R are nonnegative continuous such that f(t)g(t) = t (¢t € [0, 00)).
In particular, if X,Y € L(H), thenforallp>1and0<v <1

berl(X, ) < %ber(|X|2”1’ [ PPy e PO - inf 5(k)
where
308 = X7k o) — (1 P o))
(P K — ([ K2,
In the last theorem, we show another upper bound for ber, (T}, ..., Ty).

Theorem 11 Let Z; € L(H) (1 <i <n). Then

n

bery(Z1,..., Zy) < %[Z(ber(lziﬁ“ |z P4y =2 inf S(kk)) } ®)

- [lxll=1
i=

where p = 1,0 < v <1, and (k) = (012 POk, ko) - 0ziPrk, Ko

Proof Let k, € H(R2). Then, by using Lemma 8 and inequality (3), we have
> | Ziks k)|
i=1

n
=< Z((IZAz"/Aq,/Aq)%(‘Zﬂ (- kk,kA)%)p (by Lemma 8)
i=1

n

1 vy 1 «|2(0-v) 7 7
= w Z[<|Zi|2 kx,k)\>+<|Z,' |2 ' kx,kx)

i=1

~ Wz P k) - iz k)P Gy 3)

n

= o o+ 12 ko) - Y2k} - Yz ko)) T

1
n » n
(Z‘(Z,-iq,iq)’p) < %[Z(Uzﬂzv + ’Zﬂz(l_u)/?x:/}x)
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1
p
~ Wz Pk k) - Jizik, k)Y
1| < o R 3
=5 | oz + 12k k) - 280k0)”
i=1

If we get the supremum over all k. € H(£2) with IIIAQ | = 1, then we reach the desired re-
sult. O
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