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1 Introduction

Throughout this work, one always supposes that C is a nonempty convex set in a Banach
space X whose dual is denoted by X*. One denotes by the same notation, || - ||, the norms of
X and X*. A common problem in machine learning, automatic control, and utility-based
bandwidth allocation problems consists of finding a solution of some equation satisfying
some constraints. This common problem is called the convex feasibility problem, which

can be characterized via the following model: x € [),_; C;, where I denotes some index set,

iel
C; is a convex set in X.

Next, one employs J, : X — 2X" where q > 1 is real number, to denote the duality
mapping, which is defined by J,(x) := {¢ € X* : (x,¢) = [|x[|% [|x]|7" = [|p|l}, Vx € X. Let
Aj1,A; : C — X be two nonlinear non-self mappings. Consider the problem of finding

(x*,9*) € C x C such that

(x* —y* + A1y, J(x —x%) >0, VxeC,
(0 —&* + paAox™,J(x —y*)) >0, VxeC,

(1.1)
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with two positive real constants p; and p,. This is called a system of generalized varia-
tional inequalities (SGVIs). This is a natural extension of the generalized variational in-
equality considered by Aoyama, liduka and Takahashi [1] in uniformly convex and 2-
uniformly smooth Banach spaces; see [1] for more details. In Hilbert spaces, the system
is reduced to the system of variational inequalities considered by Ceng et al. [2]. Prob-
lem (1.1) and its special cases are now under the spotlight of research because of their
connections to other real convex and set optimization problems; see, e.g., [3—8] and the
references therein. Recently, a fixed point method has been studied for solving convex
and non-convex optimization problems since the equivalence between fixed point prob-
lems and zero point problems; see, e.g., [9-13] and the references therein. Indeed, one
can transfer zero point problems (inclusion problems) to some fixed point problem of
nonexpansive operators. The core is the resolvent of original operators. For example, one
can show that the resolvent operator of m-accretive or maximally accretive operators is
nonexpansive. Hence, Mann-like algorithms are applicable, however, they are only weakly
convergent. Strong convergence is desirable in lots of situations, such as, image recovery,
optimal control and quantum physics since they are in infinite-dimensional spaces. In this
paper, we study, in the framework of Banach spaces, a convex feasibility problem with the
constraints of the generalized system of monotone variational inequalities, a variational
inclusion and a countable family of nonexpansive operators. Strong convergence theo-
rems are obtained without any compact assumption on operators. Our rule is based on
the Korpelevich extragradient method, the perturbation mapping, and the W-mappings
constructed by {S,,}52,. The main results extend and improve some recent results in [14—
17].

2 Preliminaries

Next, one uses py : [0,00) — [0, 00) to stand for the smoothness modulus of space X which
is defined by px(£) = sup{(|lx + y|| + lx = y])/2 - 1 :x € U, ||y|| < t}. One says that X is uni-
formly smooth if lim;_, o+ px(£)/t = 0. Let g € (1,2] be a fixed real number. A Banach space
X is said to be g-uniformly smooth if px(t) < t?d, Vt > 0, where d is some constant. It is
well known that Hilbert spaces, L and ¢, are uniformly smooth where p > 1. More pre-
cisely, each Hilbert space is 2-uniformly smooth, while L” and ¢, are min{p, 2}-uniformly
smooth for each p > 1.

Let A : C — 2% be a set-valued operator with Ax # ¢, Vx € C. An operator A is said to
be accretive if, Vx,y € C, (4 —v,j,(x —¥)) = 0, Yu € Ax, v € Ay, where j,(x — y) € J;(x — ).
A single-valued accretive operator A is said to be a-inverse-strongly accretive of order g if,
Vx,y € C, there exist o« > 0 and j;(x —y) € J,(x—y) such that (u—v,j,(x —y)) > a|Ax—Ay||4,
Yu € Ax, v € Ay. Back to Hilbert spaces, A is called the inverse-strongly monotone. This
class of mappings is a key component in projection-based approximation methods; see,
e.g., [18-22]. An accretive operator A is said to be m-accretive if and only if A is accretive
and satisfies the range condition: (I + AA)C = X for all A > 0. For an accretive operator A,
we define the mapping /4 : (1 + A)C — CbyJ& = (I+1A)~! for each A > 0. Such /¢ is called
the resolvent of A; see, e.g., [23—25] and the references therein. Recall now that a single-
valued mapping F : C — X is called n-strongly accretive if (Fx — Fy,j(x — y)) > nllx — y||?
for some 1 € (0,1) and j(x—y) € J(x—y). Moreover, F is called & -strictly pseudocontractive
if, Va,y € C, (Fx — Fy,j(x —y)) < |lx — y||> = &|lx — y — (Fx — Fy)||? for some & € (0,1), where
jox—y) €J(x~y).
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Let F: C — X be a mapping. Then (i) if F: C — X is n-strongly accretive and & -strictly
pseudocontractive with n +& > 1, then I - F is nonexpansive, and F is Lipschitz continuous
with constant 1 + é; (ii) if F : C — X is n-strongly accretive and &-strictly pseudocontrac-
tive with n + £ > 1, then, for any fixed 7 € (0,1), I — tF is a contraction with constant
1-7(1- \/lgj)

From now on, one employs [T to denote a mapping from C onto its subset D. One says
that I7 is sunny if, whenever IT(x) + t(x— I1(x)) € Cforx € C, I[T[I1 (x) + t(x— 1 (x))] = I1(x).
A mapping IT defined on C is called a retraction if IT = IT2. One says that subset D is a
sunny nonexpansive retract of the set C if there exists a sunny nonexpansive retraction
from C onto D.

Let {S,};°, be a countable family of nonexpansive mappings defined on C, which is a
convex and closed subset of a strictly convex Banach space, and let {£,}:°, be a sequence

in [0, 1]. For any n > 0, define a mapping W, : C — C as follows:

Unpi1 =1,
U = EnSullnnir + (1= ),
2.1)
Upr = 0S1Uyp + (1= 81)1,
Wi = Upo = LoSolu + (1= o)l

Lemma 2.1 ([25,26]) Supposethat{S,}.2, is a countable family of nonexpansive mappings
defined on a subset C of a strictly convex space X. Suppose that (-, Fix(S,) # 0, and {£,}52,
is a real sequence such that 0< ¢, <b<1,VYn>0. Then
(i) W, is nonexpansive and Fix(W,,) = (., Fix(S;), Vi > 0;
(ii) the limit lim,_, o U, yx exists for all x € C and k > 0;
(ili) the mapping W : C — C defined by Wx :=lim,,_, oo W = lim,,—, oo U, 0%, Vx € C, is
a nonexpansive mapping satisfying Fix(W) = (2, Fix(S,) and it is called the
W-mapping. If D is any bounded subset of C, then lim,,_, o sup,p || Wx — Wx| = 0.

For our main strong convergence theorems, the following tools are also needed.

Lemma 2.2 ([27]) Let X be smooth, D be a nonempty subset of C and I1 be a retraction of
C onto D. Then the following are equivalent: (i) IT is sunny and nonexpansive; (ii) || 11 (x) —
Iy)|* < (x-y,JUT(x) - [1(y))), Vx,y € C; (iii) (x— [T(x),/(y - [1(x))) <0,Vx € C,y € D.

Lemma 2.3 ([28]) Letq € (1,2] a given real number and let X be q-uniformly smooth. Then
e+ 3017 < g, Jg (%) + %19+ k4119, ¥, ¥ € X, where K, is the q-uniformly smooth constant
of X. For any given x,y € X, one has ||x + y|7 < ||| + gy, j,(x + 9)), Vig(x + y) € Jo(x + y).

Lemma 2.4 ([28, 29]) Let X be a uniformly convex and q-uniformly, where 1 < g < 2,
smooth Banach space. Let A : C — X be an a-inverse-strongly accretive mapping of or-
der q and B : C — 2X be an m-accretive operator. In the sequel, we will use the notation
T := ]f(] —AA) = (I + AB)™Y(I = MA), YA > 0. The following statements hold:
(i) the resolvent identity: Jyx =], (5% + (1 = £)J,x), VA, 10 > 0, x € X;
(ii) ifJ2 is a resolvent of A for ) > 0, then J& is a single-valued nonexpansive mapping
with Fix(J{) = A710, where A™10 = {x € C: 0 € Ax};
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(iii) Fix(Ty) = (A + B)~10, VA > 0;

(iv) lx— Tox|| <2|lx— Tex|| for 0 < X <sand x € X;

V) 1 Tox = Toyll < llx=yli;

(vi) [T = 2A)x = (I = 2AWII? < [l - yl|7 = Aga — kA9 |Ax — Ay||9, ¥,y € C. In

L . .
particular, if 0 < X < (%)q-1 , then I — MA is nonexpansive.

Lemma 2.5 ([30]) Let T : C — C be nonexpansive with Fix(T) # ¥, and let f : C — C be
a fixed contraction mapping, where C is convex and closed set in a real reflexive Banach
space with the uniformly Gdteaux differentiable norm and the normal structure. Let z; € C,
where t € (0, 1), be the unique fixed point of the contraction C > z+> (1 -t)Tz + tf(z) on C,
that is, z, = (1 — t) Tz, + tf (z,). Then {z;} converges to x* € Fix(T) in norm. This convergent
point also solves {(f — )x*,](p — x*)) <0, Vp € Fix(T).

Lemma 2.6 ([14]) Suppose that I is a sunny nonexpansive retraction from a q-uniformly
smooth X onto its convex closed subset C. Let the mapping A; : C — X be a;-inverse-strongly
accretive of order q for i = 1,2. Let the mapping G : C — C be defined as Gx := I1c(I —
AN — pyAy), Vx e C. IfO < u; < (%")q%1 fori=1,2,then G: C — C is a Lipschitz
mapping. More precisely, it is nonexpansive. Let A1, A, : C — X be two nonlinear mappings.
For given (x*,y*) € C x C, (x*,y*) is a solution of SVIs (1.1) iff x* = M c(y* — n1A1y*), where
y* = Hc(x™ — uaArx™).

Lemma 2.7 ([31]) Let {a,} be a sequence defined by a,,1 < yurn + an(l — Ay), Yn > 0,
where {A,} and {y,} are sequences of real numbers such that (i) limsup,_, . y» < 0 or
> o 1Anyul < 00; (i) {An} C [0,1] and Y02y Ay = 00. Then lim,_, « a, = 0.

Lemma 2.8 ([28]) Let B, ={x € X : ||x|| <r}, r >0, where X is a uniformly convex Banach
space. Then there exists a continuous, strictly increasing and convex function g : [0,00) —
[0,00), g(0) = O such that, with p > 1,

af B+ BPa
lloex + By + yz” + ﬁg(llx—yll) <alxl” +Blyl” +ylzl”

forallx,y,z€ B, and o, B,y € [0, 1] witha + B +y = 1.

Lemma 2.9 ([32]) Suppose that {x,)} is a sequence defined by x,,,1 = ayx, + (1 — )y, Vi >
0, where {y,} is bounded sequences in Banach space X and let {c,} be a real sequence such
that 0 < liminf,_, o0, < limsup,,_, . o, < L. Iflimsup,,_, oo (1¥n+1 — Yull = 1%ne1 — %ull) <0,
then lim,,_, o ||y, — %,| = 0.

3 Iterative algorithms and convergence criteria

Theorem 3.1 Let X be a both uniformly convex and q-uniformly smooth space with 1 < q <
2 and let B: C — 2X be an m-accretive operator. Let A; : C — X be an a;-inverse-strongly
accretive operator of order q for each i = 1,2 and A : C — X be an a-inverse-strongly ac-
cretive of order q. Assume that 2 = ()~ Fix(S,) N SVI(C,A1,A2) N (A + B)™0 # i, where
SVI(C, A1, A,) is the fixed point set of G := Ic(I — 1 A1) (I — poAs) with 0 < p; < (%")q%l
fori=1,2. Let f : C — C be a §-contraction with constant § € (0,1) and let F : C — X be



Ceng and Shang Journal of Inequalities and Applications (2020) 2020:33

n-strongly accretive and &-strictly pseudocontractive with n + & > 1. For arbitrarily given
x0 € C, let {x,} be a sequence generated by

vy =1IIc(I - UIAI)HC(yn - ﬂ2A2yn),
yn = IB Xn + )/an(I - GnF)(tnxn + (1 - tn)WnVn) + anf(yn): (31)
Xn+l = Snxn + (1 - 6;1)])?” (yn - )\nAyn); n= o,

where I is the sunny nonexpansive retraction from X onto C, {W,,} is the sequence defined
by (21), (i} € (0,(2)71), {03} C [0,1) and (e}, (B, (vl 8.}, ) € (0,1) satisfy the
following conditions:
(i) au+Butyn=17Y gty =00 andlim,_ ay, = 0;
(i) lim, o0 Z_Z =0, limy, 00 [V = Vuo1| = 0 and limy, o0 | By = Bu-1| = 0
(iif) limy— oo |ty — tyu—1| = 0, limsup,_, o Yulu(l —t,) < 1 and liminf,_, o, y,(1 - t,) > 0;
(iv) liminf,_, o Bnyy > 0, limsup,,_, . 8, < 1 and lirln inf,_ 0 6, > 0;
(v) 0<A <A, Vn=0andlim, oo A, =A< (%)F.
Then x, — x* € §2, which is a unique solution to the generalized variational inequality
(GVD) (I -f)x*,J(x* = p)) <0, Vp € 2.

Proof Put u, = I1c(y, — 12A2y,). It is easy to see that scheme (3.1) can be rewritten as

Y = BuXn + YudIc — 0, F) (£, + (1 - tn)WnGyn) + Olnf()/n),

Xn+l = (Snxn + (1 - (Sn)Tnynr n= O)

(3.2)

where T}, ::]fn (I-2r,A). Fromn+£& > 1,{o,} C [0,1), oneasserts that [Tc(I-o0,F):C— C
is a nonexpansive mapping for each n > 0. Because of the situation o, + 8, + ¥, = 1, one

knows that
a8+ V(L =) + B+ Vutn =8+ Yu+ Bp=1-0,(1-8) Vn=>0.

One now shows that the sequence {x,,} generated by (3.2) is well defined. Define a mapping
F,:C— Cby F,(x) = Bux, + YuI[Ic( — 0,F)(t,x, + (1 - £,)W,Gx) + a,,f (x), Yx € C. Then
”Fn(x) - Fn(y)” =Vn ”HC(I - GnF)(tnxn +(1- tn)WnGx)
— (I = 0,F)(tuxn + (1 - t,) W, Gy) |

+ o) = £ )|
< yu(1 =) |W,Gx — W,,Gy|l + o,8]|x = ||

< (1-a,(1-8)lx-yl.

This guarantees the result that F,, is a contraction mapping. Hence there is a unique fixed
point y, € C satisfying

Yn = Brxn + ]/nHC(I —0,F) ((1 - tn)WnGyn + tnxn) + arlf(yn)'

One next divides the rest of the proof into several steps.

Page 5 of 19



Ceng and Shang Journal of Inequalities and Applications (2020) 2020:33

Step 1. Show that {x,} is bounded.

From {A,} C (0, (%)ﬁ), one observes that T, : C — C is a nonexpansive mapping for
each n > 0. Take a fixed p € 2 =2, Fix(S,) N SVI(C,A1,A,) N (A + B)7'0 arbitrarily.
From Lemmas 2.4 and 2.6, we know that W,p = p, Gp = p and T,,p = p. Moreover, using
the nonexpansivity of W, and G yields

19 = pIl < Bulln =PIl + V| T = 0F) (tnn + (1 = £) Wy Gyy) — M - 0, F)p |
+ | et = 0,F)p = p| + e(|[f o) = f @) + |F®) - )
< Bullxu = pll + au(8llyn = pll + [f () = ) + Vul tullu - P
+ (1 - 1) | W Gyn - pll |
+ Va0u | Fpl|

< (Bu + Yutu) I — pll + Hf([’) —}7” +oulEpl + (an5 +yu(l - tn))”yn -pl,
which hence implies that

Olan(Iﬂ) -pl+oullEpll 1- (08 + yu(1 - t,)) — (1 -6)
lyn —pll < +
1- (ana + Vn(l - tn)) 1- (an(S + yn(l - tn))

l%n —pll. (3.3)

Since lim,,_, o (‘;—Z = 0, one may suppose g, < «,. Thus, from (3.2), (3.3) and the nonexpan-
sivity of T, we find that

”xn+l —P|| = 8n||xn —P|| + (1 - ‘Sn)”Tnyn —17||
< Sullxn —pll + @ =8 llyn - pll

ssnnxn—pnul—an){(l— (1 =8) )nxn—pn
1- (05;15 + Vn(l - tn))

. aullf (p) = pll + aull Epll }
1 —(nd + yu(1 - t,))
[y 1-8)a-9)
= [ @i _tn))an]”xn -2l
(1-4,)(1-9) If ) - pll + I Epl
oy
1_(an8+yn(1_tn)) 1-6

< max { LGRS KL - }

It immediately follows that {x,} is a bounded vector in set C.
Step 2. One shows that ||x,,; — x,|| = 0 as n — oo.
Indeed,

Zy —Zp-1 = (tn - tn—l)(xn—l - Wn—len—l) + (1 - tn)(WnGyn - Wn—l Gyn—l)

+ tn(xn - xn—l)

Page 6 of 19
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and

Yn—Yn-1= (an - an—l)f(yn—l) + ﬂn(xn _xn—l) + an(f(yn) _f(yn—l))
+(Bn = Bu-1)%n-1 + ¥ (HC(] —0uF)zy — (I - Un—lF)Zn—l)

+ (Yu = V-0 = 0,1 F)zy1. (3.4)
Utilizing Lemmas 2.1 and 2.4 yields
” Tnyn - Tn—lyn—l ”
SN Twyn = Tuyu-1ll + 1 Twyn-1 = Tp-1yu-1ll

< 72T =2uA)ynr = T7 T = 2nA)yr | + 19 = Yuca |
+ ”]fn—l (I - )\nA)yn—l _]le (1 - )"n—lA)yn—l ||

Ay A

_]fml (1 - )‘-nA)yn—l

= ”yn _yn—IH +

+ |12 T = 2uA)ynr =T (T = hn1 A)ynca |

)Ln—l

<
= x,

1-

72 T = 20A)yn-1 = (= 2wyt | + 1y = Yucr

+ A = Ap1| [|AYn-
< |Au = Apa My + Y0 = Yualls (3.5)
where sup,_ {31172 (I = 24 A)yu-1 = (I = 24A)yur | + I|Ay,1 |} < My for some M, > 0. Also,
it follows from the nonexpansivity of I1¢ and (I — ¢,,F) that
|AcU - 0,F)z, — (I - 041 F)zp |
< | el - 04F)z, = Ol = 6,F)z,1 || + | Tl = 04F)zn1 — eI = 041 F)zp |
<llzn = zn-1ll + |0y — Ou-1 |1 Fz1 |l
< tull®n = xpall + 180 = ol 101 = W1 GYu1 |l
+ (1= t)IWnGyn — W1 Gypa |l + |00 — 01 || Fzna |l
< bull%y = Xpa |l + 180 = Lua | 1%0-1 = W1 Gy |l

+ (1= t)[ 170 = Yn-1ll + | WGyt = W1 Gyt ll] + 10w — 0t || Fzn-r |l

This together with (3.4) guarantees

190 = Yt ll < @udlyn = Yt ll + letn = et | [f Gne1) | + Bullotn = o
+ 180 = Buca o Il + Vo bl = % 1| + 1 = b 101 = W1 Gyt |
+ (1= t)[ 190 = Yna Il + | W GYno1 = W1 Gy |l
+10% = On-1 || Fzn-1 ]|}

+ ¥n = Yuorl | T = 051 F)zya |
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= (an8 +yu(1 - tn))”yn = Y1l + (Bu + Yulw) %0 — %1 || + (|an — 0y
+1Bn = Bu-1l + [V = Vual + |ow — 01| + |E, - tn—ll)MZ

+ ”WnGyn—l - Wn—len—lll;

where sup,o { %Il + If ) Il + I WuGyull + | Ez, || + 1 TTc( = 0, F)z, ||} < M, for some M; > 0.
Then

Bn + Vulu
1- (Ol,,(s + Vn(l - tn))
1
+
1- (an8 + yn(l - tn))

+ |yn - yn—1| + |Gn - Gn—ll + |tn - tn—1|)M2 + ”WnGyn—l - Wn—len—l ”]

1 o,(1-36)
( ‘1—uu5+%41—a»>mw‘x“”

1
T (and + a1 = 1))

lyn = yn-1ll < [EE Y|

[(|an - an—l| + |ﬁn - ﬁn—l|

[(|an - an—1| + |ﬂn - ﬂn—1|

+ |Vn - Vn—1| + |Gn - Un—ll + |tn - tn—1|)M2 + ”WnGyn—l - Wn—len—ln]

=< ll%n = xp-1ll
1
+
1- (an8 + yn(l - tn))
+ |0y = opa| + [t — tn—1|)M2 + W, Gyp1 - Wn—len—l”];

[(|an - an—l| + |ﬁn - ﬁn—l' + |7/n - Vn—ll

which together with (3.5) asserts that

1
(00p8 + yu(1 =)

+ Vi = Vu-1l + |00 = Op1| + |8 — tn—1|)M2

” Tnyn - Tn—lyn—l ” - ”xn —Xp-1 ” =< 1- [(lan - an—1| + |,3n - ,Bn—l|

+ |WuGYu1 — Wn—len—IH] + Ay = Ap1 M.

Since limy,—. o SUP,cp | Wit — Wx|| = 0 on bounded subset D = {Gy, : n > 0} of C, one
knows that

lim ” WnGyn—l - Wn—len—l ” =0.
n—00

Note that lim,,_, o @, = 0, lim,,_, Z—Z =0, lim,, 00 A, = A and liminf,_, o (1 — (@, + y,(1 -

t,))) > 0. Thus, from |8, — Bu-1| = 0, |¥n — ¥u-1] — O and |t, — t,_1| — 0 as n — oo (due to
conditions (ii), (iii)), we get

lim sup (1| Ty = Tp-19n-1 ]l = 1% = %51 1) < 0.
n—00

So it follows from condition (iv) and Lemma 2.9 that lim,,—, || T,y — %, || = 0. Hence

lim |1 = %l = lim (1 = 8,) | Ty — x| = 0. (3.6)
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Step 3. One shows that ||x, —y,|| — 0and |x, — Gx,|| — 0asn — oco.Indeed, for simplicity,
set p:= I1c(I — waAs)p. Note that u,, = Ic(I — upAs)y, and v, = (I — w1A1)u,. Then
vy, = Gy,. An application of Lemma 2.4 yields

s =PI < || = 12A2)yn — (I = p2As)p |

< llyn = I = 2 (g2 = kg5 ") 142y, = Aspl|”. (37)
One also has
v =17 < lltn — PUT = 1 (qon — kgud ™) 1A, — Asp)7. (3.8)
By using (3.7) and (3.8), one reaches

v =PI < llyn =PI = 122 (qeta — kg™ )1 A2y — Aopl?

— i (qon — kgt ) A, — Arpl|9. (3.9)

Equations (3.2) and (3.9) further guarantee that ||z, — p||? < t,|lx, — pll? + (1 — t)||ve — pll4

and
|7 - 04F)zs —p|" < 20— p — 0uFzal?
< |lzu = PI? = qou(Fzn J4(2n — p — 04Fz))
< llzx —P||q + g0, Fzullllzn —p — O’,,FZ,,H‘FI.
Thus

lyn = pll
< Bullxn =PI + yu| Il = 0,F)z, = p||* + qulf ) = p. Ty = P))
+aa|[f o) —f )|
< Bulltn =PI + V[ 124 = I + qOull 2120 — p ~ 0 F2al| ]
+qaulf(B) = 2Ty = D)) + [ f ) = F ()|
< Bulltn =PI + @817 = PIT + Via[tall2n = PIT + (1= ) [V — I
+ q0ul|Fz |20 — p — 0uFzull "] + qon | f 0) = || Iy — 117
< (Bu + Vulu) %0 = pII? + u8 |1y — PN + yu(1 = t)[Ilyn — 2II?
— ta(qors — kqutd ) [ Asyn — Aopll? — pr (qon — gt 1A vy — A1p|17]

+ qoullFzullllzn — p — 04 Fzu| T + qoa | f (0) = p|| Il — P17,

which immediately yields

IIJ’n—PIIq§<1— @,(1-3) ) yall = )

1_(an8+yn(1_tn)) - 1—(and + Vn(l_tn))

x [12(qoes = 1) | Aoy = Aopll? + 111 (qer — i) | Aria, — Arp1|7]
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+ %
1—(and + yn(l —ty)

+ @) - p|llyn - pl7].

[”an” lzw—p— O'nFZn”q_l

On the other hand, (3.2) implies

%41 = pII?

= (L=8)llyn =PI + Sullxn — plI?

an(l _8)
< Sullxn —pll? + (1 —5n){ (1 T @ —tn))> % = pII?

_ Vn(l - tn)
1— (a8 + yu(1-1t,))

x [12(qets = kgi Y1 Azyn — Aopl® + 111 (qor — kgid ™) 1 Arus, — A1pl17]

qoy, o q-1 _ _ g1
+1_(%5+yﬂ(1_tn))[||an||||zn p=0uFza| T+ |[f @) - P lyn Pl ]}

_<1_ an(l_‘sn)(l_(s) )”x _ ”q_ Vn(l_(sn)(l_tn)
- 1 (@b +yu(l-t)) )" 1 — (ot + yu(1 — t,))

X | Aoy — Aapll? + 11 (qon — gt ™) 1A 1, — A1 pI|]

q(l_an)an o q-1 _ _ q-1
T s 1 (1 =) Wzl =p =0+ 1) = pl Iy —p 1]

(1 - 8n)yn(1 - tn)

[1a(gaz — iequed™)

<%, —pll? - — kgt I Asyn — Apll?
<%, - pll 1—(an6+yn(1—tn))[“2(qa2 kgita )Azyn — Aspll
+ 11 (qen — i) | Avue, — ArpIlT] + uMs, (3.10)
where
q(l_(sn) —1 —1
F. —p—0,Fz,|7 - —pli 1t <M
i‘i‘é{l—wnawnu—tn))[” Zullllz = p = onF2z |1 + () = P10 = 1" ] ¢ = Ms

for some M3 > 0. So it follows from (3.10) that

(1-8,)ya(1-t,)
1- (an‘s + Vn(l - tn))

+ pa(qon - quilli_l) Avet, — Arpll?]

[2(qers — keged ) 1Ay, — Aopl?

< ll%n = pI9 = %41 — pII? + @, M3

-1
< qllxn = %ne1ll %041 —P||q + Kq”xn = %1 | + M.

1
Thanks to 0 < u; < (%")ﬂ fori=1,2,liminf,_, o y,(1 - ¢t,) >0, liminf,_, ,.(1-4,) >0 and

lim,,_, o @, = 0, one asserts

lim |Ayy, —Azp| =0 and lim ||Aju, — A1p|l =0. (3.11)
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This further implies

ity = PII* < (I = p2A2)yn — (I = p2A2)p, J (1t — D))
= (yn =) (n — D)) + 12{Aop — Asyn, ] (un — D))
< uallAzp — Asyullllun - Pl

1
+ E[Hyn =pI* + llun = 21> = &1 (|yn —un — 0 -D)|)],

from which one concludes

lttn = PI* < 1y = pI* = &1 (|70 = tn = 0 = P)||) + 200211 A2p — Ayl |4 - PI-

One also derives that

Vi =pI1? <ty = PI* = &2(||ttn = v + 0 = D)) + 201141 = Avua [l |V — P

Employing (3.12) and (3.13), one arrives at

Ve =22 < llyn =21 = g1 (|9n =t = 0 = D)) = &(|ttn = va + (0= D))

+ 2| Asp — Asyullllten = pIl + 211 |A1p — Aruyl[[ve - pll.-

Utilizing Lemma 2.8, we obtain from (3.2) and (3.14)

”Zn —P||2 = tn”xn —P||2 + (1 - tn)”WnGyn —P||2 - tn(l - tn)gfi(”xn - WnGyn”)

< tulltn = pI* + (L= ) l1ve = pII* = (1 = £,)g3(I1xn — WoGyall),

and hence

Iy =21 < Bulltn = pI? + 0 f3) ~f @) + ¥u| el - 0uF)zn - p|*

= Buvuga(|#n = T = 0,F)z4 ) + 2au{f () — p,] (s — P))

< Bullxn = pI* + 08 1yn = pI> + Vu[tulltn — pI* + (1 = ) v - pII?
— tu(1 = t)gs (%0 = W Gyall) + 2001|2120 — p — 0uFzall]
+ 20, [ £ () = p|| 19 = Il = Buvuga(|%n = Ml — 0,F)z4]))

< Bulltn = pII* + @811y = PI? + vu{tullxn = pII? + (1= £)[ Iy — pII>
~&i([yn—un~ 0~ D)) - &1t = vi + 0~ D))
+ 2142 [|Asp — Agynllltn — Bl + 201 1415 = Avtt [V = pll]
— t,(1 = g3 (%0 — W Gyall) + 200 Ezull 120 — p - 02l }
+ 20 |[f ) = || 1y =PIl = Buyuga (]| a — M - 0,F)z )

< (Bu + Vutw) %0 =PI + (0 + vu(1 = 1))y — pII?
~ 7@ = t)[@1(|yn - 1n = - D)) + &2t = vu + 0 - P[]

(3.12)

(3.13)

(3.14)

Page 11 0of 19
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+ 20| Asp — Asyullltt — Il + 201 |1 A1p — Aru v — pl
+ 20, | Ezullllzn — p — 0uFz |l + 20| f () = p|| 17 - P

— Yutn(1 - tn)g3(||xn - WnGyn”) - ﬁn)’ngél(“xn - Ic( -0,F)z,

),

which immediately yields

1-9)
ot <(1- oy ( 2
Iy~ _( 1—(a,,a+y,,(1—t,,>)>”"” Pl

(1= t,) )
) a0

+@([un—va+ (0-D)|)]
v 2 [
1- (Olrz‘S + Vn(l - tn))
+ pallArp — Arug |1V — pll + aullFzu |2 — p — 0nFz4l|
+au|[f (@) = || lyn - plI]
1

1 (@b + (- t)
+ Buynga(||%n — M - 04F)z4)]-

mallAsp — Asyullllun — Pl

[Vntn(l - tn)g?)(”xn - WnGyn”)

This guarantees

1-34)
n+l — 2<8n n 2 1-6,, 1— Oln( " — 2
%1 = pII” < Sullxn — pII” + ( ){ s+ - Il — I

_ Va1 —t,)
1 — (0u8 + yu(1 - )
+&([|tn = v+ (0 - D)
2
+
1- (an8 + yn(l - tn))
+ p1llArp = Arunllllve = Pl

[1(|yn —un - 0~ D))
)]

[1allAap = Asyulllle, - Pl

+ &l Fzulll 20 = p — 0uFzull + o | f(0) = || 170 — PII]
_ 1
1- (05;18 + Vn(l - tn))

X [Vntn(]- - tn)gs(”xn - WnGyn”) + ﬂnyng4(||xn ~Ic( - 0,F)zy ||)]}

a,(1-46,)(1-9) 2
<1‘ 1 (ond + yn(l—m))""”_’” |

1-6,
1= (b + yu(1 - 1)
+g2(||un -Vt (p _[_9)”)) + Yutn(1 - tn)g?)(”xn - WnGyn”)

+ ﬂnyng4(||xn —IIc(I - 0,F)z, ||)]
2
* 1 —(u8 + yu(l = t,)) [

IA

[va (=) (& (yn = n - 0 - D))

m2llAzp — Asyullllun - pll
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+ pllAwp — Avn |1V = pll + anllEzull 120 — p — 0 Fzy|l

+au|[f (@) = p||lyn - plI]

1-4, )
sy = el —w - -p)

+g2(||un -+ (p —1_9)“)) + Yutn(1 - tn)g?:(”xn - WnGyn”)
+ ,Bnyngél(”xn —Ic(I-0,F)z, ”)]

2
< % —pII” -

+ Ap-A —p
Ay el - Aol ~ 1
+ lAsp = Avital 1V =PIl + [Pzl — p

~ 0uFzull + o |[f ) = p[ Iy~ PII],
which immediately yields

1-4,
1—(aud + yu(1-t,))

+ Yntn(1 - tn)gﬁ’(”xn - WnGyn”) + ﬁn)’ngéL(Hxn —Ic(I-0,F)z, ”)]

[ =t (& ([ = s = 0 =P)) + &2 = v + (0= P)]))

< 1% = pI* = %001 = pI* + w2llAop = Asyullllun - pl|

1- (O(n8 + yn(l - tn)) [
+ w1 llA1p — Ay |1V = Pl + il Fzall |20 — p = 05 Fzull + | f(0) = p| Iy — Pl

< (In =PIl + %41 = Pl %0 = X

+ Asp — Asyulllltn — P
iy el - Al - B

+ i Asp = Avsn || [V = pll + @l E2u |12 = p = 0uFzal + [ 0) = 2| 19 — p1I].
Utilizing (3.6) and (3.11), we asserts from liminf,_, o (1 — 8,) > 0, liminf,_, o Y, t,(1 - £,) >
0 and liminfy,_ o0 B ¥x > 0 that lim,—co g1 (¥4 — 4y — (p — P)II) = 0, limy, 00 @2 (|4 — Vi +
(- =0, lim,, o0 g3(|l% = W, Gyull) = 0 and lim,,,  ga(llx, — [Tc( - 0,,F)zy|)) = 0. So,
lim,— ”yn —Up — (19 _i))” =lim, o |ty — vy + (p _1_7)” =0and
lim ||x, — W, Gy,|l = lim |x, — [Tc( - 0,F)z, | =0. (3.15)
n—0Q n— 00

Furthermore, one has

19n = Gyull = 1y = vall

<|lyn=tta=@-D)| + |t -vi+ @-D)| >0 (n— ). (3.16)

Since y,, — %, = o, (f (¥4) — %) + yu(I1c( — 0,F)z, — %), we see from (3.15) that ||y, — x| <
(I — 06,F)zy — x4 + ayllxn —fu)ll = 0 (n — 00). With the aid of (3.16), one asserts

%0 = Gxull < %0 = yull + 170 = GYull + 11GYn — Gl

<200 = yull + Iy — Gyull = 0 (1 — 00). (3.17)



Ceng and Shang Journal of Inequalities and Applications (2020) 2020:33 Page 14 of 19

Step 4. One shows that ||x, — Wx,|| — 0, ||x, — T)x,|| = 0 and ||x, — ['x,|| = 0 as n — oo,
where Wx =lim,,_, oo Wy, Vx € C, T}, :]f(l —AM)and 'x =0, Wx + 0,Gx + 63T, x, Vx € C
for constants 61, 6,,0; € (0,1) satisfying 6; + 6, + 63 = 1. Indeed, utilizing (3.15) and (3.17),
one deduces that
Wy, — x|l < |Wxy = WGy || + | WG, — W, Goxy || + | WG, — WGyl
+ WnGyn — %l
<%y — Gxull + | WGx,, — WGy || + 1%y _yn”
+ | WGy, —x4|| > 0 (n— 00). (3.18)

Furthermore, since x,,,1 — %, + %, = ¥, = 8, (%, — ) + (1 = 8, )T}y — ¥), from x,, — 2,1 — O
and x,, — y, — 0, we have

1
1 Ty = yull = 1-s. ”xn+1 =% + (1 = 8,) (0 _yn)“

K1 — Xl + |2, —
< ey =Xl + [l = yull

< =5, 0 (n— 00).

Also, utilizing similar arguments to those of (3.5), we obtain

1 Tuyn = Thyull <

A
1- A—’IIIEM(I—AHA)% = (I = 2] + 2 = 2114l
n
A
= ‘1 - ;‘!! Ty = I = 2n)3i | + A = 21| A7l
n

Since lim,_, » A, = A and the sequences {y,}, {T,,y.}, {Ay.} are bounded, we get
lim (| Ty, = Toyall = 0. (3.19)
n—00
Taking into account condition (v), i.e, 0 < A < A,, Yz > 0 and lim,_, A, = A, where
Kk A171 < gor, we know that 0 < k,A7! < kA% < gar. So Fix(T;) = (A + B)'0and T3 : C —

C is nonexpansive. Therefore, we infer from (3.19) and x,, — y,, — 0 that

1 Toxn — xnll < N T = Toyull + 1 Toyn = Tyl + 1 Tuyn = Yull + 1|yn — %l

=< 2||xn _yn” + ”TAyn - Tnyn” + ”Tnyn _yn” —0 (l’l - OO) (3-20)

One now defines the mapping I'x = 0, Wx + 6,Gx + 63T,x, Vx € C with constants

01,6,,03 € (0,1) satisfying 6; + 6, + 63 = 1. One gets Fix(I") = Fix(W) N Fix(G) N
Fix(T,) = £2. Observe that

1%, = xull < O1lln — Wiy || + 02l — Gy || + O30, — Trox . (3.21)

From (3.17), (3.18), (3.20) and (3.21), one gets

lim ||I"x, —x,|| = 0. (3.22)
n— 00
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Step 5. Letting x, is the unique fixed point of x > (1 — £)'x + tf (x) for each t € (0, 1), one
shows that

lim sup(f(x*) - x*,](x,, - x*)> <0, (3.23)

n—o0

where x* = s-1im,_, » x;. By Lemmas 2.3 and 2.5, one asserts

llocy — 211> < 28(f (%) — %, T (0 = %)) + (1 = )| Tx, — ]|
< T % = %ull)® + 26{f () — 20, (% — %)) + (1= 8)* (| T = Tt
< (1 =28+ 8) loee — 20ull® + £ (2) + 26{f (o0) — %0, T (360 — %)

+ 2t |, — x|, (3.24)
where
Su®) = @ = 0)* [y = Txull (2015 = %4l + 1% — Txall) = 0 (1 — 00). (3.25)

It follows from (3.24) that

2o = f (), T (o6 — 26)) < £l — %l +f"—§t)- (3.26)

Letting n — oo and employing (3.25), one derives

2lim sup(w, —f (x,),] (% — %)) < tMa, (3.27)

n—0o0

where sup{||x, — x,]* : £ € (0,1) and n > 0} < M, for some M, > 0. Taking t — 0 in (3.27),

we have

limsup lim sup<xt —f (o), J (xe — xn)) =<0.

t—0 n—00

On the other hand, we have

(f(x*) = a*, J (%0 — ™))
= (") =& T (0 = 7)) = (f (67) = 7, T (o — 01)
+{f (6%) =&, T (on — %)) = {f (6*) = 200, ] (0 — %2)
+{f (x*) = 20, ] (% — )
—(F@0) = %0, (0 — 20)) + {F (o00) — %0, ] (%0 — %2)
= (F (x%) = &%, T (200 = &%) = T = 20)) + (30 — 2%, T (0 — x2)
+{F (") = (ee), T — x2)) + (f () = 20, T (g — 2))-
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So, it follows that

limsup(f (x*) — 2%, ] (x, — x*))

n—00

<limsup(f (x*) — &, J (%, — &%) = (x5 — %1))

n—00

+(1+96) ||xt —x* || limsup ||x, — x¢|| + lim sup(f(xt) — x5, J (x5, —xt)).

Taking into account that x, — x* as t — 0, we have

lim sup(f (x*) — %, J (%, — x*))

n—00

= lim sup lim sup(f (x*) — x*,J (%, — x*))

t—0 n— 00
< limsuplim sup(f(x*) - x*,](x,, - x*) —J(x, — xt)>. (3.28)
t—0 n—00

Thanks to the space (g-uniformly smooth), one knows that the two limits can be inter-
changeable. Equation (3.23) therefore holds. Note that x, — y, — 0 implies J(y, — x*) —
J(x, —x*) — 0. Thus, we conclude from (3.23) that

limsup(f (x*) — %%, (yx — 2*))

= limsup{{f (") ="/ (s = 7))+ (f (") =57 (7 = &%) =T (5 = 7))}
= liﬂgp{f(x*) —x*,](x,, —x*)) <0. (3.29)

Step 6. One shows ||x, —x*|| — 0 as n — oo.

Iy =2 |” = et (FO) =F (%)) + Bu(n — &%) + yu (M = 0,F)z,, — x*)
v on(f () - )
< au[fom) ~f @) + Bullon =5+ il 2 ="
+ 20| Ezull | 20 — %" = 04 Fz4 ]
# 20, {f () 2 (3~ ")
< el ="+ Bullea = |+ a2+ (-8 =)

+ 20, Fzy || ||z,, —x*—0,Fz, || + 20[,,{f(x*) —x*,](yn —x*)),

which hence yields

(Xn(l - 8) ” % H2 2an
1—(ana+yn<1—tn>)> B T T (and + ya(l— £)

-1 < (1-

% [ZT” IEzall||2n — %% = 0nFza | + {f (x*) = 5", ] (9 —x*))]
n
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Due to the convexity of | - ||2, and the nonexpansivity of T}, one asserts

et =2 |* < Bl — % * + (0 = 8,) [y — 2
a,(1-96) N
< Bl -+ 1L - ‘”‘( 1—<an§+yn(1—tn)>>”x”‘x”2

20,
— (08 + yu(1 = £4))

* [ZT"annu |20 =" — onFz | + £ (%) = 2% ] (v "“*))“

- |1- Oln(l 3 ) 1 8 2 0[,,(1—8,,,)(1—8)
- |: — (o, + Vn(l —tn) i| ” ” — (00nd + Vn(l —t))
Xﬂ%M@Mh—x—%Hﬂ+U@ﬂ—ﬁﬂ%—ﬁm
1-6

(3.30)

Since liminf),_, « % >0, {%} C(0,1) and )7 a, = 00, we know

{ an(1-38,)(1-9)

—(0p8 + yu(1 - ) } c.l)

and

oo

0 (1-5)1-5)
Z —(0tpd + yu(1 - ) -

Utilizing (3.29) and Lemma 2.7, we conclude from (3.30) that |lx, — x*|| — 0 as n — oo.

This completes the proof. O

Remark 3.1 Comparing with the corresponding results in and Chang et al. [8], we have
the following aspects. The problem of solving a HVI with the constraints of SGVIs (1.1)
and a countable family of nonexpansive mappings in [8, Theorem 3.1] is extended to
our problem of solving a HVI with the constraints of SGVIs (1.1), a variational inclu-
sion (VI) and a countable family of nonexpansive mappings. The modified relaxed extra-
gradient method in[8, Theorem 3.1] is extended to our composite extragradient implicit
rule (3.1). That is, two iterative steps y, = (1 — 8,)x, + B,Gx, and x,,,1 = Hc[yux, + (1 —
VYl — o, pF)S,y, + o,y f(x,)] in [8, Theorem 3.1] are extended to our two iterative steps
Vi = Buxn + YulIcU — 0, F)(Cuxy + (1 — ) W, GYy) + af (v,) and x40 = 8,5, + (1 = 8,) Ty,
where T, :]fn (I -2 A).
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