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1 Introduction
Consider the following unconstrained optimization problem:

minf (%),
where f : R” — R is a continuously differentiable function whose gradient function is de-
noted by g(x).

Conjugate gradient (CG) methods are known to be among the most efficient methods for
unconstrained optimization due to their advantages of simple structure, low storage, and
nice numerical behavior. CG methods have been widely used to solve practical problems,
especially large-scale problems such as image recovery [1], condensed matter physics [2],
environmental science [3], and unit commitment problems [4—6].

For the current iteration point x;, the CG methods yield the new iterate x;,; by the

formula

X1 =Xk +oxdy, k=0,1,...,
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where oy is the stepsize determined by a certain line search and dy is the so-called search
direction in the form of

—8k> k= 0;
di =
-8k + Prdr1, k=1,

in which B is a parameter. Different choices of B correspond to different CG methods.
Some classical and famous formulas of the CG methods parameter g are:

T
,B,EIS = gjf i1 ,  Hestenes and Stiefel (HS) [7];
A 1Yk-1
FR _ ||gk||2 .
B = 5 Fletcher and Reeves (FR) [8];
lgk—1ll
BIRP _ ZEVL btk Ribiére, and Pol k (PRP) [9, 10];
k e olak, ére, a olya , 10];
DY _ ”gk”2 .
By =—=5 , Daiand Yuan (DY) [11],
di_ 1Yk
k-1
where g = g(xx), Yk-1 = gk — gk-1, and || - || denotes the Euclidean norm.

Here are two commonly used line searches for choosing the stepsize o.
— The Wolfe—Powell line search: the stepsize oy satisfies the following two relations:

S + axdr) —foxx) < Sagl di (1)
and
gk + axdi) di > o gl dy, (2)

where 0<§ <o <1.
— The strong Wolfe—Powell line search: the stepsize oy satisfies both (1) and the
following relation:

gk + axdi) T di | < o'|gy dli|.

In recent years, based on the above classical formulas and line searches, many variations
of CG methods have been proposed, including spectral CG methods [12, 13], hybrid CG
methods [14, 15], and three-term CG methods [16, 17]. Among them, the three-term CG
methods seem to attract more attention, and a great deal of efforts has been devoted to
developing this kind of methods, see, e.g., [18—23]. In particular, by combining the PRP
method [9, 10] with the BFGS quasi-Newton method [24], Zhang et al. [22] presented a
three-term PRP CG method (TTPRP). Their motivation is that the PRP method has good
numerical performance but is generally not a descent method when the Armijo-type line

search is executed. The direction of TTPRP is given by

4TTPRP _ —8k> ifk=0,
¢ g+ B —0Vy L, ifk>1,
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where

o0 _ &
llgk-1112

®3)

which is always a descent direction (independent of line searches) for the objective func-
tion.
In the same way, Zhang et al. [25] presented a three-term FR CG method (TTFR) whose

direction is in the form of

JTTER _ —Zi> ifk=0,
C | et BR -0, ifk =1
gk + By dk-1 — 0 g, ifk>1,

where 9,9) is given by (3). Later, Zhang et al. [23] proposed a three-term HS CG method
(TTHS) whose direction is defined by

4TTHS _ —&k iftk=0, @)
« ~gk + BSdi1 - 9;52)%-1, ifk>1,
where
@ _ & B

dkT—lykA ’

The above approaches [22, 23, 25] have a common advantage that the relation d} gi =
—|lgx|I? holds. This means that they always generate descent directions without the help
of line searches. Moreover, they can all achieve global convergence under suitable line
searches.

Before putting forward the idea of our new three-term CG methods, we first briefly re-
view a hybrid CG method (HCG) proposed by Babaie-Kafaki and Ghanbari [26], in which

the search direction is in the form of

4HCG _ —8ks ifk=0,
‘ —8k + ﬁ]](—[CGdk—ly ifk>1,

where the parameter is given by a convex combination of FR and PRP formulas
BHCG = (1 - 6,)BERP + 6iBER,  with 6 € [0,1].

It is obvious that the choice of 6 is very critical for the practical performance of the HCG
method. By taking into account that the TTHS method has good theoretical property and
numerical performance, Babaie-Kafaki and Ghanbari [26] proposed a way to select 6 such

TTHS
dk

that the direction d,E{CG is as close as possible to in the sense that their distance is

minimized, i.e., the optimal choice 6} is obtained by solving the least-squares problem

0 =g min |10~ 7| ®)

Page 3 of 22
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Similarly, Babaie-Kafaki and Ghanbari [27] proposed another hybrid CG method by com-
bining HS with DY, in which the combination coefficient is also determined by the least-
squares technique (5). The numerical results in [26, 27] show that this least-squares-based
approach is very efficient.

Summarizing the above discussions, we have the following two observations: (1) the
three-term CG methods perform well both theoretically and numerically; (2) the least-
squares technique can greatly improve the efficiency of CG methods. Putting these to-
gether, the main goal of this paper is to develop new three-term CG methods that are
based on the least-squares technique. More precisely, we first propose a basic three-term
CG method, namely LSTT, in which the least-squares technique well combines the ad-
vantages of two existing efficient CG methods. With the Wolfe—Powell line search, LSTT
is proved to be globally convergent for uniformly convex functions. In order to obtain the
global convergence property for general nonlinear functions, we further present two im-
proved variants of the LSTT CG method. All the three methods generate sufficient descent
directions independent of any line search procedure. Global convergence is also analyzed
for the proposed methods. Finally, some preliminary numerical results are reported to il-
lustrate that our methods are efficient and have advantages over two famous three-term
CG methods.

The paper is organized as follows. In Sect. 2, we present the basic LSTT CG method.
Global convergence of LSTT is proved in Sect. 3. Two improved variants of LSTT and
their convergence analysis are given in Sect. 4. Numerical results are reported in Sect. 5.

Some concluding remarks are made in Sect. 6.

2 Least-squares-based three-term (LSTT) CG method

In this section, we first derive a new three-term CG formula, and then present the cor-
responding CG algorithm. Our formula is based on the following modified HS (MHS)
formula proposed by Hager and Zhang [28, 29]:

lyk-1 ||2ngdk-1

B (1) = B - 6)
g g (dl 1)
where 7 (> 0) is a parameter. The corresponding direction is then given by
-2k, if k=0,
A () = 1 o 7)

—g + B ()1, ifk > 1.

Different choices of 7 will lead to different types of CG formulas. In particular, ,B,IQ’IHS(O) =
ﬁ,fs, and ﬁ,iV[HS(Z) is just the formula proposed in [28].

In this paper, we present a more sophisticated choice of 7; by making use of the least-
squares technique. More precisely, the optimal choice 7} is determined such that the di-
rection d¥™ is as close as possible to dETHS, i.e., it is generated by solving the least-squares

problem

7 =arg min Hd,I;AHS(rk) —d,fTHs ||2 (8)
1% €[0,1]
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Substituting (4) and (7) in (8), we have

2

k-1

’

gl dia e — 1 k-1 1g{ di-
-1~ Y7 5
dkT_lyk_1 (diz_ﬂ’k—l)z

. .
T, = arg min
k wel0l]

which implies

% (d{,lyk—l)z

= . 9)
TR PANR
Thus, from (6), we obtain
T
MHS [ _# us & k1
- gHs _ . 10
AEE) =P 1o

So far, it seems that the two-term direction d,y“s(t,f) obtained from (9) and (10) is a
“good enough” direction; however, it may not always be a descent direction of the objective
function. In order to overcome this difficulty, we propose a least-squares-based three-term

(LSTT) direction by augmenting a term to d,I:AHS(f,f) as follows:

ALSTT _ —8k> ifk=0,

g ~g + BYS () di 1 — Oy, ik >1,

(11)
where

_ & dia
dkT—lyk—l

Ok (12)

The following lemma shows that the direction d,%STT (11) is a sufficient descent direction,

which is independent of the line search used.

Lemma 1 Let the search direction d := di>"" be generated by (11). Then it satisfies the
following sufficient descent condition:

& di < —llgkl®. (13)

Proof For k = 0, we have dj = —go, so it follows that gl dy = — /g0 |>.
For k > 1, we have

dic = g + B (1) di-1 — Ocyeets

which along with (10) and (12) shows that

T T T
T 2 8 Vk-1 G dia \ iy
di = I +< _ ) . i
“ N dl iy ldia|? 8k Hh1 dkT_lyk_lng’ 1
- g - St
|11
< ~llgl?.

So the proof is completed. d
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Algorithm 1: Least-squares-based three-term CG algorithm (LSTT)
Step 0: Choose an initial point xy € R” and a stopping tolerance € > 0. Let k := 0.
Step 1: If ||gk|| <€, then stop.
Step 2: Compute dj by (11).
Step 3: Find o by some line search.

Step 4: Set xy,1 = xi + ogdy.
Step 5: Let k := k + 1 and go to Step 1.

Now, we formally present the least-squares-based three-term CG algorithm (Algo-
rithm 1) that uses d,%STT (11) as the search direction. Note that it reduces to the classical

HS method if an exact line search is executed in Step 3.

3 Convergence analysis for uniformly convex functions

In this section, we establish the global convergence of Algorithm 1 for uniformly convex
functions. The stepsize oy at Step 3 is generated by the Wolfe—Powell line search (1) and
(2). For this purpose, we first make two standard assumptions on the objective function,
which are assumed to be hold throughout the rest of the paper.

Assumption 1 The level set £2 = {x € R"|f(x) < f(x0)} is bounded.

Assumption 2 There is an open set O containing £2, in which f(x) is continuous differ-
entiable and its gradient function g(x) is Lipschitz continuous, i.e., there exists a constant
L > 0 such that

le@) - <Llx-yl, VxyeO. (14)

From Assumptions 1 and 2, it is not difficult to verify that there is a constant y > 0 such
that

||g(x) || <y, Vxef2. (15)

The following lemma is commonly used in proving the convergence of CG methods,
which is called the Zoutendijk condition [30].

Lemma 2 Suppose that the sequence {xi} of iterates is generated by Algorithm 1. If the
search direction dy. satisfies gl di < 0 and the stepsize ay. is calculated by the Wolfe—Powell
line search (1) and (2), then we have

(ngdk)2
Z i < (16)

From Lemma 1, we know that if Algorithm 1 does not stop, then

gldr <—llgell* <0.

Thus, under Assumptions 1 and 2, relation (16) holds immediately for Algorithm 1.
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Now, we present the global convergence of Algorithm 1 (with € = 0) for uniformly convex

functions.

Theorem 1 Suppose that the sequence {xy} of iterates is generated by Algorithm 1, and that
the stepsize oy is calculated by the Wolfe—Powell line search (1) and (2). If f is uniformly
convex on the level set §2, i.e., there exists a constant (> 0 such that

(g0) - g0) (x=9) = ula-yl%, Vxye, (17)
then either || gk|| = O for some k, or

lim gl = 0.

k— 00

Proof If || gk|| = O for some k, then the algorithm stops. So, in what follows, we assume that
an infinite sequence {x;} is generated.
According to Lipschitz condition (14), the following relation holds:

Ye-1ll = gk — g1l < Lllxk — xie—1l = Lllsg-1 > (18)
where s;_1 := xx — x4_1. In addition, from (17) it follows that
i sk = skl (19)

By combining the definition of d* (cf. (10), (11), and (12)) with relations (18) and (19), we

have
T T T
8 YVi-1 & k-1 & k1
||dk||:H—k+< _ )d _ S
ST e N l2) ™ T d !
lgelllye-all lgel s |
< lgell + Ty gl + S
d{—lyk—l dkT-lyk—l
lgell 1761 ks |
= 2|\gell + zgjg‘;
A 1Yk-1
el sk 12
< 2 gell + 2L ST
sl

2L
= (2 + —)Ing||~
uw

This together with Lemma 1 and (16) shows that

© (T iy X 4 %

(gx k) I gl 1 4

+00 > E > E > — E llgell®, withw=2+2L/pu,
Nkl T A= kP T w? =

which implies that limg_, » [|gx|| = 0. O

4 Two improved variants of the LSTT CG method

Note that the global convergence of Algorithm 1 is established only for uniformly convex
functions. In this section, we present two improved variants of Algorithm 1, which both
have global convergence property for general nonlinear functions.
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Algorithm 2: Improved version of LSTT algorithm (LSTT+)
Step 0: Choose an initial point xy € R” and a tolerance € > 0. Let k := 0.
Step 1: If ||gk|| <€, then stop.
Step 2: Compute dy := d,ESTT" by (20).
Step 3: Find o by some line search.

Step 4: Set xy,1 = xi + ogdy.
Step 5: Let k := k + 1 and go to Step 1.

4.1 Animproved version of LSTT (LSTT+)

In fact, the main difficulty impairing convergence for general functions is that gM"5(

79)
(cf. (10)) may be negative. So, similar to the strategy used in [31], we present the first
modification of direction d,%STT (11) as follows:

= . (20)
—gk, otherwise,

d/ESTTJr —gr + ﬁ,EAHS(t,f)dk_l —Okyk-1, ifk>0and ﬁ,ﬁms(rlf) >0,
where ﬂ,ﬁAHs(tIf) and 6 are given by (10) and (12), respectively. The corresponding algo-
rithm is given in Algorithm 2.

Obviously, the search direction di generated by Algorithm 2 satisfies the sufficient de-
scent condition (13). Therefore, if the stepsize ay is calculated by the Wolfe—Powell line
search (1) and (2), then the Zoutendijk condition (16) also holds for Algorithm 2.

The following lemma shows some other important properties about the search direc-
tion d*.

Lemma 3 Suppose that the sequence {dy} of directions is generated by Algorithm 2, and
that the stepsize oy is calculated by the Wolfe—Powell line search (1) and (2). If there is a
constant ¢ > 0 such that |\ gx|| > ¢ for any k, then

[o¢]
dr #0 foreachk, and Z llux — trer ||? < +00,
k=0

where ||ug|| = di/lldk|l.
Proof Firstly, from Lemma 1 and the fact that ||gk|| > ¢, we have
G <-lgll> <= vk (21)

which implies that dj # 0 for each k.
Secondly, from (16) and (21), we have

[eS) 00 T
1 llgell* (g di)?
4 k
c < < < +00. (22)
; AR Z AR Z 2
Now we rewrite the direction dj in (20) as

di = =gk + B dr-1 — O yi-1, (23)
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where
O, if BMHS(z%) > 0,
0; = k k and B = max{gMS(z}),0}.
k 0, otherwise, P {'Bk ( k) }
Denote
—8k — 0 yr1 Nkl
ag=—"7+"-"", br=p . (24)
e | ekl
According to (23) and (24), it follows that
dy —8k — O yi-1 + B di—1
Ui = = =ar + bkuk, .
I I '
From the fact that ||| = 1, we obtain
llaxll = llux — brux—1 || = llbxuag — g1l
Since by > 0, we get
llotse = ta || < || (1 + bie) (o — i) |
< ok = brusgr || + | brvig — wpe—r ||
= 2|lall. (25)

On the other hand, from the Wolfe—Powell line search condition (2) and (21), we have
i1t = diy @ - ge1) = (1= 0) (~di1gier) = (1= 0)¢ > 0. (26)
Since ng_ldk_l < 0, we have
Gy = dl_ 1y + gadi < dj_y i
This together with (26) shows that

ng di1
d{—lyk—l

<1 (27)

Again from (2), it follows that
gl = ogl_ydior = —0y_ydir + 0 g dry,
which implies

gl dia . o 28)
d{_lyk,l “1l1-0
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By combining (27) and (28), we have

ngdk-l
dz_lyk—l

o
< max
1-o0

,1 } (29)
In addition, the following relation comes directly from (15)

ye-1ll = llge — gr-1ll < llgkll + llg-1ll < 2y. (30)
Finally, from (15), (29), and (30), we give a bound on the numerator of a;:

8 i
A Yi

|- = 6y || < llgll +

‘”yk—ln

o
< llgll + max{ 1o 1} lyi-1ll
— 0

=M,

where M = y + 2y max{;%, 1}. This together with (25) shows that

2

otk = a1 < 4llaell* < .
lldic1?

Summing the above relation over k and using (22), the proof is completed. d
We are now ready to prove the global convergence of Algorithm 2.
Theorem 2 Suppose that the sequence {xi} of iterates is generated by Algorithm 2, and
that the stepsize oy is calculated by the Wolfe—Powell line search (1) and (2). Then either
llgx |l = O for some k or
liminf || gg|| = 0.
k—00

Proof Suppose by contradiction that there is a constant ¢ > 0 such that ||gx|| > ¢ for any k.
So the conditions of Lemma 3 hold.

We first show that there is a bound on the steps si, whose proof is a modified version of
[28, Thm. 3.2]. From Assumption 1, there is a constant B > 0 such that

lxll =B, Vk,
which implies
Iz = x|l < Nl + Nl |l < 2B. (31)

For any [ > k, it is clear that

-1 -1 -1 -1
xi—xe=y @ —x) = lsillug =Y lIsjllaa+ Y llsjl oty — ).
j=k j=k j=k j=k

Page 10 of 22
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This together with the triangle inequality and (31) shows that

-1 -1 -1

D lsill < Hoer = aell + D Uil — el < 2B+ sl 1 — el (32)
j=k j=k j=k
Denote
2yL
§:= 57
1-0)c

where o, L, and y are given in (2), (14), and (15), respectively. Let A be a positive integer,

chosen large enough that
A > 8EB. (33)

Moreover, from Lemma 3, we can choose an index kg large enough that

1
Z ltisr = il < —. (34)
leo

Thus, if j > k > ko and j — k < A, we can derive the following relations by (34) and the
Cauchy-Schwarz inequality:
j-1
Nl = e <D Nl — ]

i=k
1

j-1 2
< \/j—k(z lltisa - uinz)
i=k

2

- ﬂ(ﬁ)z _L (35)

Combining (32) and (35), we have
-1
> lisill < 4B, (36)
j=k

where [ >k >kgand [ -k < A.
Next, we prove that there is a bound on the directions dy.
If dy = —g in (20), then from (15) we have

ldkll <. 37)

In what follows, we consider the case where

dic = =gk + BE" (1 ) dk-r — Okyecr.-

Page 11 of 22
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Thus, from (15), (18), and (26), we have

T T T
V1 & A i Ak
ldkll* = H—k+( - ) k-1 — 77— Yk
A V7 N AN E) A P

lgelll7e | lgel i 2
< (ngkn + SR+ Nl + Mnyk_ln)

al 1y di 19k
||gk||||yk_1||||dk_1||)2
= (20gill + 2=
( dz_lyk—l

2L 2
(21/ + ﬁ”sk 1l dx- 1||)
< 8y% + 283 |sk1 I | i1 11

Then, by defining S; = 2&2||s;|%, for [ > ko, we have

llds|)* < 8y (Z 1‘[5>+ndko|| Hs (38)

i=ko+1 j=i j=ko

From (36), following the corresponding lines in [28, Thm. 3.2], we can conclude that the
right-hand side of (38) is bounded, and the bound is independent of /. This together with
(37) contradicts (22). Therefore, liminfi_, » ||g«|| = O. O

4.2 A modified version of LSTT+ (MLSTT+)
In order to further improve the efficiency of Algorithm 2, we propose a modified version
of d,];STT+ (20) as follows:

MLSTT+ _ —gi + BT Ay — Okziy,  if k> 0and BT > 0, (39)

—8i otherwise,
where 6 is given by (12) and
BMLSTT+ _ ng Zk-1 ng di_1 o)
‘ al iy Ndeal?

||gk||

e (41)

P g

The difference between (20) and (39) is that yx_; is replaced by z;_;. This idea, which
aims to improve the famous PRP method, originated from [32]. Such a substitution seems
useful here in that it could increase the possibility of the CG parameter being positive, and
as a result, the three-term direction is used more often. In fact, as iterations go along, ||gx||
approaches zero asymptotically, and therefore the fact that ||gx||/||gk-1 | < 1 may frequently
happen. If in addition g{ g > 0, then we have

gl

gl g1 > llgell — gl g1 = gl yia-
lgk-1ll

T
i zik-1 = llgkll -

The following lemma shows that the search direction (39) also has sufficient descent
property.
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Algorithm 3: A modified version of LSTT+ algorithm (MLSTT+)
Step 0: Choose an initial point xy € R” and a tolerance € > 0. Let k := 0.

Step 1: If ||gk|| <€, then stop.

Step 2: Compute dy := d,l("ILSTT" by (39).

Step 3: Find «y by the Wolfe—Powell line search (1) and (2).
Step 4: Set xy,1 = xi + ogdy.

Step 5: Let k:= k + 1 and go to Step 1.

Lemma 4 Let the search direction dy be generated by (39). Then it satisfies the following

sufficient descent condition (independent of line search):
& di < ~lgll*. (42)

Proof The proof is similar to that of Lemma 1. g

From Lemma 4, we know that the Zoutendijk condition (16) also holds for Algorithm 3.
In what follows, we show that Algorithm 3 is globally convergent for general functions.
The following lemma illustrates that the direction di generated by Algorithm 3 inherits
some useful properties of d,';STT* (20), whose proof is a modification of Lemma 3.

Lemma 5 Suppose that the sequence {di} of directions is generated by Algorithm 3. If there
is a constant ¢ > 0 such that ||gk|| > c for any k, then

[o¢]
dr #0 foreachk, and Z llux — tr_r ||? < +00,
k=0

where |ui || = di/||di]|.

Proof From the related analysis in Lemma 3, we have

o0 1

4

c E < +00. (43)
Py i1

Now we redisplay the direction dj in (39) as

di = gk — O 21 + Bl i, (44)
where
R 0 , if MLSTT+ 0’ R
k+ _ k 1 ﬁk > and ﬂ]: _ maX{,B]I(\ALSTTJr1O}- (45)

0, otherwise,

Define
. @0z < il
== =B : (46)
A gl
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According to (44) and (46), it follows that

dr g - 0f zkoy + B di

= = = LAlk + 2](141(_1.
NIkl Nkl

Uy
Thus, following the lines in the proof of Lemma 3, we get
lloase — s || < 20|l (47)

Moreover, we also have

o
< max
{1_

The following relations hold by the definition of z;_; (41):

8 i
Ay

a,l} and |[lyi1ll <2y. (48)

lzioill < llgk — geall + k-1 — ll gl .
llgk-1ll
= |lyk-1ll + ‘1 - M’”gk—ln
g1l
< lye-all + lIgk-1 — gkll
= 2[lyx-1ll- )

By combining (15), (48), and (49), we put a bound on the numerator of ||ax|:

T
h+ Sk dk—l
—&k — O zi-1 || = lIgll + | 7| l1zk-1
|| H o
o
< lIgkll + 2 max 1 s Lo llye-all
-0

SMY

where M = y + 4y max({ 12>, 1}. This together with (47) shows that

A

2

2 2
llux — g 17 < 4llarll” < .
Nl |I>

Summing the above inequalities over k and utilizing (43), we complete the proof. O
We finally present the global convergence of Algorithm 3.

Theorem 3 Suppose that the sequence {xi} of iterates is generated by Algorithm 3. Then
either ||gk|| = O for some k or

likminf||gk|| =0.

Proof Given that there is a constant ¢ > 0 such that ||gx|| > c for any k, then the conclusions
of Lemma 5 hold.



Tang et al. Journal of Inequalities and Applications (2020) 2020:27 Page 15 of 22

Without loss of generality, we only consider the case where
di = —gi + BT di g — Orzir.

So from (15), (18), (26), and (49), we obtain

T T T
||d1<||2=H—g+(gk -1 & kl)dk_l_gk k-1

T Rk-1

Al e Ndial? 1Y

gl -1 | gl i1 | ’
< (Nl + =7 lldiall + llgell + = 7——— llzx1 |
( dz_lyk—l dz_lyk—l

gl zes Wi 1)
=(2||gk||+2g e

k-1Vk-1

4yL 2
<2y + —Z—lIsccall |
_( 14 (1_0)C2||5k 11l Ik 1II)

<20 + 20%(Isk1 [Pl die-1 1%,

4yL
(1-0)c2"
The remainder of the argument is analogous to that of Theorem 2, hence omitted here. [

where n =2y and p =

5 Numerical results

In this section, we aim to test the practical effectiveness of Algorithm 2 (LSTT+) and Al-
gorithm 3 (MLSTT+) which are both convergent for general functions under the Wolfe—
Powell line search. The numerical results are compared with the TTPRP [22] method
and the TTHS [23] method by solving 104 test problems from the CUTE library [33-35],
whose dimensions range from 2 to 5,000,000.

All codes were written in Matlab R2014a and run on a PC with 4 GB RAM memory and
Windows 7 operating system. The stepsizes oy are generated by the Wolfe—Powell line
search with ¢ = 0.1 and § = 0.01. In Tables 1, 2, 3, “Name” and “n” mean the abbreviation
of the test problem and its dimension. “Itr/NF/NG” stand for the number of iterations,
function evaluations, and gradient evaluations, respectively. “Tcpu” and “||g,||” denote the
computing time of CPU and the final norm of the gradient value, respectively. The stop-
ping criterion is ||g|| < 107 or Itr > 2000.

To clearly show the difference in numerical effects between the above mentioned four
CG methods, we present the performance profiles introduced by Dolan and More [36] in
Figs. 1, 2, 3, 4 (with respect to Itr, NF, NG, and Tcpu, respectively), which is based on the
following.

Denote the whole set of #, test problems by P, and the set of solvers by S. Let ¢, ; be the
Tcpu (the Itr or others) required to solve problem p € P by solver s € S, and define the

performance ratio as

Tys =Lys/ Mint,,.
P va/ b

For t,; of the “NaN” in Tables 1, 2, 3, welet r,, s = 2max{r,, : s € S}, then the performance
profile for each solver can be defined by

1
os(t) = — size({p €P:log,rys < r}),
np
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Figure 1 Performance profiles on Itr of four CG methods

TT+

TTPRP

Figure 2 Performance profiles on NF of four CG methods
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p(1)

TTPRP
0.1

Figure 3 Performance profiles on NG of four CG methods

where size(A) stands for the number of elements in the set A. Hence p;(7) is the probability
for solver s € S that the performance ratio r,, is within a factor t € R. The function p; is
the (cumulative) distribution function for the performance ratio. Apparently the solver
whose curved shape is on the top will win over the rest of the solvers. Refer to [36] for

more details.
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Figure 4 Performance profiles on Tcpu of four CG methods

For each method, the performance profile plots the fraction p,(t) of the problems for
which the method is within a factor t of the best time. The left side of the figure repre-
sents the percentage of the test problems for which a method is the fastest. The right side
represents the percentage of the test problems that are successfully solved by each of the
methods. The top curve is the method that solved the most problems in a time that was
within a factor t of the best time.

In Figs. 1, 2, 3, 4, we compare the performance of the LSTT+ method and the MLSTT+
method with the TTPRP method and the TTHS method. We observe from Fig. 1 that
MLSTT+ is the fastest for about 51% of the test problems with the smallest number of
iterations, and it ultimately solves about 98% of the test problems. LSTT + has the second
best performance which can solve 88% of the test problems successfully, while TTPRP and
TTHS solve about 80% and 78% of the test problems successfully, respectively. Figure 2
shows that MLSTT+ exhibits the best performance for the number of function evalua-
tions since it can solve about 49% of the test problems with the smallest number of func-
tion evaluations; LSTT+ has the second best performance as it solves about 40% in the
same situation. From Fig. 3, it is not difficult to see that MLSTT+ and LSTT+ perform
better than the other two methods about the number of gradient evaluations. Moreover,
MLSTT+ is the fastest for the number of gradient evaluations since it solves about 56% of
the test problems with the smallest number of gradient evaluations, while LSTT + solves
about 41% of the test problems with the smallest number of gradient evaluations. In Fig. 4,
MLSTT+ displays the best performance for CPU time since it solves about 53% of the test
problems with the least CPU time and the data for LSTT+ is 42% in the same case, which
is second. Since all methods were implemented with the same line search, we can conclude
that the LSTT+ method and the MLSTT+ method seem more efficient.

Combining Tables 1, 2, 3 and Figs. 1, 2, 3, 4, we are led to the conclusion that LSTT+ and
MLSTT+ perform better than TTPRP and TTHS, in which MLST T+ is the best one. This
shows that the proposed methods of this paper possess good numerical performance.

6 Conclusion

In this paper, we have presented three new three-term CG methods that are based on
the least-squares technique to determine the CG parameters. All can generate sufficient
descent directions without the help of a line search procedure. The basic one is globally
convergent for uniformly convex functions, while the other two improved variants possess
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global convergence for general nonlinear functions. Preliminary numerical results show

that our methods are very promising.
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