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Abstract
In this paper, a fractional model is used to solve nonlinearly constrained optimization
problems. In order to solve the fractional trust region subproblems simply, we
propose an approximated solution method by cyclically fixing the fractional
coefficient part of the approximate function. The global convergence of the fractional
trust region method is proved, and the numerical results show that the new
algorithm is effective and stable.
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1 Introduction
In this paper, we consider the nonlinear equality constrained optimization problem

min
x∈Rn

f (x), (1.1)

s.t. C(x) = 0, (1.2)

where C(x) = (c1(x), . . . , cm(x))T (m ≤ n) and f (x), ci(x) (i = 1, . . . , m) are continuously dif-
ferentiable. The Lagrangian function for problem (1.1)–(1.2) is defined as follows:

L(x,λ) = f (x) +
m∑

i=1

λici(x), (1.3)

where λi for i = 1, . . . , m are Lagrange multipliers. Problem (1.1)–(1.2) has been studied by
many researchers, including Han [1], Powell [2], Yuan and Sun [3], Powell and Yuan [4],
etc.

There are many efficient methods to solve problem (1.1)–(1.2), and the trust region
method is a very effective method (see [4–13]). In addition, the book of Conn, Gould,
and Toint [14] is an excellent and comprehensive one on trust region methods. How-
ever, most of these methods use the quadratic model to approximate f (x). The sequential
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quadratic programming method for (1.1)–(1.2) computes a search direction by minimiz-
ing a quadratic model of the Lagrangian subject to the linearized constraints. That is, at
the kth iteration, the following subproblem

min
s∈Rn

�k(s) = gT
k s +

1
2

sT Bks, (1.4)

s.t. AT
k s + Ck = 0 (1.5)

is solved to obtain a search direction sk , where xk is the current iterate point, gk = ∇f (xk),
Bk is symmetric and an approximation to the Hessian ∇xxL(xk ,λk) of the Lagrangian of
problem (1.1)–(1.2), Ak = [∇c1(xk), . . . ,∇cm(xk)] and Ck = C(xk). The constraint gradients
∇ci(xk) are assumed to be linearly independent for all xk . However, if the objective function
possesses high nonlinear property and the iterative point is far away from the minimum,
the quadratic model could not approximate the original problem very well, which may
lead to iteration proceeding slowly.

In 1980, Davidon [15] first proposed the collinear scaling of variables and conic model
method for unconstrained optimization. The conic model is

φ̃k(s) = fk +
gT

k s
1 – aT

k s
+

1
2

sT Bks
(1 – aT

k s)2 , (1.6)

where ak ∈ Rn is a horizontal vector. Then, Sorensen [16] published detailed results on a
class of conic model methods and proved that a particular member of this class has the Q-
superlinear convergence. Many other scholars have also studied the trust region algorithm
of the conic model (see [17, 18]).

The trial step of a trust region algorithm is usually obtained by solving a trust region
subproblem. In our trust region subproblem, the trust region bound constraint is

‖s‖ ≤ �k , (1.7)

where �k is the trust region radius at the kth iteration. It is easy to see that there is a
possibility that the linearized constraints (1.5) may have no solutions in the trust region
(1.7). To overcome this difficulty, we use a relaxed version of the linearized constraint,
which was proposed by Byrd, Schnabel, and Schultz in [19]. In [20], Sun also used this
relaxed version of the linearized constraint and proposed a conic trust region method
for nonlinearly constrained optimization. That is, at the kth iteration, the trial step sk is
computed by solving the following conic model trust region subproblem:

min
s∈Rn

φk(s) =
gT

k s
1 – aT

k s
+

1
2

sT Bks
(1 – aT

k s)2 , (1.8)

s.t. AT
k s + θkCk = 0, (1.9)

‖s‖ ≤ �k , (1.10)

where ‖ · ‖ refers to the Euclidean norm and θk is a relaxation parameter. θk ∈ (0, 1] is
chosen such that the feasible set of (1.9) and (1.10) is not empty. Geometrically speaking,
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the role of θk is to compress the feasible area of each constraints of (1.5) to the direction
of origin (see [8, 21]).

The above conic model (1.8) has only one parameter ak and less degree of freedom,
which affects the effect of the model approaching the objective function. Therefore, we
consider selecting a fractional model with more parameters, which can make full use of
the function and gradient information in the previous iteration and can approximate the
original function well, thus obtaining a new method for solving the optimization prob-
lem. In [22], Zhu considered the unconstrained optimization problem and proposed a
fractional model

ψk(s) = hk(s)gT
k s +

1
2

h2
k(s)sT Bks, (1.11)

where

hk(s) =
(1 + cT

k s)
(1 – aT

k s)(1 – bT
k s)

, (1.12)

and horizontal vectors ak , bk , ck ∈ Rn are bounded. The gradient of ψk(s) is

∇ψk(s) =
1
v3

s
ω(s)

[
vsgk +

(
1 + cT

k s
)
Bks

]
, (1.13)

where

vs =
(
1 – aT

k s
)(

1 – bT
k s

)
, (1.14)

ω(s) =
(
1 + cT

k s
)
vsI +

[
ckvs +

(
1 + cT

k s
)(

ak
(
1 – bT

k s
)

+ bk
(
1 – aT

k s
))]

sT . (1.15)

If bk = ck = 0, then ψk(s) is reduced to the conic model. If ak = bk = ck = 0, then ψk(s) is the
quadratic model �k(s). The fractional model is new and it is an extension to conic model
φk(s). It has more choice of parameter vectors and can make use of their function and
gradient information. Based the new fractional model ψk(s), a simplified fractional trust
region subproblem

min
s∈Rn

ψk(s), (1.16)

s.t. ‖s‖ ≤ �̃k (1.17)

is proposed, where

�̃k = min

{
�k ,

ε1

‖ak‖ ,
ε1

‖bk‖ ,
ε1

‖ck‖
}

, (1.18)

0 < ε1 < 1, (1.19)

and the parameters ak , bk , ck were chosen such that

‖ak‖�̃k ≤ ε1, ‖bk‖�̃k ≤ ε1, ‖ck‖�̃k ≤ ε1. (1.20)
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Subproblem (1.16)–(1.17) is solved only in quasi-Newton direction in [22]. Based on this,
we study in depth the Newton point and the steepest descent point of the fractional trust
region subproblem, so as to construct a simple dogleg method to solve the subproblem (see
[23]). Numerical experiments show that the fractional model trust region quasi-Newton
algorithm seems to be superior to the conic model trust region algorithm in terms of the
number of iterations and the running time as the dimension of the optimization prob-
lem increases. For the linear equality constrained optimization problem, the null space
technique is used to delete the linear equality constraint, and the fractional trust region
method for solving the linear equality constrained optimization problem is proposed (see
[24]).

Now we use the fractional model to solve nonlinearly constrained optimization prob-
lems. In order to solve problem (1.1)–(1.2), we consider the following fractional trust re-
gion subproblem. That is, if the current iteration point is xk , then the trial step sk is com-
puted by

min
s∈Rn

ψk(s), (1.21)

s.t. AT
k s + θkCk = 0, (1.22)

∣∣(1 – aT
k s

)(
1 – bT

k s
)∣∣ ≥ ε0, (1.23)

‖s‖ ≤ �k , (1.24)

where ε0 ∈ (0, 1). The purpose of adding constraint (1.23) is to guarantee that the objec-
tive function ψk(s) is bounded in the trust region and this also increases the difficulty of
calculation.

We know that the exact solution of the trust region subproblem is often difficult to ob-
tain, so many approximate solution methods have been spawned. For example, the trust
region method is often combined with dogleg method, conjugate gradient method, inex-
act line search method, alternate direction search method, and other methods to obtain
approximate solutions of trust region subproblems. In this paper, we also consider an ap-
proximate solution method for the subproblem of the trust region. First, the null space
technique is used to remove the linear equality constraints of the trust region subproblem;
then the fractional model of the subproblem is reduced to a quadratic model by cyclically
fixing the coefficient part; finally, the problem can be easily solved by searching in the
descending direction to obtain an approximate solution to the subproblem.

In the global algorithm, we propose a quasi-Newton trust region method with a frac-
tional model and prove the global convergence of the new algorithm. The numerical ex-
periment shows that the new algorithm is effective and robust, especially for large-scale
test problems.

The organization of this paper is as follows. In Sect. 2, the fractional trust region sub-
problem and an algorithm for solving the subproblem are presented. In Sect. 3, we propose
a quasi-Newton method with a fractional model for nonlinearly equality constrained opti-
mization and prove its convergence under some reasonable conditions. Numerical results
are given in Sect. 4.

Throughout this paper, we use ‖ · ‖ for the 2-norm.
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2 The algorithm of fractional trust region subproblem
In order to solve (1.21)–(1.24), firstly we consider removing constraint (1.23) by the same
process of simplification as in [22]. Therefore, when the parameters ak , bk , ck satisfy (1.20)
where

0 < ε1 ≤ 1 –
√

ε0 < 1, (2.1)

then subproblem (1.21)–(1.24) can be rewritten as the following reduced subproblem:

min
s∈Rn

ψk(s), (2.2)

s.t. AT
k s + θkCk = 0, (2.3)

‖s‖ ≤ �̃k , (2.4)

where �̃k is defined as (1.18).
The null-space technique (see [20, 25, 26]) is an important technique for solving op-

timization problems with equality constraints. In the following, we show the method to
eliminate constraint (1.22). Assume that Ak has full column rank, and there exist an or-
thogonal matrix Qk and a nonsingular upper triangular matrix Rk such that

Ak = QkRk =
[
Q(1)

k Q(2)
k

][
R(1)

k
0

]
= Q(1)

k R(1)
k , (2.5)

where Q(1)
k ∈ Rn×m, Q(2)

k ∈ Rn×(n–m), and R(1)
k ∈ Rm×m. Then (1.22) can be rewritten as

(
R(1)

k
)T(

Q(1)
k

)T s = –θkCk . (2.6)

Therefore the feasible point for (1.22) can be presented by

s = s̃k + Q(2)
k u (2.7)

for any u ∈ Rn–m, where

s̃k = –θkQ(1)
k

(
R(1)

k
)–T Ck , (2.8)

and Q(2)
k u lies in the null space of Ak . We denote

lk = –Q(1)
k

(
R(1)

k
)–T Ck , (2.9)

then

s̃k = θklk . (2.10)

In order to ensure that s lies in the trust region, we choose θk such that the norm of s̃k is
at most ι�̃k , where ι ∈ (0, 1) is a given constant. That is,

‖s̃k‖ = θk‖lk‖ ≤ ι�̃k . (2.11)
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Define

θk = min

{
1,

ι�̃k

‖lk‖
}

, �̂k =
√

�̃2
k – ‖s̃k‖2. (2.12)

Then the fractional trust region subproblem (2.2)–(2.4) becomes

min
u∈Rn–m

ψ̃k(u) = hk
(
s(u)

)
gT

k s(u) +
1
2

h2
k
(
s(u)

)
s(u)T Bks(u), (2.13)

s.t. ‖u‖ ≤ �̂k , (2.14)

where s(u) = s̃k + Q(2)
k u.

Remark 1 ‖u‖ ≤ �̂k is equivalent to ‖s‖ ≤ �̃k . It is easy to see that if ‖u‖ ≤ �̂k , then from
(2.7), (2.12), and ‖Q(2)

k ‖ = 1, we have

‖s‖ =
√

‖s̃k‖2 +
∥∥Q(2)

k u
∥∥2 ≤

√
‖s̃k‖2 + ‖u‖2 ≤

√
‖s̃k‖2 + �̂2

k = �̃k .

On the other hand, if ‖s‖ ≤ �̃k , then from (2.5) we have

‖u‖ =
∥∥Q(2)

k u
∥∥ =

√
‖s‖2 – ‖s̃k‖2 ≤

√
�̃2

k – ‖s̃k‖2 = �̂k .

Therefore, if u∗ is the solution of (2.13)–(2.14), then s∗ = s̃k + Q(2)
k u∗ is the solution of

(2.2)–(2.4), whereas if s∗ is the solution of (2.2)–(2.4), then u∗ = (Q(2)
k )T (s∗ – s̃k) is the so-

lution of (2.13)–(2.14).
In order to solve subproblem (2.13)–(2.14) by a simple method, we first fix the fractional

part of ψ̃k(u) by letting u = 0 in hk(s(u)). At the same time, we set u = –τ∇ψ̃k(0), where
τ > 0, ∇ψ̃k(0) 	= 0. By direct computation, we know that ∇ψ̃k(0) = (Q(2)

k )T∇ψk(s̃k), where
∇ψk(s) is defined by (1.13). Then from (2.7) we have that (2.13)–(2.14) reduce to the fol-
lowing simplified subproblem:

min
τ∈R

ϕk(τ ), (2.15)

s.t. 0 ≤ τ ≤ τ�, (2.16)

where

ϕk(τ ) = hk(s̃k)gT
k s(τ ) +

1
2

h2
k(s̃k)s(τ )T Bks(τ ) (2.17)

=
1
2

hk(s̃k)
(
a(1)

τ τ 2 + b(1)
τ τ + c(1)

τ

)
, (2.18)

s(τ ) = s̃k – τQ(2)
k

(
Q(2)

k
)T∇ψk(s̃k), (2.19)

a(1)
τ = hk(s̃k)∇ψk(s̃k)T Q(2)

k
(
Q(2)

k
)T BkQ(2)

k
(
Q(2)

k
)T∇ψk(s̃k), (2.20)

b(1)
τ = –2∇ψk(s̃k)T Q(2)

k
(
Q(2)

k
)T(

gk + hk(s̃k)Bks̃k
)
, (2.21)

c(1)
τ = 2gT

k s̃k + hk(s̃k)s̃T
k Bks̃k (2.22)
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and

τ� =
�̂k

‖(Q(2)
k )T∇ψ(s̃k)‖ . (2.23)

Combining with (1.17)–(1.20) and (2.11), we can obtain that ‖s̃k‖ ≤ �̃k and

ζ1 ≤ hk(s̃k) ≤ ζ2, (2.24)

where

ζ1 =
1 – ε1

(1 + ε1)2 , ζ2 =
1 + ε1

(1 – ε1)2 . (2.25)

From (1.19), it is obvious that 0 < ζ1 < 1 and ζ2 > 1. From lines 2 and 3 before (2.15), we
know that (Q(2)

k )T∇ψk(s̃k) 	= 0, where Q(2)
k is defined in (2.5). For Q(2)

k ∈ Rn×(n–m), ∇ψk(s̃k) ∈
Rn, then Q(2)

k (Q(2)
k )T∇ψk(s̃k) ∈ Rn and Q(2)

k (Q(2)
k )T∇ψk(s̃k) 	= 0 can be proved easily. Assume

that Bk is a symmetric positive definite matrix, then combining with (2.20), (2.24), and
(2.25) we have

a(1)
τ > 0. (2.26)

When Bk is only symmetric but not positive definite matrix, then the modified BFGS for-
mula can be used to modify the positive semi-definite matrix to a positive definite matrix
(see [25]). Hence, it is easy to see that the solution of (2.15)–(2.16) is

τ (1) =

⎧
⎨

⎩
min{τ (1)

axis, τ�}, if b(1)
τ < 0,

0, otherwise,
(2.27)

where

τ
(1)
axis =

–b(1)
τ

2a(1)
τ

. (2.28)

We know that u(1) = –τ (1)∇ψ̃k(0) is an approximate solution of (2.13)–(2.14). In order
to better approximate the solution of the subproblem, we are constantly repeating the
above process similarly, except for fixing the fractional part. That is, in the ith iteration we
substitute u = –τ (i)∇ψ̃k(0) into hk(s(u)), where i = 2, 3, . . . . We denote

h(i)
k = hk

(
s
(
–τ (i)∇ψ̃k(0)

))
. (2.29)

Then we can obtain a similar trust-region subproblem to (2.15)–(2.16). That is,

min
τ∈R

ϕ
(i)
k (τ ), (2.30)

s.t. 0 ≤ τ ≤ τ�, (2.31)
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where

ϕ
(i)
k (τ ) = h(i)

k gT
k s(τ ) +

1
2
(
h(i)

k
)2s(τ )T Bks(τ ) (2.32)

=
1
2

h(i)
k

(
a(i)

τ τ 2 + b(i)
τ τ + c(i)

τ

)
, (2.33)

a(i)
τ = h(i)

k ∇ψk(s̃k)T Q(2)
k

(
Q(2)

k
)T BkQ(2)

k
(
Q(2)

k
)T∇ψk(s̃k), (2.34)

b(i)
τ = –2∇ψk(s̃k)T Q(2)

k
(
Q(2)

k
)T(

gk + h(i)
k Bks̃k

)
, (2.35)

c(i)
τ = 2gT

k s̃k + h(i)
k s̃T

k Bks̃k . (2.36)

By the computation, we have the solution of subproblem (2.30)–(2.31) as follows:

τ (i) =

⎧
⎨

⎩
min{τ (i)

axis, τ�}, if b(i)
τ < 0,

0, otherwise,
(2.37)

where

τ
(i)
axis =

–b(i)
τ

2a(i)
τ

. (2.38)

However, if τ (i) = 0, then subproblem (2.30)–(2.31) has no positive real roots. For this case,
we set bk = ck = 0, and then the fractional model reduces to the conic model. Subproblem
(1.21)–(1.24) can be solved by Algorithm 2.4 in [26]. That is, we calculate

ãk =
(
Q(2)

k
)T ak , ā =

ãk

1 – aT
k s̃k

, ḡ =
gk

1 – aT
k s̃k

,

B̄ =
Bk

(1 – aT
k s̃k)2 , α1 = 1 – ‖ā‖2�̂2,

�̂ = min

{√
�̃2

k – ‖s̃k‖2,
1 – aT

k s̃k – ε0

‖ak‖
}

, m =
‖ā‖�̂2

α1
, �1 =

�̂√
α1

,

ĝ =
(
Q(2)

k
)T ḡ + ās̃T

k ḡ + ās̃T
k B̄s̃k +

(
Q(2)

k
)T B̄s̃k , V = diag(

√
α1, 1, . . . , 1),

B̂ =
(
Q(2)

k
)T B̄Q(2)

k + s̃T
k B̄s̃kāāT + ās̃T

k B̄Q(2)
k +

(
Q(2)

k
)T B̄s̃kāT ,

g1 = V –1Zĝ + mV –1ZB̂ZT e1, B1 = V –1ZB̂ZT V –1,

where Z is an orthonormal rotation matrix and satisfies Zā = ‖āe1‖, and e1 = (1, 0, . . . , 0)T .
Then the solution of (2.13)–(2.14) is

u∗ =
(1 – aT

k s̃k)(ZT Vd∗ + mZT e1)
1 – aT

k s̃k + ãT
k (ZT Vd∗ + mZT e1)

, (2.39)

where d∗ is the solution of the quadratic trust region subproblem

min
d∈Rn

gT
1 d +

1
2

dT B1d,

s.t. ‖d‖ ≤ �1.
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Now we give an algorithm for solving the fractional trust region subproblems (2.13)–
(2.14).

Subalgorithm 2.1
Step 0. Input the data of the kth iteration, i.e., 0 < ε1, ι < 1, ε > 0, ak , bk , ck , gk , Bk , Ak , Ck ,

and �̃k . Set i = 1.
Step 1. Compute Q(1)

k , Q(2)
k , and R(1)

k as defined in (2.5).
Step 2. Compute lk , θk , �̂k , and s̃k as defined in (2.9)–(2.12). Substitute s̃k into formula

(1.13) and obtain ∇ψk(s̃k).
Step 3. Calculate τ∗.

Step 3.1 Compute hk(s̃k) and ∇ψk(s̃k). Compute a(1)
τ , b(1)

τ , c(1)
τ , and τ� from

(2.20)–(2.23). Solve (2.15)–(2.16) obtaining τ (1) as defined in (2.27).
If τ (1) = 0, go to Step 5; otherwise, i = i + 1, go to Step 3.2.

Step 3.2 Compute h(i)
k and a(i)

τ , b(i)
τ , c(i)

τ from (2.29) and (2.34)–(2.36). Solve
(2.30)–(2.31) obtaining τ (i) as defined in (2.37). If τ (i) = 0, go to Step 5;
otherwise, i = i + 1, go to Step 3.3.

Step 3.3 If |τ (i) – τ (i–1)| < ε, then τ∗ = τ (i), and stop. Otherwise, go to Step 3.2.
Step 4. Calculate u∗ = –τ∗(Q(2)

k )T∇ψk(s̃k), then s∗ = s̃k + Q(2)
k u∗.

Step 5. Set bk = ck = 0. Calculate u∗ as defined in (2.39), then s∗ = s̃k + Q(2)
k u∗.

From the above analysis, we know that the steepest descent point u∗ is an approximate
solution of the fractional trust region subproblem (2.13)–(2.14).

3 Global convergence
In this section, we propose a quasi-Newton method with a fractional model for nonlinearly
equality constrained optimization and prove its convergence under some reasonable con-
ditions. In order to solve problem (1.1)–(1.2), we approximate f (x) with a fractional model
of the form

mk(s) = fk +
(1 + cT

k s)gT
k s

(1 – aT
k s)(1 – bT

k s)
+

1
2

(1 + cT
k s)2sT Bks

(1 – aT
k s)2(1 – bT

k s)2 , (3.1)

where fk = f (xk), gk = ∇f (xk), Bk ∈ Rn×n is a positive definite matrix, and ak , bk , ck ∈ Rn are
parameter vectors. We choose these vectors such that (3.1) satisfies the following condi-
tions:

mk(0) = fk , ∇mk(0) = gk , (3.2)

mk(–sk–1) = fk–1, ∇mk(–sk–1) = gk–1, (3.3)

where xk = xk–1 + sk–1. Obviously, (3.2) holds. Then from (3.3) we have

⎧
⎪⎨

⎪⎩

fk–1 = fk – (1–cT
k uk–1)gT

k sk–1
vk–1

+ (1–cT
k sk–1)2sT

k–1Bk sk–1
2v2

k–1
, (3.4)

gk–1 = 1
v3

k–1
Qk–1[vk–1gk – (1 – cT

k sk–1)Bksk–1], (3.5)
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where vk–1 = (1 – aT
k sk–1)(1 – bT

k sk–1) and

Qk–1 =
(
1 – cT

k sk–1
)
vk–1I –

[
ckvk–1 +

(
1 – cT

k sk–1
)(

ak
(
1 + BT

k sk–1
)

+ Bk
(
1 + aT

k sk–1
))]

sT
k–1. (3.6)

We choose

ak = k1gk–1, bk = k2Bk–1sk–1, ck = k3gk , (3.7)

where k1, k2, k3 are unknown parameters, and details of the choice of parameters k1, k2,
k3 can be found in [24].

The merit function we applied is the L1 exact penalty function

P(x) = f (x) + σ
∥∥C(x)

∥∥
1, (3.8)

where σ > 0 is a penalty parameter. We know that, for σ sufficiently large, any strong local
minimizer of (1.1)–(1.2) is a local minimizer of P(x) (see [27]). It is found that this function
is very convenient to be used as a merit function to force global convergence in line search
type algorithms (for example, see [1]). We define the actual reduction in the merit function
by

Aredk = P(xk) – P(xk + sk), (3.9)

where sk is a trial step computed by the algorithm at xk . The above choice of actual reduc-
tion is used to prove the global convergence of the algorithm conveniently. Correspond-
ingly, the predicted reduction is defined as

Predk = ψk(0) – ψk(sk) + σk
(‖Ck‖1 –

∥∥Ck + AT
k sk

∥∥
1

)
, (3.10)

where ψk(s) is defined as (1.11). If

ψk(0) – ψk(sk) ≥ –
σk–1

2
(‖Ck‖1 –

∥∥Ck + AT
k sk

∥∥
1

)
, (3.11)

we set the penalty parameter

σk = σk–1; (3.12)

otherwise,

σk = max

[
2σk–1,

2(ψk(sk) – ψk(0))
‖Ck‖1 – ‖Ck + AT

k sk‖1

]
. (3.13)

Then

Predk ≥ 1
2
σk

(‖Ck‖1 –
∥∥Ck + AT

k sk
∥∥

1

)
(3.14)

holds for all k.
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In the following algorithm, we compute the ratio of the actual reduction and the pre-
dicted reduction to choose the next iterate point and update the new trust region. Now
we give the new quasi-Newton algorithm based on the fractional model (3.1).

Algorithm 3.1
Step 0. Choose x0 ∈ Rn, ε > 0, ε0 > 0, ε1 ∈ (0, 1), �max > 0, 0 < ι1 < ι2 < 1, 0 < δ1 <

1 < δ2, σ0 > 0, B0 = I , and the initial trust region radius �0 ∈ (0,�max]. Set
k = 0.

Step 1. Stopping criterion. Compute gk , Ck , and Q(2)
k as defined in (2.5). If ‖(Q(2)

k )T gk‖ ≤
ε and ‖Ck‖ ≤ ε, then x∗ = xk , stop. If k = 0, go to Step 3.

Step 2. Update Bk+1 by

Bk+1 = Bk –
BksksT

k Bk

sT
k Bksk

+
zkzT

k

zT
k sk

, (3.15)

where

zk = ϑyk + (1 – ϑ)Bksk , ϑ ∈ [0, 1],

ϑ =

⎧
⎨

⎩
1, if yT

k sk ≥ 0.2sT
k Bksk ,

0.8sT
k Bk sk

sT
k Bk sk –yT

k sk
, otherwise,

and yk = gk+1 – gk .
Step 3. If k ≤ 1, then set ak = bk = ck = 0 and dk = –B–1

k gk , compute αk such that Wolfe–
Powell conditions are satisfied, and set xk+1 = xk + sk = xk + αkdk . k = k + 1 and
go to Step 1.

Step 4. Compute

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α = gT
k–1sk–1, α̃ = gT

k–1ξ1, α̂ = gT
k–1ξ2,

β = sT
k–1Bk–1sk–1, β̃ = sT

k–1Bk–1ξ1, β̂ = sT
k–1Bk–1ξ2,

ζ = sT
k–1Bksk–1, ζ̃ = sT

k–1Bkξ1, ζ̂ = sT
k–1Bkξ2,

γ = gT
k sk–1, γ̃ = gT

k ξ1, γ̂ = gT
k ξ2,

(3.16)

where ξ1 and ξ2 are chosen such that

α̃ = γ̃ = ζ̂ = γ̂ = 0. (3.17)

Step 5. If γ = 0, then go to Step 6; otherwise, compute

η =
(
γ +

√
γ 2 + 2ζ (fk–1 – fk)

)
/ζ ,

γ̈ = ηβ̃ζ – ηβζ̃ – β̃γ ,

ι̃ = γ – ηζ , ι̇ = ι̃
(
α̂β̃ – η2ζ̃ β̂

)
,

γ̇ = αι̇ + ηα̂β̃ι̃2.
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If γ̇ = 0 or γ̈ = 0, then go to Step 6; otherwise, calculate

k1 = –ι̇/γ̇ , k2 = ηζ̃ /γ̈ ,

k3 =
1 – η(1 + k1α)(1 + k2β)

γ
,

and ak , bk , ck as determined in (3.7), go to Step 7.
Step 6. Let bk = ck = 0. Calculate

ρk = (fk–1 – fk)2 – αγ , (3.18)

β̇ =

⎧
⎨

⎩

(fk–1–fk )+√
ρk

–α
, if ρk ≥ 0,

1, otherwise,
(3.19)

and set

ak =
1 – β̇

α
gk–1. (3.20)

Step 7. If ‖ak‖ > ε1
�̃k

, then ak = ε1ak
�̃k‖ak‖ . Update bk and ck in the same way so that (1.20)

are satisfied.
Step 8. Solve subproblem (2.2)–(2.4) by Subalgorithm 2.1 to get sk .
Step 9. If (3.11) holds, then σk = σk–1; otherwise, calculate σk as defined in (3.13).

Step 10. Compute

ρk =
Aredk

Predk
, (3.21)

where Aredk , Predk are defined in (3.9) and (3.10).
Step 11. Update the trust region radius

�̃k+1 =

⎧
⎪⎪⎨

⎪⎪⎩

δ1�̃k , if ρk ≤ ι1,

min{δ2�̃k ,�max}, if ρk ≥ ι2 and ‖sk‖ = �̃k ,

�̃k , otherwise.

(3.22)

Step 12. If ρk ≥ ι1, then xk+1 = xk + sk . Set k = k + 1, and go to Step 1; otherwise xk+1 = xk ,
k = k + 1, and go to Step 6.

Remark 2 In order to ensure the positive definite transfer of the Hessian matrix, we use
the modified BFGS formula in Step 2 to iterate to get the positive definite matrix Bk+1 (see
[25]).

In the following, we establish the convergence results of Algorithm 3.1. The focus of this
paper is to transform the fractional model trust region subproblem of the equality con-
strained optimization model into a simple one-dimensional quadratic model subproblem
by cyclically fixing the fractional coefficient part of the model, so as to obtain a new ap-
proximate solution method for solving the subproblem. Therefore, the framework of the
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global convergence proof is similar to the proof process of the conic model trust region
algorithm in [20], with a major difference being the lower bound of reduction in each
iteration (see Lemma 3.1), which is an important result required in the proof of conver-
gence.

Lemma 3.1 Suppose that (1.20) holds, where ε1 satisfies (2.1). If {xk}, {Bk}, and {(AT
k Ak)–1}

are uniformly bounded. Let sk be the solution of subproblem (2.2)–(2.4), then there exist
positive constants M1 and M2 such that

ψk(0) – ψk(sk) ≥ M1
∥∥(

Q(2)
k

)T gk
∥∥min

{
�̃k ,

‖(Q(2)
k )T gk‖
‖Bk‖

}

– M2
(
1 + ‖Bk‖

)
min

{
�̃k ,‖Ck‖

}
(3.23)

for all k.

Proof Define

sk(t) = θklk – tQ(2)
k

(
Q(2)

k
)T gk , (3.24)

where θk and lk are defined in (2.12) and (2.9) respectively. Then we can see that sk(t) is
in the feasible region of subproblem (2.2)–(2.4) for all t ∈ [0, �̂k/‖(Q(2)

k )T gk‖]. From the
definition of sk and sk(t), we have

ψk(0) – ψk(sk) ≥ ψk(0) – ψk
(
sk(t)

)
(3.25)

for all t ∈ [0, �̂k/‖(Q(2)
k )T gk‖]. From (1.20), (2.24), and sk(t) ≤ �̃k it follows

ζ1 ≤ hk
(
sk(t)

) ≤ ζ2, (3.26)

where ζ1, ζ2 are defined in (2.25). By ‖Q(2)
k ‖ = 1, the Cauchy–Schwarz inequality, and for

all t ∈ [0, �̂k/‖(Q(2)
k )T gk‖], we have

ψk(0) – ψk
(
sk(t)

)

= –hk
(
sk(t)

)
θkgT

k lk + thk
(
sk(t)

)∥∥(
Q(2)

k
)T gk

∥∥2

–
1
2
(
hk

(
sk(t)

))2
θ2

k lT
k Bklk –

(
hk

(
sk(t)

))2
θklT

k BkQ(2)
k

(
–t

(
Q(2)

k
)T gk

)

–
1
2
(
hk

(
sk(t)

))2t2gT
k Q(2)

k
(
Q(2)

k
)T BkQ(2)

k
(
Q(2)

k
)T gk

≥ –ζ2θk‖lk‖‖gk‖ + tζ1
∥∥(

Q(2)
k

)T gk
∥∥2

–
1
2
ζ 2

2
(
θ2

k ‖lk‖2‖Bk‖ + 2θk‖lk‖‖Bk‖�̂k + t2∥∥(
Q(2)

k
)T gk

∥∥2‖Bk‖
)

≥ tζ1
∥∥(

Q(2)
k

)T gk
∥∥2 –

1
2

t2ζ 2
2
∥∥(

Q(2)
k

)T gk
∥∥2‖Bk‖

– ζ2θk‖lk‖‖gk‖ – ζ 2
2 θk‖lk‖‖Bk‖

(
θk‖lk‖ + �̂k

)
. (3.27)
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By (2.12), we obtain

max
t∈[0,�̂k/‖(Q(2)

k )T gk‖]

{
tζ1

∥∥(
Q(2)

k
)T gk

∥∥2 –
1
2

t2ζ 2
2
∥∥(

Q(2)
k

)T gk
∥∥2‖Bk‖

}

≥ ζ1

2
∥∥(

Q(2)
k

)T gk
∥∥2

min

{
�̂k

‖(Q(2)
k )T gk‖

,
ζ1

ζ 2
2 ‖Bk‖

}

≥ ζ1

2
∥∥(

Q(2)
k

)T gk
∥∥min

{
�̃k ,

ζ1‖(Q(2)
k )T gk‖

ζ 2
2 ‖Bk‖

}
–

ζ2

2
∥∥(

Q(2)
k

)T gk
∥∥(

θk‖lk‖
)

≥ M1
∥∥(

Q(2)
k

)T gk
∥∥min

{
�̃k ,

‖(Q(2)
k )T gk‖
‖Bk‖

}
– ζ 2

2 θk‖lk‖‖gk‖, (3.28)

where 0 < ζ1 < 1, ζ2 > 1, M1 = ζ 2
1 /(2ζ 2

2 ), and the second inequality is obtained from the
triangular inequality properties. Then from (3.25)–(3.28) we have

ψk(0) – ψk(sk) ≥ max
t∈[0,�̂k/‖(Q(2)

k )T gk‖]
ψk(0) – ψk

(
sk(t)

)

≥ M1
∥∥(

Q(2)
k

)T gk
∥∥min

{
�̃k ,

‖(Q(2)
k )T gk‖
‖Bk‖

}

– ζ 2
2 θk‖lk‖

[‖Bk‖
(
θk‖lk‖ + �̂k

)
+ 2‖gk‖

]
. (3.29)

Besides, since {(AT
k Ak)–1} are uniformly bounded, then from Lemma 3.1 in [20] we know

that there exists a positive constant ζ3 such that

θk‖lk‖ ≤ min
{
ι�̃k , ζ3‖Ck‖

}

holds where ι ∈ (0, 1) is defined in (2.11). Then we have

θk‖lk‖ ≤ max{ι, ζ3}min
{
�̃k ,‖Ck‖

}
. (3.30)

The boundedness of {xk}, rule (3.22), and inequality (3.30) imply that θk‖lk‖ + �̂k and
‖gk‖ are bounded above uniformly. For instance, if θk‖lk‖ + �̂k ≤ κ1 and ‖gk‖ ≤ κ2 for all
sufficiently large k, then we have

‖Bk‖
(
θk‖lk‖ + �̂k

)
+ 2‖gk‖ ≤ κ1‖Bk‖ + 2κ2 ≤ max{κ1, 2κ2}

(‖Bk‖ + 1
)
. (3.31)

Let

M2 = ζ 2
2 max{ι, ζ3}max{κ1, 2κ2}.

Then from (3.29)–(3.31) we know that (3.23) holds. Hence the theorem is proved. �

The proofs of the following Theorems 3.1–3.2 are similar to those in [20], so we only
give the conclusion and omit the proofs.
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Theorem 3.1 Under the conditions of Lemma 3.1, we have

lim
k→∞

‖Ck‖ = 0.

Theorem 3.2 Under the conditions of Lemma 3.1, we have

lim
k→∞

inf
∥∥(

Q(2)
k

)T gk
∥∥ = 0.

Theorem 3.3 Let the conditions of Lemma 3.1 hold and λk = (R(1)
k )–1(Q(1)

k )T gk . Then we
have

lim
k→∞

inf‖gk – Akλk‖ = 0. (3.32)

Proof From the definition of λk and (2.5), we have

gk – Akλk =
(
Q(1)

k
(
Q(1)

k
)T + Q(2)

k
(
Q(2)

k
)T)

gk – Q(1)
k R(1)

k
(
R(1)

k
)–1(Q(1)

k
)T gk

= Q(2)
k

(
Q(2)

k
)T gk .

From Theorem 3.2 it follows that (3.32) holds. �

From Theorems 3.1 and 3.3, we know that there exists a subsequence of {xk} produced
by Algorithm 3.1 converging to the KT point of (1.1)–(1.2).

4 Numerical experiment
In this section, Algorithm 3.1 (abbreviated as FTR) is tested with some test problems,
where eight problems are directly chosen from [28, 29] and are listed in Table 1.

Moreover, in order to test Algorithm 3.1 more generally, we designed three problems
(Problems 9–11) where Problems 10–11 are chosen from [30, 31] and the nonlinear equal-
ity constraints are polynomials (see [26]).

9. Conic function

f (x) =
n/2∑

i=1

x2
2i–1 + x2

2i
(1 – x2i–1)2

s.t. ci(x) = x2
2i – x2i–1x2i + 10 = 0, 1 ≤ i ≤ n/2.

Table 1 Test functions

Pro Function Name Pro Function Name

1 HS46 2 HS47
3 HS48 4 HS49
5 HS50 6 HS51
7 HS52 8 HS53
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10. Generalized Brown function

f (x) =
n/2∑

i=1

((
x2

2i–1
)(x2

2i+1) +
(
x2

2i
)(x2

2i–1+1))

s.t. ci(x) = (3 – 2xi+1)xi+1 + 1 – xi – 2xi+2 = 0, 1 ≤ i ≤ n – 2.

11. Penalty-I function

f (x) = 10–5
n∑

i=1

(xi – 1)2 +

( n∑

i=1

x2
i – 0.25

)2

s.t. ci(x) = 3x3
i + 4x2

i+1 = 0, 1 ≤ i ≤ n – 1.

Our fractional model is proposed on the basis of the conic model, and it is a generalized
form of the conic model. Both of them are suitable for solving the optimization problem
that the objective function is non-quadratic and the curvature changes severely. At this
time, the quadratic model methods often produce a poor prediction of the minimizer of
the function. In order to compare the calculation results of the fractional model and the
conic model, we let bk = ck = 0 in Algorithm 3.1. Then we can obtain the conic model
algorithm and call this algorithm CTR. Therefore, we solve these test problems by FTR
and CTR respectively and compare their results.

All the computations are carried out in Matlab R2013b on a microcomputer in dou-
ble precision arithmetic. These tests use the same stopping criterion ‖(Q(2)

k )T gk‖ ≤ ε and
‖Ck‖ ≤ ε. If the stoping criterion is not satisfied with Iter ≤ 5000, then the test is termi-
nated. We mark these by an ∗ in such tables. The columns in the tables have the following
meanings: Pro denotes the number of the test problems; n is the dimension of the test
problems, Iter is the number of iterations; nf and ng are the numbers of function and gra-
dient evaluations respectively; Qg is the value of Euclidean norm ‖(Q(2)

k )T gk‖ at the final
iteration; CPU(s) denotes the total iteration time of the algorithm in seconds.

The parameters in these algorithms are as follows:

B0 = I, ε1 = 0.6, ε = 10–6, ε0 = 10–3, �0 = 2,

�max = 10, ι =
√

0.5, σ0 = 1, ι1 = 0.01, ι2 = 0.7,

δ1 = 0.25, δ2 = 1.5.

The numerical comparison for 11 test problems is listed in Table 2. Because of the dif-
ference in the initial iteration point, we actually performed 19 experiments. In terms of
the number of iterations, our algorithm FTR may be somewhat superior to CTR for 17
tests, and the two algorithms are the same in efficiency for the other 2 tests. Because FTR
needs some extra algebra computation for some parameters, FTR takes more time than
CTR.

We know that large-scale problems with 10,000 or more dimensions can be tested for un-
constrained optimization problems. But when the test problem contains nonlinear equal-
ity constraints, the difficulty of solving the problem is greatly increased. Therefore, the
dimensions of the nonlinear equality constraint problems are limited. From Table 3, we
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Table 2 The numerical results of Algorithm 3.1 for some test problems

Pro n Starting point Algorithm Iter nf/ng Qg CPU (s)

1 8 (2, 1.5, 0.5, . . . , 2, 1.5, 0.5, 2, 1.5) CTR 37 37/32 2.325673(–7) 0.065033
FTR 30 30/24 8.903926(–7) 0.265808

2 5 (2, 1.5, –1, 0.5, 2) CTR 12 12/12 1.923822(–8) 0.069842
FTR 12 12/11 1.208933(–7) 0.179698

3 5 (3, 5, –3, 3, 5) CTR 29 29/29 7.867587(–7) 0.104208
FTR 28 28/27 7.233105(–7) 0.209572

4 5 (7, 7, 5, –3, 0.2) CTR 28 28/24 8.816453(–7) 0.056596
FTR 25 25/25 1.794643(–7) 0.187379

5 5 (35, –31, 11, 5, –5) CTR 20 20/20 8.080796(–7) 0.054710
FTR 19 19/19 9.688987(–7) 0.208662

6 5 (2.5, 0.5, 2, –1, 0.5) CTR 10 10/9 2.088608(–7) 0.050139
FTR 10 10/9 5.040703(–7) 0.170110

7 5 (3, 3, 3, 3, 3) CTR 23 23/20 7.777555(–9) 0.058845
FTR 20 20/19 1.238526(–9) 0.191213

8 5 (3, 3, 3, 3, 3) CTR 34 34/24 2.452030(–7) 0.085232
FTR 19 19/17 3.532659(–7) 0.189874

9 4 (–2, 2, –2, 2) CTR 110 110/98 8.314982(–11) 0.163601
FTR 74 74/67 1.493034(–8) 0.331437

4 (–3, –1, –3, –1) CTR 113 113/110 8.342504(–7) 0.167646
FTR 26 26/23 1.415245(–8) 0.209718

10 (–3, –1, . . . , –3, –1) CTR 100 100/92 1.493407(–9) 0.203343
FTR 34 34/31 8.041779(–9) 0.285324

80 (–1, 1, . . . , –1, 1) CTR 178 178/164 9.716836(–7) 0.871734
FTR 128 128/119 1.525727(–7) 3.198384

10 6 (–1, 1, –1, 1, –1, 1) CTR 22 22/19 1.976346(–7) 0.060672
FTR 14 14/12 2.538846(–7) 0.193613

4 (–1.2, 1, –1.2, 1) CTR 27 27/24 7.132702(–9) 0.081467
FTR 24 24/22 6.336906(–9) 0.223280

11 4 (–1.2, 1, –1.2, 1) CTR 118 118/103 1.144310(–7) 0.142733
FTR 16 16/12 9.425581(–7) 0.191315

4 (0.75, 0.5, 0.25, 0) CTR 59 59/45 3.391065(–8) 0.080867
FTR 42 42/32 9.504125(–7) 0.230135

4 (–3, –1, –3, –1) CTR 15 15/15 1.422248(–9) 0.047370
FTR 13 13/13 2.558427(–7) 0.180390

4 (3, 4, 3, 4) CTR 538 538/515 2.226214(–7) 0.653460
FTR 19 19/17 2.771759(–7) 0.189182

4 (–1, 1, –1, 1) CTR 160 160/142 1.398612(–8) 0.184020
FTR 12 12/11 6.116235(–9) 0.190648

can see that as the dimensions of each test problem range from 25 to 400, we have com-
puted nine numerical comparisons experiments for three test questions. It can be found
that our algorithm can get the minimum value of the function after a finite number of
iterations, but the algorithm CTR can not, and some test problem algorithms failed. The
number of iterations of FTR is less than that of CTR. That is, with the increase of the
dimension of the problem, our algorithm FTR can be superior to CTR both in iteration
number and algorithm stability.

5 Conclusions
The fractional model in Algorithm 3.1 is the extension of a conic model. By using more
information of function and gradient from the previous iterations and choosing parame-
ters flexibly, the fractional model can be more approximate to the original problem. When
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Table 3 The numerical results of Algorithm 3.1 for some test problems (ε = 10–4)

Pro n Starting point Algorithm Iter nf/ng Qg CPU (s)

1 50 (2, 1.5, 0.5, . . . , 2, 1.5, 0.5, 2, 1.5) CTR 66 66/59 7.675845(–5) 0.300518
FTR 29 29/23 5.866993(–5) 0.627469

101 (2, 1.5, 0.5, . . . , 2, 1.5, 0.5, 2, 1.5) CTR 137 137/128 9.543858(–5) 1.619127
FTR 37 37/29 2.970168(–5) 1.184047

200 (2, 1.5, 0.5, . . . , 2, 1.5, 0.5, 2, 1.5) CTR ∗ ∗/∗ ∗ ∗
FTR 33 33/27 7.135361(–5) 1.942937

5 25 (35, 11, 5, –5, . . . , 35, 11, 5, –5, 35, 11, 5) CTR 76 76/64 7.377510(–5) 0.232441
FTR 58 58/55 8.181980(–5) 0.546569

61 (35, 11, 5, –5, . . . , 35, 11, 5, –5, 35, 11, 5) CTR ∗ ∗/∗ ∗ ∗
FTR 74 74/64 7.910359(–5) 1.934600

10 30 (–1, 1, . . . , –1, 1) CTR 81 81/75 5.527921(–5) 0.202645
FTR 26 26/21 3.795910(–6) 0.355148

100 (–1, 1, . . . , –1, 1) CTR 26 26/21 1.689243(–5) 0.197726
FTR 21 21/16 1.357598(–5) 0.657030

200 (–1, 1, . . . , –1, 1) CTR 45 45/36 7.697442(–6) 0.713368
FTR 28 28/20 1.204414(–5) 1.409634

400 (–1, 1, . . . , –1, 1) CTR 80 80/70 1.815889(–5) 5.648017
FTR 24 24/18 9.612549(–5) 3.302268

solving the trust region subproblem, we reduce the fractional model of the subproblem to
a quadratic model by cycling the fixed coefficient part, and iteratively search in the de-
scending direction to obtain the approximate solution of the subproblem. Solving of the
subproblems is creative and the algorithm is simple. The theoretical and numerical results
show that the method is effective and robust.
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