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When a(x) = b(x) = 0, system (1.1) is reduced to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)αu + u = Fu(u, v) + λv, in R
3,

(–�)αv + v = Fv(u, v) + λu, in R
3,

u, v ∈ Hα(R3).

(1.2)

Systems like (1.1) and (1.2) are often referred to as nonlocal problems because of the ap-
pearance of the terms (–�)αu and (–�)αv, which implies that problems (1.1) and (1.2) are
no longer point-wise identities. In other words, the quantities (–�)αu and (–�)αv depend
on not only the value of u and v in a neighborhood of x (as in the case for the Lapla-
cian), but also on the values of u and v at any point y ∈ R

3. This phenomenon provokes
some mathematical difficulties, which makes the study of such problems particularly in-
teresting. In recent years, great interest has been devoted to the study of elliptic equations
involving the fractional Laplacian operator (–�)α , α ∈ (0, 1). This operator appears in a
quite natural way in many different applications, such as fractional quantum mechanics,
population dynamics, soft thin films, and so on. For more details and applications about
fractional Laplacian operators, we refer the reader to [1–3].

In the local case, that is, when α = 1, if the space R
3 is replaced by R

n, then problem
(1.1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

–�u + (1 + a(x))u = Fu(u, v) + λv, in R
n,

–�v + (1 + b(x))v = Fv(u, v) + λu, in R
n,

(u, v) ∈ W 1,2(Rn) ∗ W 1,2(Rn).

(1.3)

In [4], Zhang, Xu, and Zhang studied the existence of positive ground state solutions to
system (1.3) by virtue of the methods of Nehari manifold and concentration compactness
lemma. In [5], Luo and Zhang studied the existence of radially symmetric solutions in
H1

rad(RN ) × H1
rad(RN ) of the Schrödinger system

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λ1u = μ1u3 + βuv2 – εv, in R
N ,

–�v + λ2v = μ2v3 + βu2v – εu, in R
N ,

u, v ∈ H1(RN ),

where N = 2, 3, λ1 = λ2 = λ, μ1,μ2 > 0, 0 < β < min{μ1,μ2}, and ε ∈ R is a small linear
coupling constant. By using the perturbation method, they proved that if ε is a small lin-
ear coupling constant, then the above system possesses at least one nontrivial bound state
solution. Furthermore, by using the method of energy estimate, they proved that each
component of the bound state solution is nonnegative. If a(x) = b(x) = 0 and Fu(u, v) and
Fv(u, v) are replaced by f (u) and g(v), respectively, then system (1.3) reduces to the follow-
ing semilinear Schrödinger system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + u = f (u) + λv, in R
n,

–�v + v = g(v) + λu, in R
n,

(u, v) ∈ H1(Rn) ∗ H1(Rn).

(1.4)
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Due to its broad applications in several physical fields such as in nonlinear optics, plasma
physics, and so on, problem (1.4) has been widely investigated by many authors in the
past several years. For more details about the semilinear Schrödinger system, we refer the
reader to [6–9] and the references therein.

In the nonlocal case, that is, when α ∈ (0, 1), in [10], Lv and Peng studied the problem

⎧
⎪⎪⎨

⎪⎪⎩

(–�)αu + u = f (u) + λv, in R
n,

(–�)αv + v = g(v) + λu, in R
n,

(u, v) ∈ Hα(Rn) ∗ Hα(Rn).

(1.5)

Under some assumptions on the nonlinear terms f (u) and g(v), they obtained the existence
of positive vector solutions and vector ground state solutions for problem (1.5). Moreover,
the asymptotic behavior of these solutions as λ → 0 was described. In [11], by using the
Nehari manifold and fibering map, Shen studied the multiplicity and concentration be-
havior of nontrivial solutions for the following coupled system:

⎧
⎨

⎩

(–�)su + λV (x)u = f (x)|u|q–2u + α
α+β

|u|α–2u|v|β , in R
N ,

(–�)sv + λW (x)v = g(x)|v|q–2v + α
α+β

|u|α|v|β–2v, in R
N ,

where (–�)s is the fractional Laplacian operator with s ∈ (0, 1), the parameter λ > 0, 1 <
q < 2, α,β > 1 with α + β < 2∗

s , and N ≥ 3. When linear and nonlinear coupling terms both
exist, in [12], Du and Mao showed that the problem

⎧
⎪⎪⎨

⎪⎪⎩

(–�)αu + (λ1 + V (x))u + kv = μ1u3 + βuv2, in R
3,

(–�)αv + (λ2 + V (x))v + ku = μ2v3 + βu2v, in R
3,

(u, v) ∈ Hα(R3) ∗ Hα(R3),

(1.6)

possesses ground state solutions by using variational methods. For other work about the
fractional Laplacian system, we would like to mention [13–18] and the references therein.

Motivated by the above works, especially by [12], it is very natural for us to pose the
question: If the nonlinear terms μ1u3 + βuv2 and μ2v3 + βu2v in system (1.6) are replaced
by more general nonlinear terms Fu(u, v) and Fv(u, v), respectively, what will happen? Can
we obtain the existence of positive ground state solutions to system (1.1)? In this paper,
we will focus our attention on this question and give a definite answer.

To state our results, we impose the following conditions on the nonlinear terms Fu and
Fv (where ∇F(u, v) := (Fu, Fv)):
(F1) F ∈ C1(R2,R) and F(0, 0) = 0;
(F2) |∇F(u, v)| ≤ C(1 + |(u, v)|p–1), 2 < p < 2∗

α ;
(F3) |∇F(u, v)| = o(|(u, v)|), as |(u, v)| → 0;
(F4) ∀(u, v) 
= (0, 0), s > 0, s → ∇F(su,sv)(u,v)

s is strictly increasing;
(F5) F(u,v)

u2+v2 → ∞ as |(u, v)| → ∞;
(F6) Fu(u, v) ≥ 0, Fv(u, v) ≥ 0, Fu(0, v) = Fv(u, 0) = 0, u ≥ 0, v ≥ 0;
(F7) Fu(u, v) = Fv(v, u), u > 0, v > 0.
In order to prove the existence of a positive ground states solution, the function F(u, v)

will be assumed to satisfy:
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(F8) F(u, v) ≤ F(|u|, |v|), u, v ∈R.
We say that (u, v) 
= (0, 0) is a ground state solution to system (1.1) if its energy is minimal

among all nontrivial solutions. Moreover, a ground state solution (u, v) with u > 0 and v > 0
(u ≥ 0 and v ≥ 0) is called a positive (non-negative) ground state solution.

The main results of this paper are the following.

Theorem 1.1 Suppose that (F1)–(F6) and (F8) are satisfied, λ ∈ (0, 1), then problem (1.2)
possesses a positive ground state solution.

Theorem 1.2 Suppose that (V1), (V2) and (F1)–(F8) are satisfied, then problem (1.1) pos-
sesses a positive ground state solution.

Remark 1 Compared with the previous results, Theorem 1.2 can be regarded as an ex-
tension of Theorem 1.1 in [4] from the local to nonlocal case. A typical example of the
assumption (F8) with F(u, v) is the condition that f (s, t) > 0 for s, t > 0 and f (s, t) = 0 for
s ≤ 0 or t ≤ 0, which was considered in [19].

To prove Theorem 1.2, we will employ the method of Nehari manifold, which is based
on the ideas developed in [20] and the concentration compactness lemma. We will reduce
the variational problem to a constrained minimization problem on a Nehari manifold, and
then apply the concentration compactness lemma to get our main result.

The remainder of this paper is organized as follows. In Sect. 2, some notations and pre-
liminaries are presented. In Sect. 3, we will study Eq. (1.2) and prove Theorem 1.1. In
Sect. 4, we will give the proof of our main result—Theorem 1.2.

2 Preliminary
In this section, we will establish the variational setting, and give some notations and pre-
liminary lemmas which will be useful in the paper.

Throughout this paper, Ci (i = 1, 2, 3, . . . ) will denote various positive constants, the
strong convergence is denoted by →, and the weak convergence denoted as ⇀; 2∗

α = 2N
N–2α

is the fractional Sobolev critical exponent. For 1 < p < +∞, and f ∈ Lp(R3), let |f |Lp(R3)

denote the usual Lp norm of f . Let Lp(R3) ∗ Lp(R3) be the Cartesian product of two
Lp(R3) spaces, and for (f , g) ∈ Lp(R3)∗Lp(R3), |(f , g)|Lp∗Lp = |(f , g)|Lp(R3)∗Lp(R3) := (|f |pLp(R3) +

|g|pLp(R3))
1
p . For any ρ > 0 and z ∈R

3, Bρ(z) := {x ∈R
3 : |x – z| ≤ ρ}.

For any α ∈ (0, 1), the fractional Sobolev space Hα(R3) is defined by

Hα
(
R

3) =
{

u ∈ L2(
R

3) :
|u(x) – u(y)|
|x – y| 3+2α

2
∈ L2(

R
3 ∗R

3)
}

.

It is a Hilbert space, when endowed with the scalar product given by

(u, v) =
∫

R3
uv dx +

∫

R3

∫

R3

(u(x) – u(y))(v(x) – v(y))
|x – y|3+2α

dx dy.

The corresponding norm is

‖u‖Hα =
(∫

R3
|u|2 dx +

∫

R3

∫

R3

|u(x) – u(y)|2
|x – y|3+2α

dx dy
) 1

2
.



Du et al. Journal of Inequalities and Applications         (2020) 2020:17 Page 5 of 20

It is well-known that the fractional Laplacian (–�)α of a function u:R3 →R is defined by

(–�)αu(x) = F–1(|ξ |2α(Fu)
)
(x), ∀ξ ∈R

3,

where F is the Fourier transform, i.e.,

Fu(ξ ) =
1

(2π ) 3
2

∫

R3
exp(–2π iξ · x)u(x) dx,

where i is the imaginary unit. If u is smooth enough, it can be computed by the following
singular integral:

(–�)αu(x) = cαP.V.
∫

R3

u(x) – u(y)
|x – y|3+2α

dy, ∀x ∈R
3,

where cα is a normalization constant and P.V . stands for the principle value. Now we
can get an alternative definition of the fractional Sobolev space Hα(R3) via the Fourier
transform as follows:

Hα
(
R

3) =
{

u ∈ L2(
R

3) :
∫

R3
|ξ |2α|û|2 +

∣
∣û(ξ )

∣
∣2 dξ < ∞

}

,

endowed with the norm

‖u‖α =
(∫

R3

(
1 + |ξ |2α

)|û|2 dξ

) 1
2

,

where û = F (u) denotes the Fourier transform of u. From Plancherel’s theorem, we have
‖u‖2 = ‖û‖2 and ‖|ξ |αû‖2 = ‖(–�) α

2 u‖2. Hence

‖u‖Hα =
(∫

R3

(∣
∣(–�)

α
2 u

∣
∣2 +

∣
∣u(x)

∣
∣2)dx

) 1
2

, ∀u ∈ Hα
(
R

3).

It is easy to see that ‖ · ‖Hα is equivalent to ‖ · ‖α .
The homogeneous Sobolev space Dα,2(R3) is defined by

Dα
(
R

3) =
{
u ∈ L2∗

α
(
R

3) : |ξ |αû ∈ L2(
R

3)},

which is the completion of C∞
0 (R3) with respect to the norm

‖u‖Dα,2 =
(∫

R3

∣
∣(–�)

α
2 u

∣
∣2 dx

) 1
2

=
(∫

R3
|ξ |2α|û|2 dξ

) 1
2

.

Letting H := Hα(R3) ∗ Hα(R3), we define an inner product on H as follows:

(
(u1, v1), (u2, v2)

)
=

∫

R3
(–�)

α
2 u1(–�)

α
2 u2 dx +

∫

R3
(–�)

α
2 v1(–�)

α
2 v2 dx

+
∫

R3
u1(x)u2(x) dx +

∫

R3
v1(x)v2(x) dx,

for (u1, v1), (u2, v2) ∈ H ; ‖(u, v)‖ = ((u, v), (u, v)) 1
2 is the corresponding norm.
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For (u, v) ∈ H , the energy functional associated with (1.1) is

Φ(u, v) =
1
2

∫

R3

(∣
∣(–�)

α
2 u

∣
∣2 + u2)dx +

1
2

∫

R3

(∣
∣(–�)

α
2 v

∣
∣2 + v2)dx +

1
2

∫

R3
a(x)u2 dx

+
1
2

∫

R3
b(x)v2 dx – λ

∫

R3
uv dx –

∫

R3
F(u, v) dx

=
1
2
∥
∥(u, v)

∥
∥2 +

1
2

∫

R3
a(x)u2 dx +

1
2

∫

R3
b(x)v2 dx – λ

∫

R3
uv dx –

∫

R3
F(u, v) dx.

The Nehari manifold corresponding to Φ is defined by

N =
{

(u, v) ∈ H\{(0, 0)
}

:
〈
Φ ′(u, v), (u, v)

〉
= 0

}
,

and thus for (u, v) ∈ N , one sees that

‖u‖2 + ‖v‖2 +
∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – 2λ

∫

R3
uv dx =

∫

R3
∇F(u, v)(u, v) dx.

In [21], since Fu and Fv are C1 functions, it follows that Φ ∈ C2 and N ∈ C1. From these
properties of Φ and N , one can easily deduce that critical points of Φ on N are criti-
cal points of Φ on H . Furthermore, one can use the standard Ljusternik–Schnirelmann
category theory on N directly [22, 23]. However, in this paper, we cannot obtain these
properties, since Fu and Fv are just continuous functionals, and N is only a continuous
submanifold of H . To overcome these difficulties, we should carefully study the elemen-
tary properties for N as in [20]. By doing this, we can reduce a variational problem for an
indefinite functional to a minimax problem on a manifold and find a positive solution to
system (1.1). The main idea of this method is to find the minimizing sequence by using the
relationship between N and the unit sphere of H . For more about the Nehari manifold, we
refer the reader to [24–26] and the references therein.

Now we will introduce the following lemmas.

Lemma 2.1 ([27]) For any α ∈ (0, 1), Hα(R3) is continuously embedded into Lp(R3) for
p ∈ [2, 2∗

α] and compactly embedded into Lp
loc(R3) for p ∈ [1, 2∗

α).

Lemma 2.2 ([28]) If {un} is bounded in Hα(R3) with α ∈ (0, 1) and it satisfies

lim
n→∞ sup

y∈R3

∫

BR(y)

∣
∣un(x)

∣
∣2 dx = 0,

where R > 0, then un → 0 in Lr(RN ) for every 2 < r < 2∗
α .

Remark 2 Similarly, in the case when the sequence {|un|2∗
α } is vanishing, we can prove that

un → 0 in Lr(R3) for every 2 < r ≤ 2∗
α .

Lemma 2.3
(1) Suppose that (F2) and (F3) hold, then for any ε > 0, there exists Cε > 0 such that

∣
∣∇F(u, v)

∣
∣ ≤ ε

∣
∣(u, v)

∣
∣ + Cε

∣
∣(u, v)

∣
∣p–1, ∀u, v ∈R. (2.1)
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(2) Suppose that (F3) and (F4) hold, then the following inequality holds:

0 < 2F(u, v) < ∇F(u, v)(u, v), ∀(u, v) 
= (0, 0). (2.2)

Proof The proof of (1) is standard, we omit it here.
(2) By (F3) and (F4),

0 < F(u, v) =
∫ 1

0

dF(su, sv)
ds

ds

=
∫ 1

0

Fu(su, sv)u + Fv(su, sv)v
s

s ds

<
∫ 1

0

(
Fu(u, v)u + Fv(u, v)v

)
s ds

=
1
2
∇F(u, v)(u, v),

where (u, v) ∈ H , (u, v) 
= (0, 0). Therefore, the proof of Lemma 2.3 is completed. �

Remark 3 From Lemma 2.3, it is easy to see that

Φ|N (u, v) =
∫

R3

[
1
2
∇F(u, v)(u, v) – F(u, v)

]

dx > 0.

Let us define the least energy on N as c := infN Φ ; obviously, c ≥ 0.

Lemma 2.4
(1) Suppose that (V1) holds. Then there exist ζ ,η > 0 such that for every (u, v) ∈ H ,

ζ
∥
∥(u, v)

∥
∥2 ≤ ‖u‖2 +‖v‖2 +

∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – 2λ

∫

R3
uv dx ≤ η

∥
∥(u, v)

∥
∥2.

(2) Suppose that (V1) and (F3)�(F5) hold. If (un, vn) ⇀ (u, v) and (u, v) 
= (0, 0) in H ,
then for every positive sequence {tn} satisfying tn → ∞,

∫

R3

F(tnun, tnvn)
t2
n

dx → ∞.

In particular, Φ(tnun, tnvn) → –∞, as n → ∞.

Proof (1) Let

ζ = min
{

1, inf
R3

{
a(x) – λ + 1

}
, inf

R3

{
b(x) – λ + 1

}}
,

and set

η = max
{

1 + λ,
∣
∣a(x)

∣
∣
L∞(R3),

∣
∣b(x)

∣
∣
L∞(R3)

}
.
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A direct calculation shows that

‖u‖2 + ‖v‖2 +
∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – 2λ

∫

R3
uv dx

≥ ‖u‖2 + ‖v‖2 +
∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – λ

∫

R3
u2 dx – λ

∫

R3
v2 dx

=
∫

R3

∣
∣(–�)

α
2 u

∣
∣2 dx +

∫

R3

(
1 + a(x) – λ

)
u2 dx

+
∫

R3

∣
∣(–�)

α
2 v

∣
∣2 dx +

∫

R3

(
1 + b(x) – λ

)
v2 dx

≥ ζ
∥
∥(u, v)

∥
∥2,

and

‖u‖2 + ‖v‖2 +
∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – 2λ

∫

R3
uv dx

≤
∫

R3

(∣
∣(–�)

α
2 u

∣
∣2 + u2

)
dx +

∫

R3

(∣
∣(–�)

α
2 v

∣
∣2 + v2

)
dx +

∫

R3
a(x)u2 dx

+
∫

R3
b(x)v2 dx + 2λ

∫

R3
uv dx

≤
∫

R3

∣
∣(–�)

α
2 u

∣
∣2 dx +

∫

R3

∣
∣(–�)

α
2 v

∣
∣2 dx +

∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx

+ (1 + λ)
∫

R3
u2 dx + (1 + λ)

∫

R3
v2 dx

≤ η
∥
∥(u, v)

∥
∥2.

(2) Since (un, vn) ⇀ (u, v) in H , Lemma 2.2 implies that

(un, vn) → (u, v) in L2
loc

(
R

3) ∗ L2
loc

(
R

3),

un → u, vn → v a.e. x ∈R
3.

In view of (u, v) 
= (0, 0), there exists a subset Ω of R3 with positive measure such that
(u(x), v(x)) 
= (0, 0), a.e. in Ω , thus tn|(un, vn)| → ∞, x ∈ Ω . By (F5), we have

∫

Ω

lim inf
n→∞

F(tnun, tnvn)
t2
n(u2

n + v2
n)

(
u2

n + v2
n
)
dx = ∞,

and then in view of Fatou’s lemma, we can get

lim inf
n→∞

∫

R3

F(tnun, tnvn)
t2
n

dx = ∞.

Thus from conclusion (1) of Lemma 2.4 and the fact that (un, vn) is bounded in H , we
obtain

Φ(tnun, tnvn) ≤ t2
n

2

[

η
(‖u‖2 + ‖v‖2) –

∫

R3

2F(tnun, tnvn)
t2
n

dx
]

→ –∞.

The proof Lemma 2.4 is completed. �
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In the following, we shall prove some elementary properties of N .

Lemma 2.5 Suppose that (V1) and (F1)–(F5) are satisfied. The the following statements
hold:
(1) For all (u, v) ∈ H\{(0, 0)}, there exists a unique t(u,v) > 0 such that t(u,v)(u, v) ∈ N and

Φ(t(u,v)(u, v)) = maxt>0 Φ(t(u, v)).
(2) The set N is bounded away from 0.
(3) There exists γ > 0 such that t(w,z) ≥ γ for all (w, z) ∈ S := {(u, v) ∈ H : ‖(u, v)‖2 = 1}

and for each compact subset W ⊂ S, there exists a constant Cw, such that t(u,v) ≤ Cw

for all (u, v) ∈ W .
(4) N is a regular manifold, diffeomorphic to the unit sphere of H .
(5) Φ ′ is weakly sequentially continuous, namely, if (un, vn) ⇀ (u, v) in H , then

Φ ′(un, vn) ⇀ Φ ′(u, v) in H .

Proof (1) Letting (u, v) ∈ H\{(0, 0)} be fixed and for t ≥ 0, we consider the map g : t �→
Φ(tu, tv) defined by

g(u,v)(t) =
t2

2

∫

R3

(∣
∣(–�)

α
2 u

∣
∣2 + u2)dx +

t2

2

∫

R3

(∣
∣(–�)

α
2 v

∣
∣2 + v2)dx +

t2

2

∫

R3
a(x)u2 dx

+
t2

2

∫

R3
b(x)v2 dx – t2

∫

R3
λuv dx –

∫

R3
F(tu, tv) dx

=
t2

2
∥
∥(u, v)

∥
∥2 +

t2

2

∫

R3

(
a(x)u2 + b(x)v2)dx – t2

∫

R3
λuv dx –

∫

R3
F(tu, tv) dx.

It is easy to verify that there exists a unique t(u,v) > 0 such that g ′
(u,v)(t) > 0 for 0 < t < t(u,v)

and g ′
(u,v)(t) < 0 for t > t(u,v). Indeed, noting that

g ′
(u,v)(t) = t

(

‖u‖2 + ‖v‖2 +
∫

R3

(
a(x)u2 + b(x)v2)dx – 2λ

∫

R3
uv dx

–
∫

R3

∇F(tu, tv)(u, v)
t

dx
)

,

from (F3) and Lemma 2.4 (1), we can see that g ′
(u,v)(t) > 0 as long as t > 0 is small enough.

On the other hand, from Lemma 2.4 (2) and (2.2), we can deduce that

∫

R3

∇F(tu, tv)(u, v)
t

dx ≥
∫

R3

2F(tu, tv)
t2 dx → ∞, t → ∞,

which implies that g ′
(u,v)(t) < 0 when t is large enough. Hence, there exists a t(u,v) > 0

such that g ′
(u,v)(t(u,v)(u, v)) = 0 and maxt>0 g(u,v)(t) = g(t(u,v)(u, v)). Namely, maxt>0 g(u,v)(t) is

achieved at t(u,v) and t(u,v)(u, v) ∈ N .
It remains to prove the uniqueness of t(u,v). In fact, if for any given (u, v) ∈ H\{(0, 0)},

if there exist two positive constants t′
(u,v), t(u,v) satisfying t′

(u,v) > t(u,v) > 0 such that
t′
(u,v)(u, v), t(u,v)(u, v) ∈ N , then

‖u‖2 + ‖v‖2 +
∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – 2λ

∫

R3
uv dx =

∫

R3

∇F(tu, tv)(u, v)
t

dx,
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‖u‖2 + ‖v‖2 +
∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – 2λ

∫

R3
uv dx =

∫

R3

∇F(t′u, t′v)(u, v)
t′ dx.

Thus

0 =
∫

R3

(∇F(t′u, t′v)(u, v)
t′ –

∇F(tu, tv)(u, v)
t

)

dx,

which makes no sense in view of (F4) and t′
(u,v) > t(u,v) > 0. Hence conclusion (1) holds.

(2) Let (u, v) ∈ N , then

‖u‖2 + ‖v‖2 +
∫

R3
a(x)u2 dx +

∫

R3
b(x)v2 dx – 2λ

∫

R3
uv dx =

∫

R3
∇F(u, v)(u, v) dx.

By (2.1) and Lemma 2.4 (1), we deduce that for every ε > 0,

ζ
(‖u‖2 + ‖v‖2) ≤ ε

(|u|22 + |v|22
)

+ Cε

(|u|pp + |v|pp
) ≤ ε

(‖u‖2 + ‖v‖2) + CCε

(‖u‖p + ‖v‖p).

Noting that p > 2, there exists a C1 > 0 such that

‖u‖p–2 + ‖v‖p–2 ≥ C1.

Therefore, there exists a ρ > 0 such that

‖u‖2 + ‖v‖2 ≥ ρ2, ∀(u, v) ∈ N . (2.3)

So the conclusion (2) is proved.
(3) From (1), we know that for every {(un, vn)} ⊂ H\{(0, 0)} there exists a t(un ,vn) such

that t(un ,vn)(un, vn) ∈ N . By conclusion (2), ‖t(un ,vn)(un, vn)‖ = t(un ,vn)‖(un, vn)‖ ≥ ρ > 0. Thus
t(un ,vn) → 0 is impossible. Consequently, there exists a γ > 0 such that, for every (w, z) ∈ S,
one has t(w,z) ≥ γ .

In order to prove t(u,v) ≤ Cw for every (u, v) ∈ W ⊂ S, we argue indirectly and let
{(un, vn)} ⊂ W ⊂ S be a sequence with t(un ,vn) → ∞. Since W is compact, there ex-
ists a (u, v) ∈ W such that (un, vn) → (u, v) in H . By the proof of Lemma 2.4 (2),
Φ(t(un ,vn)(un, vn)) → –∞. On the other hand, t(un ,vn)(un, vn) ∈ N shows Φ(t(un ,vn)(un, vn)) ≥
0, which is a contradiction to Φ(t(un ,vn)(un, vn)) → –∞.

(4) Define the mappings m̂ : H\{(0, 0)} → N and m : S → N by setting

m̂(u, v) := t(u,v)(u, v), m := m̂|S. (2.4)

By conclusions (1)–(3) of Lemma 2.5, we know that the conditions of Proposition 3.1 in
[20] are satisfied. So the mapping m is a homeomorphism between S and N . Moreover,
the inverse of m is given by

m̌(u, v) = m–1(u, v) =
(u, v)

‖(u, v)‖ .

Thus, N is a regular manifold, diffeomorphic to the unit sphere of H .
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(5) Assume that (un, vn) ⇀ (u, v) in H , then we may assume that (un, vn) → (u, v) in
Lp

loc(R3) ∗ Lp
loc(R3) after passing to a subsequence. By (F2), we have

Fu(un, vn) → Fu(u, v), Fv(un, vn) → Fv(u, v),

in L
p

p–1
loc (R3) ∗ L

p
p–1
loc (R3). Therefore, for every (φ,ϕ) ∈ C∞

0 (R3) ∗ C∞
0 (R3), with the help of

Hölder inequality, we have

∫

R3
Fu(un, vn)φ dx →

∫

R3
Fu(u, v)φ dx,

∫

R3
Fv(un, vn)ϕ dx →

∫

R3
Fv(u, v)ϕ dx,

which implies that

〈
Φ ′(un, vn), (φ,ϕ)

〉 → 〈
Φ ′(u, v), (φ,ϕ)

〉
. (2.5)

We claim that {Φ ′(un, vn)} is bounded in H . Indeed, for every (h, k) ∈ H , by (2.1), Sobolev
embedding theorem, and Hölder inequality, we get, for any ε > 0,

∣
∣
∣
∣

∫

R3
Fu(un, vn)hdx

∣
∣
∣
∣ ≤ ε

∫

R3

(|un| + |vn|
)|h|dx + Cε

∫

R3

(|un|p–1 + |vn|p–1)|h|dx

≤ ε
(|un|2 + |vn|2

)|h|2 + Cε

(|un|p–1
p + |vn|p–1

p
)|h|p

≤ ε
(‖un‖ + ‖vn‖

)‖h‖ + CCε

(‖un‖p–1 + ‖vn‖p–1)‖h‖
≤ C′‖h‖.

Similarly, | ∫R3 Fv(un, vn)k dx| ≤ C‖k‖. Hence

∣
∣
〈
Φ ′(un, vn), (h, k)

〉∣
∣ ≤ C

∥
∥(h, k)

∥
∥.

Since {Φ ′(un, vn)} is bounded in H and C∞
0 (R3)∗C∞

0 (R3) is dense in H , we conclude that
(2.5) holds for every (φ,ϕ) ∈ H and so Φ ′(un, vn) ⇀ Φ ′(u, v) in H .

Now we shall consider the functional Ψ : S → R, defined by

Ψ (u, v) := Φ
(
m(u, v)

)
,

where m(u, v) is given in (2.4). As in [20], we have the following lemma. �

Lemma 2.6 Let assumptions (V1) and (F1)–(F5) be satisfied. Then the following state-
ments hold:
(1) If {(wn, zn)} is a (P.S.) sequence for Ψ , then {m(wn, zn)} is a (P.S.) sequence for Φ ,
(2) (w, z) is a critical point of Ψ if and only if m(w, z) is a nontrivial critical point of Φ .

Moreover, infS Ψ = infN Φ ,
(3) A minimizer of Φ on N is a ground state solution to the system (1.1).
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Proof Let us first prove conclusions (1) and (2). Since H is a Hilbert space, it follows that
H satisfies (A1) of Corollary 3.3 in [20]. From Lemma 2.5 (3), we know that the functional
Φ satisfies (A2) and (A3) of Corollary 3.3 in [20]. Consequently, by Corollary 3.3 of [20],
conclusions (1) and (2) hold.

Now we prove conclusion (3). Indeed, let (u, v) ∈ N be such that Φ(u, v) = c = infN Φ ,
then Ψ (w, z) = c, where (w, z) = m–1(u, v) ∈ S. From (2), one has Ψ (w, z) = infS Ψ . Once
again, (2) implies Ψ ′(w, z) = 0. Thus, Φ ′(u, v) = 0.

For any (u′, v′) 
= (0, 0) satisfying Φ ′(u′, v′) = 0, we have (u′, v′) ∈ N , and from the defini-
tion of c, we obtain Φ(u′, v′) ≥ c = Φ(u, v). Thus, (u, v) is a ground state solution to (1.1). �

Remark 4 From Lemma 2.6 (3), we know that the problem of seeking for a ground state
solution to system (1.1) can be transformed into that of finding a minimizer of Φ|N . In the
process of finding the minimizer, what we mainly need to do is to recover the compactness
of a (P.S.) sequence for Φ . Using the concentration compactness lemma, the relationship
between Eq. (1.1) and its corresponding limit system, we can overcome this obstacle.

3 The limit system
In the process of looking for ground state solutions to system (1.1), the corresponding
limit system is very important. In this section, we shall prove some properties of a ground
state solution to the limit system and give the proof of Theorem 1.1. Precisely, we will be
concerned with the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)αu + u = Fu(u, v) + λv, in R
3,

(–�)αv + v = Fv(u, v) + λu, in R
3,

u, v ∈ Hα(R3),

(3.1)

and the energy functional corresponding to system (3.1) is

Φ∞(u, v) =
1
2

∫

R3

(∣
∣(–�)

α
2 u

∣
∣2 + u2)dx +

1
2

∫

R3

(∣
∣(–�)

α
2 v

∣
∣2 + v2)dx

– λ

∫

R3
uv dx –

∫

R3
F(u, v) dx

=
1
2
(‖u‖2 + ‖u‖2) – λ

∫

R3
uv dx –

∫

R3
F(u, v) dx.

As in Sect. 2, in order to find a critical point of the functional Φ∞, we also use the Nehari
manifold methods. The Nehari manifold corresponding to Φ∞ is defined by

N∞ =
{

(u, v) ∈ H\{(0, 0)
}

:
〈
Φ ′

∞(u, v), (u, v)
〉
= 0

}
,

and the least energy on N∞ is defined by c∞ := infN∞ Φ . One checks immediately that
c∞ > 0. Replacing Φ , N , m, Ψ by Φ∞, N∞, m∞, Ψ∞ respectively, Lemmas 2.5 and 2.6 still
hold. For the reader’s convenience, we give the conclusions.

Lemma 3.1 Suppose that (F1)–(F4) hold and λ ∈ (0, 1), then
(1) N∞ is a regular manifold, diffeomorphic to the unit sphere of H ;
(2) If {(wn, zn)} is a (P.S.) sequence for Ψ∞, then {m∞(wn, zn)} is a (P.S.) sequence for Φ∞;
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(3) (w, z) is a critical point of Ψ∞ if and only if m(w, z) is a nontrivial critical point of
Φ∞. Moreover, infS Ψ∞ = infN∞ Φ∞;

(4) A minimizer of Φ∞ on N∞ is a ground state solution to system (3.1);
(5) Φ ′∞ is weakly sequentially continuous.

With the above preparations at hand, now we give the proof of Theorem 1.1.

Proof We divide the proof into six steps:
Step 1. The existence of (P.S.) sequence for Φ∞.
Assume that {(w̄n, z̄n)} ⊂ S is a minimizing sequence such that Ψ∞(w̄n, z̄n) → infS Ψ∞.

By Ekeland’s variational principle in [22], without loss of generality, we may suppose
Ψ ′∞(w̄n, z̄n) → 0. It follows from Lemma 3.1 (2) that Φ ′∞(un, vn) → 0, where (un, vn) =
m∞(w̄n, z̄n) ∈ N∞. Moveover, by Lemma 3.1 (3), we have Φ∞(un, vn) = Ψ∞(w̄n, z̄n) → c∞.

Step 2. {(un, vn)} is bounded in H .
Suppose on the contrary that sn := ‖(un, vn)‖ → ∞. Define (wn, zn) = (un ,vn)

‖(un ,vn)‖ . Clearly,
{(wn, zn)} is bounded in H and there exists (w, z) ∈ H such that, passing if necessary to a
subsequence,

(wn, zn) ⇀ (w, z) ∈ H ,

(wn, zn) → (w, z) ∈ L2
loc

(
R

3) ∗ L2
loc

(
R

3),

wn → w, zn → z a.e. in R
3.

Obviously, the sequence (wn, zn) is bounded in Lp(R3) ∗ Lp(R3) by Sobolev embedding
theorem, i.e., {|wn|p + |zn|p} is a bounded sequence in R and therefore we can assume
|wn|p + |zn|p → A ∈ [0,∞). In the following, we shall prove |wn|p + |zn|p → A ∈ [0,∞)
cannot happen, which implies that {(un, vn)} is bounded in H . To do this, we will consider
the following two cases.

Case A. |wn|p + |zn|p → A = 0.
From (2.1), for any ε > 0, s > 0, we have

∣
∣
∣
∣

∫

R3
F(swn, szn) dx

∣
∣
∣
∣ ≤ εs2(|wn|22 + |zn|22

)
+ spCCε

(|wn|pp + |zn|pp
)
.

Since A = 0 and {(wn, zn)} is bounded in L2(R3) ∗ L2(R3), one has
∣
∣
∣
∣

∫

R3
F(swn, szn) dx

∣
∣
∣
∣ ≤ Cε.

Thus
∫

R3 F(swn, szn) dx → 0 as n → ∞. So we infer from Lemma 2.4 (1), that for each s > 0,

c∞ + o(1) = Φ∞(un, vn)

≥ Φ∞(swn, szn)

≥ s2ζ

2
(‖wn‖2 + ‖zn‖2) –

∫

R3
F(swn, szn) dx

→ s2ζ

2
,

as n → ∞. This is a contradiction if s >
√

2c∞
ζ

.
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Case B. |wn|p + |zn|p → A ∈ (0,∞).
Without loss of generality, we may assume that wn � 0 in Lp(R3). From Lemma 2.2,

there exist a δ > 0 and a sequence {xn} ⊂R
3 such that

∫

B(xn ,1)
|wn|2 dx > δ. (3.2)

We first prove that {xn} is bounded in R
3. Indeed, suppose on the contrary that |xn| →

∞. Let w̃n(x) = wn(x + xn), z̃n(x) = zn(x + xn). It is obvious that ‖(w̃n, z̃n)‖ = ‖(wn, zn)‖ =
1, thus, {(w̃n, z̃n)} is bounded. Up to a subsequence, there exists a (w̃, z̃) ∈ H such that
(w̃n, z̃n) ⇀ (w̃, z̃) in H , (w̃n, z̃n) → (w̃, z̃) in L2

loc(R3) ∗ L2
loc(R3), w̃n → w̃, z̃n → z̃ for a.e. x ∈

R
3. It follows from (3.2) that

∫

B(0,1)
|w̃n|2 dx > δ.

Since w̃n → w̃ in L2
loc(R3), the latter implies w̃ 
= 0. Therefore (w̃, z̃) 
= (0, 0). And conse-

quently from Lemma 2.4, we get

∫

R3

F(snw̃n, snz̃n)
s2
n

dx = ∞,

0 ≤ Φ∞(un, vn)
‖(un, vn)‖2

=
1
2

[‖un‖2 + ‖vn‖2 – 2λ
∫

R3 unvn dx
‖(un, vn)‖2

]

–
∫

R3

F(snwn, snzn)
s2
n

dx

≤ c1

2
–

∫

R3

F(snw̃n, snz̃n)
s2
n

dx

→ –∞,

where c1 ≥ λ + 1 is a positive constant, which yields to a contradiction.
It follows from wn → w in L2

loc(R3) that w 
= 0. Thus by Lemma 2.4 (2) we ob-
tain Φ∞(snwn, snzn) → –∞, which is a contradiction to the fact that Φ∞(snwn, snzn) =
Φ∞(un, vn) ≥ 0.

Step 3. Φ ′∞(ǔ, v̌) = 0.
From Step 2, {(un, vn)} is bounded in H . Thus, up to a subsequence, there exists a (ǔ, v̌) ∈

H such that (un, vn) ⇀ (ǔ, v̌) in H , (un, vn) → (ǔ, v̌) in L2
loc(R3) ∗ L2

loc(R3), un → ǔ, vn → v̌
for a.e. x ∈R

3. By Lemma 3.1 (5), we see that Φ ′∞(ǔ, v̌) = 0.
Step 4. (ǔ, v̌) 
= (0, 0).
By Sobolev embedding theorem, it is easy to see that the sequence {(un, vn)} is bounded

in Lp(R3) ∗ Lp(R3), i.e., {|un|p + |vn|p} is a bounded sequence in R. Selecting a sub-
sequence if necessary, we can assume that |un|p + |vn|p → B ∈ [0,∞). If B = 0, then
∫

R3 ∇F(un, vn)(un, vn) dx → 0. It follows from Lemma 2.4 (1) that

o(1) =
〈
Φ ′

∞(un, vn), (un, vn)
〉

≥ ζ
(‖un‖2 + ‖vn‖2) –

∫

R3
∇F(un, vn)(un, vn) dx

= ζ
(‖un‖2 + ‖vn‖2) + o(1).
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This yields immediately that (un, vn) → (0, 0) in H . Since (un, vn) ∈ N∞, we obtain, for some
ρ > 0, ‖(un, vn)‖ > ρ , which shows that one cannot have B = 0. Without loss of generality,
we may assume that un � 0 in Lp(R3). From Lemma 2.2, there exist yn ∈R

3 and δ > 0 such
that

∫

B(yn ,1)
|un|2 dx > δ. (3.3)

By using the same arguments as in Step 2, we can prove that {yn} is bounded inR
3. Observe

that un → ǔ in L2
loc(R3) and (3.3) imply ǔ 
= 0. So (ǔ, v̌) 
= (0, 0).

Step 5. Φ∞(ǔ, v̌) = c∞.
From Φ ′∞(ǔ, v̌) = 0 and (ǔ, v̌) 
= (0, 0), we have (ǔ, v̌) ∈ N∞. Thus Φ∞(ǔ, v̌) ≥ c∞. By using

Fatou’s lemma, it is easy to check that

c∞ + o(1) = Φ∞(un, vn)

=
∫

R3

[
1
2
∇F(un, vn)(un, vn) – F(un, vn)

]

dx

≥
∫

R3

[
1
2
∇F(ǔ, v̌)(ǔ, v̌) – F(ǔ, v̌)

]

dx + o(1)

= Φ∞(ǔ, v̌) + o(1).

Therefore Φ∞(ǔ, v̌) = c∞, which means (ǔ, v̌) is a ground state solution to system (3.1).
Step 6. ǔ > 0, v̌ > 0.
In the following, we first prove ǔ ≥ 0, v̌ ≥ 0. Namely, (ǔ, v̌) is a non-negative ground state

solution. Indeed, since (ǔ, v̌) ∈ H ,

∣
∣(–�)

α
2 ǔ

∣
∣2
2 ≥ ∣

∣(–�)
α
2 |ǔ|∣∣2

2,
∣
∣(–�)

α
2 v̌

∣
∣2
2 ≥ ∣

∣(–�)
α
2 |v̌|∣∣2

2, (3.4)

so (|ǔ|, |v̌|) ∈ H . By Lemma 2.5 (1), there exists a τ > 0 such that τ (|ǔ|, |v̌|) ∈ N∞, which
implies that Φ∞(τ (|ǔ|, |v̌|)) ≥ c∞. By (3.4) and (F8), we have Φ∞(τ |ǔ|, τ |v̌|) ≤ Φ∞(τ ǔ, τ v̌).
Since Φ∞(τ ǔ, τ v̌) ≤ Φ∞(ǔ, v̌), we obtain Φ∞(τ |ǔ|, τ |v̌|) ≤ c∞, so that Φ∞(τ |ǔ|, τ |v̌|) = c∞,
which means (τ |ǔ|, τ |v̌|) is also a solution to system (3.1), that is, system (3.1) has a non-
negative ground state solution.

Next we prove ǔ > 0, v̌ > 0. If ǔ ≡ 0, then it follows from the first equation of (3.1),
(F5) and λ > 0 that v̌ ≡ 0. Therefore (ǔ, v̌) = (0, 0), a contradiction. Reasoning as above, we
obtain v̌ 
≡ 0. By using (F5) and the strong maximum principle to each single equation in
(3.1), we know that ǔ > 0, v̌ > 0. Hence, (ǔ, v̌) is a positive ground state solution to system
(3.1).

The proof of Theorem 1.1 is completed. �

Remark 5 By the above arguments, we proved that limit system (3.1) has a positive ground
state solution. Namely, if a(x) = b(x) = 0, then system (1.1) has a positive ground state
solution. In the following section, we shall consider the case a2(x) + b2(x) 
≡ 0.
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4 Proof of Theorem 1.2
The following lemma establishes an inequality between c and c∞ that will be essential in
the proof of Theorem 1.2. Loosely speaking, with the aid of this inequality, we can recover
the compactness of a (P.S.) sequence for Φ .

Lemma 4.1 Suppose that (V1), (V2) and (F1)–(F8) hold. Then c < c∞.

Proof Let (u0, v0) ∈ N∞ be a positive ground state solution to system (3.1). Since (F7), we
see that Φ∞(v0, u0) = c∞, that is, (v0, u0) is a minimizer of Φ∞|N∞ . Choose t, τ > 0 such
that t(u0, v0), τ (v0, u0) ∈ N . By (V2),

∫

R3

(
a(x) + b(x)

)(
u2

0 + v2
0
)
dx ≤ 0.

Therefore,
∫

R3 a(x)u2
0 dx +

∫

R3 b(x)v2
0 dx ≤ 0 or

∫

R3 a(x)v2
0 dx +

∫

R3 b(x)u2
0 dx ≤ 0. Without

loss of generality, we may assume that
∫

R3 a(x)u2
0 dx +

∫

R3 b(x)v2
0 dx ≤ 0. This implies that

Φ(tu0, tv0) ≤ Φ∞(tu0, tv0). Since (u0, v0) ∈ N∞, we have Φ∞(tu0, tv0) ≤ Φ∞(u0, v0). Hence,
by the definition of c and c∞, we can guarantee that

c ≤ Φ(tu0, tv0) ≤ Φ∞(tu0, tv0) ≤ Φ∞(u0, v0) = c∞. (4.1)

In the sequel, we shall prove that c = c∞ cannot happen, which implies c < c∞. Indeed,
if c = c∞, then t = 1, which means (u0, v0) ∈ N and Φ(u0, v0) = c, i.e., (u0, v0) is a solution
to system (1.1). Still from t = 1, we also get (u0, v0) ∈ N∞ and Φ∞(u0, v0) = c∞, i.e., (u0, v0)
is a solution to system (3.1). Comparing the first equation of (1.1) to that of (3.1), we have
a(x)u0(x) ≡ 0. This and the fact that u0(x) > 0 then imply a(x) ≡ 0. Repeating the above
argument, we deduce that b(x) ≡ 0. This is impossible, and the proof is complete. �

Proof of Theorem 1.2 Using the same arguments carried out in the preceding section, we
divide the proof into the following five steps:

Step 1. The existence of a (P.S.) sequence for Φ .
In fact, from Ekeland’s variational principle and Lemma 2.6, there exists a sequence

{(un, vn)} ∈ N such that Φ ′(un, vn) → 0, Φ(un, vn) → c.
Step 2. {(un, vn)} is bounded in H .
Suppose on the contrary that sn := ‖(un, vn)‖ → ∞. Define (wn, zn) = (un ,vn)

‖(un ,vn)‖ . Obviously,
{(wn, zn)} is bounded in H and there exists a (w, z) ∈ H such that, passing if necessary to a
subsequence,

(wn, zn) ⇀ (w, z) in H ,

(wn, zn) → (w, z) in L2
loc

(
R

3) ∗ L2
loc

(
R

3),

wn → w, zn → z a.e. in R
3.

Clearly, the sequence (wn, zn) is bounded in Lp(R3) ∗ Lp(R3) by Sobolev embedding the-
orem, i.e., {|wn|p + |zn|p} is a bounded sequence in R, and therefore we can assume
|wn|p + |zn|p → Ã ∈ [0,∞). Arguing as in the proof of Theorem 1.1 shows that Ã = 0 can-
not happen. Hence, we assume straight away that Ã 
= 0. Without loss of generality, we
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may assume that wn � 0 in Lp(R3). From Lemma 2.2, there exist a δ > 0 and a sequence
{xn} ⊂R

3 such that

∫

B(xn ,1)
|wn|2 dx > δ. (4.2)

In the sequel, we distinguish the following two cases:
Case A. {xn} is bounded in R

3.
Since wn → w in L2

loc(R3), this implies w 
= 0. Thus (w, z) 
= (0, 0). And consequently from
Lemma 2.4 (2), we get Φ∞(snwn, snzn) → –∞, which is a contradiction to the fact that
Φ∞(snwn, snzn) = Φ∞(un, vn) ≥ 0.

Case B. {xn} is unbounded in R
3.

If {xn} is unbounded, then, without loss of generality, we may assume |xn| → ∞. Let
w̃n(x) = wn(x + xn), z̃n(x) = zn(x + xn). Up to a subsequence, there exists a (w̃, z̃) ∈ H such
that (w̃n, z̃n) ⇀ (w̃, z̃) in H , (w̃n, z̃n) → (w̃, z̃) in L2

loc(R3) ∗ L2
loc(R3), w̃n → w̃, z̃n → z̃ for a.e.

x ∈R
3. It follows from (4.2) that

∫

B(0,1)
|w̃n|2 dx > δ.

Since w̃n → w̃ in L2
loc(R3), this implies w̃ 
= 0. Therefore (w̃, z̃) 
= (0, 0). And consequently

from Lemma 2.4 (2), we obtain

∫

R3

F(snw̃n, snz̃n)
s2
n

dx = ∞,

0 ≤ Φ(un, vn)
‖(un, vn)‖2

=
1
2

[‖un‖2 + ‖vn‖2 +
∫

R3 a(x)u2
n dx +

∫

R3 b(x)v2
n dx – 2λ

∫

R3 unvn dx
‖(un, vn)‖2

]

–
∫

R3

F(snwn, snzn)
s2
n

dx

≤ η

2
–

∫

R3

F(snw̃n, snz̃n)
s2
n

dx

→ –∞,

which is a contradiction. So {(un, vn)} is bounded in H .
Step 3. Φ ′(û, v̂) = 0.
From Step 2, {(un, vn)} is bounded in H . Hence, up to a subsequence, there exists a (û, v̂) ∈

H such that (un, vn) ⇀ (û, v̂) in H , (un, vn) → (û, v̂) in L2
loc(R3) ∗ L2

loc(R3), un → û, vn → v̂
for a.e. x ∈R

3. From Lemma 2.5 (5), we see that Φ ′(û, v̂) = 0.
Step 4. (û, v̂) 
= (0, 0).
By Sobolev embedding theorem, it is clear that the sequence {(un, vn)} is bounded in

Lp(R3) ∗ Lp(R3), i.e., {|un|p + |vn|p} is a bounded sequence in R. Selecting a subsequence
if necessary, we can assume |un|p + |vn|p → B̃ ∈ [0,∞). Arguing as in the proof of The-
orem 1.1 shows that B̃ = 0 cannot happen. Hence, we assume straight away that B̃ 
= 0,
Without loss of generality, we may assume that un � 0 in Lp(R3). From Lemma 2.2, there
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exist yn ∈R
3 and δ > 0 such that

∫

B(yn ,1)
|un|2 dx > δ. (4.3)

We first prove that {yn} is bounded in R
3. Indeed, supposing on the contrary, we would

have |yn| → ∞. Let ūn(x) = un(x + xn), v̄n(x) = vn(x + xn). Up to a subsequence, there exists
a (ū, v̄) ∈ H such that (ūn, v̄n) ⇀ (ū, v̄) in H , (ūn, v̄n) → (ū, v̄) in L2

loc(R3) ∗ L2
loc(R3), ūn → ū,

v̄n → v̄ for a.e. x ∈R
3. It follows from (4.3) that

∫

B(0,1)
|ūn|2 dx > δ.

We pass to the limit in the above inequality and get ū 
= 0. Note that Φ ′(un, vn) → 0 and
|yn| → ∞, so we obtain that Φ ′∞(ūn, v̄n) ⇀ 0. Whence, it follows from Lemma 3.1 (5) that
Φ ′∞(ū, v̄) = 0, that is, (ū, v̄) ∈ N∞. From Remark 3 and Fatou’s lemma, one has

c + o(1) = Φ(un, vn) =
∫

R3

[
1
2
∇F(un, vn)(un, vn) – F(un, vn)

]

dx

=
∫

R3

[
1
2
∇F(ūn, v̄n)(ūn, v̄n) – F(ūn, v̄n)

]

dx

≥
∫

R3

[
1
2
∇F(ū, v̄)(ū, v̄) – F(ū, v̄)

]

dx + o(1)

= Φ∞(ū, v̄) + o(1)

≥ c∞ + o(1).

Thus, we have c ≥ c∞, which contradicts the fact that c < c∞. So {yn} is bounded in R
3.

From the boundedness of {yn} and (3.2), there exists a positive constant M > 0 such that

∫

B(0,M+1)
|un|2 dx > δ.

This, together with un → û in L2
loc(R3), implies û 
= 0, which means that (û, v̂) 
= (0, 0).

Step 5. Φ(û, v̂) = c.
From Φ ′(û, v̂) = 0 and (û, v̂) 
= (0, 0), we have (û, v̂) ∈ N . Thus Φ(û, v̂) ≥ c. By using Fatou’s

lemma, it is easy to check that

c + o(1) = Φ(un, vn) =
∫

R3

[
1
2
∇F(un, vn)(un, vn) – F(un, vn)

]

dx

≥
∫

R3

[
1
2
∇F(û, v̂)(û, v̂) – F(û, v̂)

]

dx + o(1)

= Φ(û, v̂) + o(1).

Hence Φ(û, v̂) = c, which means (û, v̂) is a ground state solution to system (1.1).
By using the same method as in Theorem 1.1, we can prove that system (1.1) admits a

positive ground state solution. The proof of Theorem 1.2 is completed. �
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