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1 Introduction
In this paper we investigate the existence of positive solutions for the following system of
2nth-order boundary value problems involving semipositone nonlinearities:

⎧
⎪⎪⎪⎪⎪⎪
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solutions for the system of generalized Lidstone problems,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–1)mu(2m) = f1(t, u, –u′′, . . . , (–1)m–1u(2m–2), v, –v′′, . . . , (–1)n–1v(2n–2)),

(–1)nv(2n) = f2(t, u, –u′′, . . . , (–1)m–1u(2m–2), v, –v′′, . . . , (–1)n–1v(2n–2)),

α0u(2i)(0) – β0u(2i+1)(0) = α1u(2i)(1) + β1u(2i+1)(1) = 0, i = 0, 1, . . . , m – 1,

α0v(2j)(0) – β0v(2j+1)(0) = α1v(2j)(1) + β1v(2j+1)(1) = 0, j = 0, 1, . . . , n – 1,

(1.2)

where f1, f2 ∈ C([0, 1] × Rm+n
+ , R+), and in [2] Xu and Yang used some concave functions to

depict the coupling behaviors for the nonlinearities fi (i = 1, 2), and they established the
existence of positive solutions for (1.2). In [3], Wang and Yang used similar methods as
in [1] to study the existence of positive solutions for the system of higher-order boundary
value problems involving all derivatives of odd orders

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–1)mw(2m) = f (t, w, w′, –w′′′, . . . , (–1)m–1w(2m–1), z, z′, –z′′′, . . . , (–1)n–1z(2n–1)),

(–1)nz(2n) = g(t, w, w′, –w′′′, . . . , (–1)m–1w(2m–1), z, z′, –z′′′, . . . , (–1)n–1z(2n–1)),

w(2i)(0) = w(2i+1)(1) = 0, i = 0, 1, . . . , m – 1,

z(2j)(0) = z(2j+1)(1) = 0, j = 0, 1, . . . , n – 1,

where f , g ∈ C([0, 1] × Rm+n+2
+ , R+). Moreover, they used a condition of Berstein–Nagumo

type to obtain a priori estimates for w(2m–1) and z(2n–1). For related papers, we refer the
reader to [27–33]. In [27] the authors used topological degree theory to study the existence
of nontrivial solutions for the higher-order nonlinear fractional boundary value problem
involving Riemann–Liouville fractional derivatives:

⎧
⎨

⎩

Dα
0+u(t) = –f (t, u(t), Dβ1

0+u(t), Dβ2
0+u(t), . . . , Dβn–1

0+ (t)), 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = Dβ
0+u(1) = 0,

where Dα
0+, Dβ

0+, Dβi
0+ are the Riemann–Liouville fractional derivatives, and f ∈ C([0, 1] ×

Rn, R).
Motivated by the above work, in this paper we investigate the positive solutions for the

system of 2nth-order boundary value problems (1.1) involving semipositone nonlinear-
ities. We first use the method of order reduction to transform (1.1) into an equivalent
system of integro-integral equations, and then we establish a system of nonnegative oper-
ator equations. Using the fixed point index and nonnegative matrix theory, we study the
existence of positive fixed points for the operator equations, and obtain positive solutions
for (1.1).

2 Preliminaries
Let E = C[0, 1], ‖z‖ = maxt∈[0,1] |z(t)|, P = {t ∈ [0, 1] : z(t) ≥ 0,∀t ∈ [0, 1]}. Then (E,‖ · ‖) is a
Banach space, and P a cone on E. Let

k1(t, s) := min{t, s}, ki(t, s) :=
∫ 1

0
ki–1(t, τ )k1(τ , s) dτ , t, s ∈ [0, 1], i = 2, 3, . . . , n,
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and

(Biz)(t) :=
∫ 1

0
ki(t, s)z(s) ds, hi(t, s) := ∂ki(t, s)/∂t, i = 1, 2, . . . , n – 1.

Note

(
(Biz)(t)

)′ :=
∫ 1

0
hi(t, s)z(s) ds, i = 1, 2, . . . ,

and Bi, B′
i : E → E are completely continuous linear operators, Bi, B′

i are also positive op-
erators, i.e., they will map P into P.

Lemma 2.1 ([28]) Let κψ = 1 – 2/e, and ψ(t) = tet , t ∈ [0, 1]. Then we have

κψψ(s) ≤
∫ 1

0
k1(t, s)ψ(t) dt ≤ ψ(s).

Lemma 2.2 ([28]) Let z ∈ P. Then we have

∫ 1

0

[

(Bn–1z)(t) + 2
n–2∑

i=0

(
(Bn–1–iz)(t)

)′
]

ψ(t) dt =
∫ 1

0
z(t)ψ(t) dt.

Lemma 2.3 ([34]) Let E be a real Banach space and P a cone on E. Suppose that Ω ⊂ E
is a bounded open set and that A : Ω ∩ P → P is a continuous compact operator. If there
exists a ω0 ∈ P \ {0} such that

ω – Aω �= λω0, ∀λ ≥ 0,ω ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 0, where i denotes the fixed point index on P.

Lemma 2.4 ([34]) Let E be a real Banach space and P a cone on E. Suppose that Ω ⊂ E is
a bounded open set with 0 ∈ Ω and that A : Ω ∩ P → P is a continuous compact operator.
If

ω – λAω �= 0, ∀λ ∈ [0, 1],ω ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 1.

Now, we consider the following auxiliary problem associated with (1.1):

⎧
⎨

⎩

(–1)nx(2n) = f (t, x, x′, . . . , (–1)n–2x(2n–4), (–1)n–2x(2n–3), (–1)n–1x(2n–2)),

x(2i)(0) = x(2i+1)(1) = 0, i = 0, 1, . . . , n – 1,

where f ∈ C([0, 1] × R2n–1
+ , R) satisfies the condition:

(H0)′ there is a positive constant M such that

f (t, z1, z2, . . . , z2n–1) ≥ –M, t ∈ [0, 1], zi ∈ R+, i = 1, 2, . . . , 2n – 1.
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Let (–1)n–1x(2n–2)(t) = z(t), t ∈ [0, 1]. Then we have
⎧
⎨

⎩

–z′′(t) = f (t, (Bn–1z)(t), ((Bn–1z)(t))′, . . . , (B1z)(t), ((B1z)(t))′, z(t)),

z(0) = z′(1) = 0,
(2.1)

which can be expressed in the integral form

z(t) =
∫ 1

0
k1(t, s)f

(
s, (Bn–1z)(s),

(
(Bn–1z)(s)

)′, . . . , (B1z)(s),
(
(B1z)(s)

)′, z(s)
)

ds. (2.2)

For convenience, let

(Aiz)(t) =
(
(Biz)(t)

)′, t ∈ [0, 1], i = 1, 2, . . . , n – 1.

As a result, we can also write (2.2) in the form

z(t) =
∫ 1

0
k1(t, s)f

(
s, (Bn–1z)(s), (An–1z)(s), . . . , (B1z)(s), (A1z)(s), z(s)

)
ds.

Let w(t) = M
∫ 1

0 k1(t, s) ds = M(t – t2/2). We need to consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–z′′(t) = f̃ (t, (Bn–1(z – w))(t), (An–1(z – w))(t), . . . ,

(B1(z – w))(t), (A1(z – w))(t), (z – w)(t)),

z(0) = z′(1) = 0,

(2.3)

where

f̃ (t, z1, . . . , z2n–1) =

⎧
⎨

⎩

f (t, z1, . . . , z2n–1) + M, t ∈ [0, 1], zi ≥ 0, i = 1, 2, . . . , 2n – 1,

f (t, 0, . . . , 0) + M, t ∈ [0, 1], for else cases.

Note that (2.3) can be expressed in the integral form

z(t) =
∫ 1

0
k1(t, s)̃f

(
s,
(
Bn–1(z – w)

)
(s),

(
An–1(z – w)

)
(s), . . . ,

(
B1(z – w)

)
(s),

(
A1(z – w)

)
(s), (z – w)(s)

)
ds.

Using (H0)′, we see that f̃ ∈ C([0, 1] × R2n–1
+ , R+).

Lemma 2.5
(i) If z∗ is a positive solution of (2.1), then z∗ + w is a positive solution of (2.3).
(ii) If z∗∗ is a positive solution of (2.3), and greater than w, then z∗∗ – w is a positive

solution of (2.1).

Proof Substituting z∗ + w into (2.3), we have

⎧
⎪⎪⎨

⎪⎪⎩

–z∗′′(t) – w′′(t) = f̃ (t, (Bn–1(z∗ + w – w))(t), (An–1(z∗ + w – w))(t), . . . ,

(B1(z∗ + w – w))(t), (A1(z∗ + w – w))(t), (z∗ + w – w)(t)),

(z∗ + w)(0) = (z∗ + w)′(1) = 0.

(2.4)
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Note that w satisfies the boundary value problem

⎧
⎨

⎩

–z′′(t) = M,

z(0) = z′(1) = 0.

By virtue of (2.4), we have

⎧
⎨

⎩

–z∗′′(t) – w′′(t) = f (t, (Bn–1z∗)(t), (An–1z∗)(t), . . . , (B1z∗)(t), (A1z∗)(t), z∗(t)) + M,

z∗(0) = z∗′(1) = 0,

which is (2.1).
On the other hand, we substitute z∗∗ – w into (2.1), and obtain

⎧
⎪⎪⎨

⎪⎪⎩

–z∗∗′′(t) + w′′(t) = f (t, (Bn–1(z∗∗ – w))(t), (An–1(z∗∗ – w))(t), . . . ,

(B1(z∗∗ – w))(t), (A1(z∗∗ – w))(t), (z∗∗ – w)(t)),

(z∗∗ – w)(0) = (z∗∗ – w)′(1) = 0.

Note that, from the definitions of w and f̃ , we have

⎧
⎪⎪⎨

⎪⎪⎩

–z∗∗′′(t) = f̃ (t, (Bn–1(z∗∗ – w))(t), (An–1(z∗∗ – w))(t), . . . ,

(B1(z∗∗ – w))(t), (A1(z∗∗ – w))(t), (z∗∗ – w)(t)),

z∗∗(0) = z∗∗′(1) = 0,

which is (2.3). This completes the proof. �

From Lemma 2.5, if we wish to seek the positive solutions for (2.1), we only need to
study the positive solutions for (2.3), which are greater than w. Consequently, we define
an operator T : P → E as follows:

(Tz)(t) =
∫ 1

0
k1(t, s)̃f

(
s,
(
Bn–1(z – w)

)
(s),

(
An–1(z – w)

)
(s), . . . ,

(
B1(z – w)

)
(s),

(
A1(z – w)

)
(s), (z – w)(s)

)
ds.

Then T is a completely continuous operator, and if there exists a z ∈ P with z ≥ w such
that Tz = z, we see that z – w is a positive solution of (2.1).

Let

P0 =
{

z ∈ P : z(t) ≥ t‖z‖,∀t ∈ [0, 1]
}

.

Then P0 is also a cone on E, and we have the following lemma.

Lemma 2.6 T(P) ⊂ P0.

Note that, for t, s ∈ [0, 1], tk1(s, s) ≤ k1(t, s) ≤ k1(s, s) and k1(s, s) = s, so we can easily ob-
tain this lemma (the details are omitted).
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From Lemmas 2.5 and 2.6, we have z ∈ P0 if z is a fixed point of T . Consequently, if
‖z‖ ≥ M we have

z(t) – w(t) ≥ t‖z‖ – M
(
t – t2/2

)≥ t‖z‖ – tM ≥ 0.

Hence, we only need to seek T ’s positive fixed point z with ‖z‖ ≥ M, and then z – w is a
positive solution of (2.1).

3 Main results
In (1.1), let (–1)n–1x(2n–2) = u and (–1)n–1y(2n–2) = v, then we obtain the following system
of boundary value problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) = f1(t, (Bn–1u)(t), (An–1u)(t), . . . , (B1u)(t), (A1u)(t), u(t),

(Bn–1v)(t), (An–1v)(t), . . . , (B1v)(t), (A1v)(t), v(t)),

–v′′(t) = f2(t, (Bn–1u)(t), (An–1u)(t), . . . , (B1u)(t), (A1u)(t), u(t),

(Bn–1v)(t), (An–1v)(t), . . . , (B1v)(t), (A1v)(t), v(t)),

u(0) = u′(1) = 0, v(0) = v′(1) = 0,

(3.1)

which has the integral form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t) =
∫ 1

0 k1(t, s)f1(s, (Bn–1u)(s), (An–1u)(s), . . . , (B1u)(s), (A1u)(s), u(s),

(Bn–1v)(s), (An–1v)(s), . . . , (B1v)(s), (A1v)(s), v(s)) ds,

v(t) =
∫ 1

0 k1(t, s)f2(s, (Bn–1u)(s), (An–1u)(s), . . . , (B1u)(s), (A1u)(s), u(s),

(Bn–1v)(s), (An–1v)(s), . . . , (B1v)(s), (A1v)(s), v(s)) ds.

For j = 1, 2, let

Fj(t, z1, z2, . . . , z4n–2)

=

⎧
⎨

⎩

fj(t, z1, z2, . . . , z4n–2) + M, t ∈ [0, 1], zi ≥ 0, i = 1, 2, . . . , 4n – 2,

fj(t, 0, 0, . . . , 0) + M, t ∈ [0, 1], for other cases.

Then we can define the operators Tj (j = 1, 2) : P4n–2 → P and T : P2 → P2 as follows:

Tj(u, v)(t) =
∫ 1

0
k1(t, s)Fj

(
s,
(
Bn–1(u – w)

)
(s),

(
An–1(u – w)

)
(s), . . . ,

(
B1(u – w)

)
(s),

(
A1(u – w)

)
(s), (u – w)(s),

(
Bn–1(v – w)

)
(s),

(
An–1(v – w)

)
(s), . . . ,

(
B1(v – w)

)
(s),

(
A1(v – w)

)
(s), (v – w)(s)

)
ds

and

T(u, v)(t) = (T1, T2)(u, v)(t), t ∈ [0, 1].
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Then, if we find the positive fixed point (u∗, v∗) of T with u∗, v∗ ≥ w, then (u∗ – w, v∗ – w)
is a positive solution for (3.1). Let

x(t) =
∫ 1

0
kn–1(t, s)

(
u∗(s) – w(s)

)
ds, y(t) =

∫ 1

0
kn–1(t, s)

(
v∗(s) – w(s)

)
ds, (3.2)

and we will obtain the positive solution for (1.1) (note from the discussion in Sect. 2, we
need the norms of u∗, v∗ to be greater than M).

Now, we list our assumptions for Fj (j = 1, 2):
(H1) There exist aj1, bj1, cj1, dj1, lj > 0 (j = 1, 2) such that

κψ

(
b11 + a11(n – 1)

)
< 1, κψ

(
d21 + c21(n – 1)

)
< 1,

�11 = det

(
κψ (d11 + c11(n – 1)) κψ (b11 + a11(n – 1)) – 1

κψ (d21 + c21(n – 1)) – 1 κψ (b21 + a21(n – 1))

)

> 0,

and, for all t ∈ [0, 1], zi, z̃i ∈ R+, i = 1, 2, . . . , 2n – 1,

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

≥ a11(z1 + z3 + · · · + z2n–3) + a11
(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)
+ b11z2n–1

+ c11(̃z1 + z̃3 + · · · + z̃2n–3) + c11
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
+ d11̃z2n–1 – l1,

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

≥ a21(z1 + z3 + · · · + z2n–3) + a21
(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)
+ b21z2n–1

+ c21(̃z1 + z̃3 + · · · + z̃2n–3) + c21
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
+ d21̃z2n–1 – l2.

(H2) There exist Qj (j = 1, 2) : [0, 1] → R such that

∫ 1

0
k1(s, s)Qj(s) ds < M

and

Fj(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1) ≤ Qj(t),

for all t ∈ [0, 1], zi, z̃i ∈ [0, M], i = 1, 2, . . . , 2n – 1, j = 1, 2.
(H3) There exist ãj1, b̃j1, c̃j1, d̃j1,̃ lj > 0 (j = 1, 2) such that

b̃11 + ã11(n – 1) < 1, d̃21 + c̃21(n – 1) < 1,

�22 = det

(
1 – [̃b11 + ã11(n – 1)] –[̃d11 + c̃11(n – 1)]
–[̃b21 + ã21(n – 1)] 1 – [̃d21 + c̃21(n – 1)]

)

> 0,

and, for all t ∈ [0, 1], zi, z̃i ∈ R+, i = 1, 2, . . . , 2n – 1,

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

≤ ã11(z1 + z3 + · · · + z2n–3) + ã11
(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)
+ b̃11z2n–1
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+ c̃11(̃z1 + z̃3 + · · · + z̃2n–3) + c̃11
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
+ d̃11̃z2n–1 + l̃1,

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

≤ ã21(z1 + z3 + · · · + z2n–3) + ã21
(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)
+ b̃21z2n–1

+ c̃21(̃z1 + z̃3 + · · · + z̃2n–3) + c̃21
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
+ d̃21̃z2n–1 + l̃2.

(H4) There exist Q̃j (j = 1, 2) : [0, 1] → R and t1, t2 ∈ (0, 1] such that

∫ 1

0
k1(tj, s)Q̃j(s) ds > M

and

Fj(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1) ≥ Q̃j(t),

for all t ∈ [0, 1], zi, z̃i ∈ [0, M], i = 1, 2, . . . , 2n – 1, j = 1, 2.
Let Bρ = {u ∈ P : ‖u‖ < ρ} for ρ > 0 in the sequel. Then we easily have ∂Bρ = {u ∈ P :

‖u‖ = ρ}, Bρ = {u ∈ P : ‖u‖ ≤ ρ}.

Theorem 3.1 Suppose that (H0)–(H2) hold. Then (1.1) has at least one positive solu-
tion.

Proof We first prove that there exists R1 > M such that

(u, v) �= T(u, v) + λ(φ1,φ2), for (u, v) ∈ ∂BR1 ∩ (P × P),λ ≥ 0, (3.3)

where φi (i = 1, 2) are given elements in the cone P0. We argue by contradiction. Suppose
there exist (u, v) ∈ ∂BR1 ∩ (P × P) and λ0 ≥ 0 with

(u, v) = T(u, v) + λ0(φ1,φ2). (3.4)

This, together with Lemma 2.6, implies that u, v ∈ P0. Moreover, from (H1) we have

(
u(t)
v(t)

)

=

(
T1(u, v)(t) + λ0φ1(t)
T2(u, v)(t) + λ0φ2(t)

)

≥
(

T1(u, v)(t)
T2(u, v)(t)

)

≥

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ 1
0 k1(t, s)(a11

∑n–1
i=1 [(Bi(u – w))(s) + 2(n – i)(Ai(u – w))(s)] + b11(u – w)(s)) ds

+
∫ 1

0 k1(t, s)(c11
∑n–1

i=1 [(Bi(v – w))(s) + 2(n – i)(Ai(v – w))(s)] + d11(v – w)(s)) ds
– l1

∫ 1
0 k1(t, s) ds

∫ 1
0 k1(t, s)(a21

∑n–1
i=1 [(Bi(u – w))(s) + 2(n – i)(Ai(u – w))(s)] + b21(u – w)(s)) ds

+
∫ 1

0 k1(t, s)(c21
∑n–1

i=1 [(Bi(v – w))(s) + 2(n – i)(Ai(v – w))(s)] + d21(v – w)(s)) ds
– l2

∫ 1
0 k1(t, s) ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Multiply by ψ(t) on both sides, integrate over [0, 1], and use Lemma 2.1, and we
have

(∫ 1
0 u(t)ψ(t) dt
∫ 1

0 v(t)ψ(t) dt

)

≥

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

κψ

∫ 1
0 ψ(t)(a11

∑n–1
i=1 [(Bi(u – w))(t) + 2(n – i)(Ai(u – w))(t)] + b11(u – w)(t)) dt

+ κψ

∫ 1
0 ψ(t)(c11

∑n–1
i=1 [(Bi(v – w))(t) + 2(n – i)(Ai(v – w))(t)] + d11(v – w)(t)) dt

– l1
∫ 1

0 ψ(t) dt
κψ

∫ 1
0 ψ(t)(a21

∑n–1
i=1 [(Bi(u – w))(t) + 2(n – i)(Ai(u – w))(t)] + b21(u – w)(t)) dt

+ κψ

∫ 1
0 ψ(t)(c21

∑n–1
i=1 [(Bi(v – w))(t) + 2(n – i)(Ai(v – w))(t)] + d21(v – w)(t)) dt

– l2
∫ 1

0 ψ(t) dt

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

κψ

∫ 1
0 ψ(t)(a11

∑n–1
i=1 [(Bi(u – w))(t) + 2(n – i)(Bi(u – w))′(t)] + b11(u – w)(t)) dt

+ κψ

∫ 1
0 ψ(t)(c11

∑n–1
i=1 [(Bi(v – w))(t) + 2(n – i)(Bi(v – w))′(t)] + d11(v – w)(t)) dt – l1

κψ

∫ 1
0 ψ(t)(a21

∑n–1
i=1 [(Bi(u – w))(t) + 2(n – i)(Bi(u – w))′(t)] + b21(u – w)(t)) dt

+ κψ

∫ 1
0 ψ(t)(c21

∑n–1
i=1 [(Bi(v – w))(t) + 2(n – i)(Bi(v – w))′(t)] + d21(v – w)(t)) dt – l2

⎞

⎟
⎟
⎟
⎠

.

Using Lemma 2.2 we obtain

(∫ 1
0 u(t)ψ(t) dt
∫ 1

0 v(t)ψ(t) dt

)

≥
(

κψ (b11 + a11(n – 1))
∫ 1

0 (u – w)(t)ψ(t) dt + κψ (d11 + c11(n – 1))
∫ 1

0 (v – w)(t)ψ(t) dt – l1

κψ (b21 + a21(n – 1))
∫ 1

0 (u – w)(t)ψ(t) dt + κψ (d21 + c21(n – 1))
∫ 1

0 (v – w)(t)ψ(t) dt – l2

)

.

Let

N1 = κψ

[(
b11 + a11(n – 1)

)
+
(
d11 + c11(n – 1)

)]
∫ 1

0
w(t)ψ(t) dt + l1

= κψ

[(
b11 + a11(n – 1)

)
+
(
d11 + c11(n – 1)

)]
(2e – 5)M + l1,

N2 = κψ

[(
b21 + a21(n – 1)

)
+
(
d21 + c21(n – 1)

)]
∫ 1

0
w(t)ψ(t) dt + l2

= κψ

[(
b21 + a21(n – 1)

)
+
(
d21 + c21(n – 1)

)]
(2e – 5)M + l2.

Therefore, we have

(
[κψ (b11 + a11(n – 1)) – 1]

∫ 1
0 u(t)ψ(t) dt + κψ (d11 + c11(n – 1))

∫ 1
0 v(t)ψ(t) dt

κψ (b21 + a21(n – 1))
∫ 1

0 u(t)ψ(t) dt + [κψ (d21 + c21(n – 1)) – 1]
∫ 1

0 v(t)ψ(t) dt

)

≤
(
N1

N2

)

and

(
κψ (d11 + c11(n – 1)) κψ (b11 + a11(n – 1)) – 1

κψ (d21 + c21(n – 1)) – 1 κψ (b21 + a21(n – 1))

)(∫ 1
0 v(t)ψ(t) dt
∫ 1

0 u(t)ψ(t) dt

)

≤
(
N1

N2

)

.
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Solving this matrix inequality, we obtain

(∫ 1
0 v(t)ψ(t) dt
∫ 1

0 u(t)ψ(t) dt

)

≤ 1
�11

(
κψ (b21 + a21(n – 1)) 1 – κψ (b11 + a11(n – 1))

1 – κψ (d21 + c21(n – 1)) κψ (d11 + c11(n – 1))

)(
N1

N2

)

.

Consequently, there exist Ñ1, Ñ2 > 0 such that

(∫ 1
0 v(t)ψ(t) dt
∫ 1

0 u(t)ψ(t) dt

)

≤
(
Ñ1

Ñ2

)

.

Note that u, v ∈ P0, and we have

(
‖v‖
‖u‖

)

≤
(

Ñ1
e–2
Ñ2
e–2

)

.

Therefore, we can choose R1 > max{M, Ñ1
e–2 , Ñ2

e–2 } such that (3.4) is false, and thus (3.3) holds.
From Lemma 2.3 we have

i
(
T , BR1 ∩ (P × P), P × P

)
= 0. (3.5)

Next we prove that

(u, v) �= λT(u, v), for (u, v) ∈ ∂BM ∩ (P × P),∀λ ∈ [0, 1]. (3.6)

If not, there exist (u, v) ∈ ∂BM ∩ (P × P) and λ1 ∈ [0, 1] such that

(u, v) = λ1T(u, v).

This, combining with (H2), implies that

(
M
M

)

=

(
‖u‖
‖v‖

)

≤
(

‖T1(u, v)‖
‖T2(u, v)‖

)

≤
(∫ 1

0 k1(s, s)Q1(s) ds
∫ 1

0 k1(s, s)Q2(s) ds

)

<

(
M
M

)

.

This is a contradiction, and thus (3.6) is true. From Lemma 2.4 we have

(
T , BM ∩ (P × P), P × P

)
= 1. (3.7)

From (3.5) and (3.7) we have

i
(
T , (BR1 \ BM) ∩ (P × P), P × P

)

= i
(
T , BR1 ∩ (P × P), P × P

)
– i
(
T , BM ∩ (P × P), P × P

)
= 0 – 1 = –1.

Therefore the operator T has at least one fixed point (u∗, v∗) on (BR1 \ BM) ∩ (P × P) with
‖u∗‖ ≥ M, ‖v∗‖ ≥ M, and note from (3.2) we see that (1.1) has at least one positive solution.
This completes the proof. �
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Theorem 3.2 Suppose that (H0), and (H3)–(H4) hold. Then (1.1) has at least one positive
solution.

Proof We first prove that

(u, v) �= T(u, v) + λ(φ̃1, φ̃2), for (u, v) ∈ ∂BM ∩ (P × P),λ ≥ 0, (3.8)

where φ̃i (i = 1, 2) ∈ P are fixed elements. If this claim is false, there exist (u, v) ∈ ∂BM ∩
(P × P) and λ2 ≥ 0 such that

(u, v) = T(u, v) + λ2(φ̃1, φ̃2).

This, together with (H4), gives

(
‖u‖
‖v‖

)

≥
(

u(t1)
v(t2)

)

≥
(

T1(u, v)(t1)
T2(u, v)(t2)

)

≥
(∫ 1

0 k1(t1, s)Q̃1(s) ds
∫ 1

0 k1(t2, s)Q̃2(s) ds

)

>

(
M
M

)

.

This is a contradiction, and thus (3.8) holds. From Lemma 2.3 we have

i
(
T , BM ∩ (P × P), P × P

)
= 0. (3.9)

Next we show that there is a large number R2 > M such that

(u, v) �= λT(u, v), for (u, v) ∈ ∂BR2 ∩ (P × P),∀λ ∈ [0, 1]. (3.10)

We argue by contradiction, so we assume there exist (u, v) ∈ ∂BR2 ∩ (P × P) and λ3 ∈ [0, 1]
such that

(u, v) = λ3T(u, v).

Lemma 2.6 implies that u, v ∈ P0, and from (H3) we obtain

(
u(t)
v(t)

)

≤
(

T1(u, v)(t)
T2(u, v)(t)

)

≤

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ 1
0 k1(t, s)(̃a11

∑n–1
i=1 [(Bi(u – w))(s) + 2(n – i)(Ai(u – w))(s)] + b̃11(u – w)(s)) ds

+
∫ 1

0 k1(t, s)(̃c11
∑n–1

i=1 [(Bi(v – w))(s) + 2(n – i)(Ai(v – w))(s)] + d̃11(v – w)(s)) ds
+ l̃1

∫ 1
0 k1(t, s) ds

∫ 1
0 k1(t, s)(̃a21

∑n–1
i=1 [(Bi(u – w))(s) + 2(n – i)(Ai(u – w))(s)] + b̃21(u – w)(s)) ds

+
∫ 1

0 k1(t, s)(̃c21
∑n–1

i=1 [(Bi(v – w))(s) + 2(n – i)(Ai(v – w))(s)] + d̃21(v – w)(s)) ds
+ l̃2

∫ 1
0 k1(t, s) ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Multiply by ψ(t) on both sides, integrate over [0, 1], and use Lemma 2.1, we have

(∫ 1
0 u(t)ψ(t) dt
∫ 1

0 v(t)ψ(t) dt

)

≤

⎛

⎜
⎜
⎜
⎝

∫ 1
0 ψ(t)(̃a11

∑n–1
i=1 [(Bi(u – w))(t) + 2(n – i)(Ai(u – w))(t)] + b̃11(u – w)(t)) dt

+
∫ 1

0 ψ(t)(̃c11
∑n–1

i=1 [(Bi(v – w))(t) + 2(n – i)(Ai(v – w))(t)] + d̃11(v – w)(t)) dt + l̃1∫ 1
0 ψ(t)(̃a21

∑n–1
i=1 [(Bi(u – w))(t) + 2(n – i)(Ai(u – w))(t)] + b̃21(u – w)(t)) dt

+
∫ 1

0 ψ(t)(̃c21
∑n–1

i=1 [(Bi(v – w))(t) + 2(n – i)(Ai(v – w))(t)] + d̃21(v – w)(t)) dt + l̃2

⎞

⎟
⎟
⎟
⎠

.

This, combining with Lemma 2.2, implies that

(∫ 1
0 u(t)ψ(t) dt
∫ 1

0 v(t)ψ(t) dt

)

≤

⎛

⎜
⎜
⎜
⎝

∫ 1
0 ψ(t)(̃a11

∑n–1
i=1 [(Biu)(t) + 2(n – i)(Biu)′(t)] + b̃11u(t)) dt

+
∫ 1

0 ψ(t)(̃c11
∑n–1

i=1 [(Biv)(t) + 2(n – i)(Biv)′(t)] + d̃11v(t)) dt + l̃1
∫ 1

0 ψ(t)(̃a21
∑n–1

i=1 [(Biu)(t) + 2(n – i)(Biu)′(t)] + b̃21u(t)) dt
+
∫ 1

0 ψ(t)(̃c21
∑n–1

i=1 [(Biv)(t) + 2(n – i)(Biv)′(t)] + d̃21v(t)) dt + l̃2

⎞

⎟
⎟
⎟
⎠

=

(
[̃b11 + ã11(n – 1)]

∫ 1
0 u(t)ψ(t) dt + [̃d11 + c̃11(n – 1)]

∫ 1
0 v(t)ψ(t) dt + l̃1

[̃b21 + ã21(n – 1)]
∫ 1

0 u(t)ψ(t) dt + [̃d21 + c̃21(n – 1)]
∫ 1

0 v(t)ψ(t) dt + l̃2

)

.

Consequently, we have

(
1 – [̃b11 + ã11(n – 1)] –[̃d11 + c̃11(n – 1)]
–[̃b21 + ã21(n – 1)] 1 – [̃d21 + c̃21(n – 1)]

)(∫ 1
0 u(t)ψ(t) dt
∫ 1

0 v(t)ψ(t) dt

)

≤
(

l̃1

l̃2

)

.

Solving this matrix inequality, we obtain

(∫ 1
0 u(t)ψ(t) dt
∫ 1

0 v(t)ψ(t) dt

)

≤ 1
�22

(
1 – [̃d21 + c̃21(n – 1)] d̃11 + c̃11(n – 1)

b̃21 + ã21(n – 1) 1 – [̃b11 + ã11(n – 1)]

)(
l̃1

l̃2

)

.

Therefore, there exist Ñ3, Ñ4 > 0 such that

(∫ 1
0 u(t)ψ(t) dt
∫ 1

0 v(t)ψ(t) dt

)

≤
(
Ñ3

Ñ4

)

.

Note that u, v ∈ P0, and then we obtain

(
‖u‖
‖v‖

)

≤
(

Ñ3
e–2
Ñ4
e–2

)

.

If we choose R2 > max{M, Ñ3
e–2 , Ñ4

e–2 } then (3.10) holds. From Lemma 2.4 we have

i
(
T , BR2 ∩ (P × P), P × P

)
= 1. (3.11)
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From (3.9) and (3.11) we have

i
(
T , (BR2 \ BM) ∩ (P × P), P × P

)

= i
(
T , BR2 ∩ (P × P), P × P

)
– i
(
T , BM ∩ (P × P), P × P

)
= 1 – 0 = 1.

Therefore the operator T has at least one fixed point (u∗, v∗) on (BR2 \ BM) ∩ (P × P) with
‖u∗‖ ≥ M, ‖v∗‖ ≥ M, and note from (3.2) we see that (1.1) has at least one positive solution.
This completes the proof. �

Example 3.3 Let

a11 =
e

4(e – 2)(n – 1)
, b11 =

e
2(e – 2)

,

c11 =
e

(e – 2)(n – 1)
, d11 =

e
e – 2

,

a21 =
e

2(e – 2)(n – 1)
, b21 =

e
5(e – 2)

,

c21 =
e

3(e – 2)(n – 1)
, d21 =

e
2(e – 2)

.

Then

κψ

(
b11 + a11(n – 1)

)
=

e – 2
e

(
e

2(e – 2)
+

e
4(e – 2)(n – 1)

(n – 1)
)

=
3
4

< 1,

κψ

(
d21 + c21(n – 1)

)
=

e – 2
e

(
e

2(e – 2)
+

e
3(e – 2)(n – 1)

(n – 1)
)

=
5
6

< 1,

�11 =

∣
∣
∣
∣
∣

e–2
e ( e

e–2 + e
(e–2)(n–1) (n – 1)) – 1

4
– 1

6
e–2

e ( e
5(e–2) + e

2(e–2)(n–1) (n – 1))

∣
∣
∣
∣
∣

=
163
120

> 0.

Consider

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

=
9
5

M
[

eM
e – 2

(
3
2

+
5
4

(1 + n)
)]–δ1

× [
a11(z1 + z3 + · · · + z2n–3) + a11

(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)

+ b11z2n–1 + c11(̃z1 + z̃3 + · · · + z̃2n–3)

+ c11
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
+ d11̃z2n–1

]δ1 ,

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

=
19
10

M
[

eM
e – 2

(
7

10
+

5
6

(1 + n)
)]–δ2

× [
a21(z1 + z3 + · · · + z2n–3) + a21

(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)

+ b21z2n–1 + c21(̃z1 + z̃3 + · · · + z̃2n–3)

+ c21
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
+ d21̃z2n–1

]δ2 ,

for all t ∈ [0, 1], zi, z̃i ∈ R+, i = 1, 2, . . . , 2n – 1, and δ1, δ2 > 1.



Hao et al. Journal of Inequalities and Applications         (2020) 2020:20 Page 14 of 17

For all t ∈ [0, 1], zi, z̃i ∈ [0, M], i = 1, 2, . . . , 2n – 1, j = 1, 2, we have

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1) ≤ 9
5

M,

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1) ≤ 19
10

M.

Consequently, if let Q1(t) ≡ 9
5 M, Q2(t) ≡ 19

10 M for t ∈ [0, 1], then (H2) holds.
On the other hand, for all t ∈ [0, 1] we note that

lim inf
a11

∑n–1
i=1 (z2i–1+2iz2i)+b11z2n–1+c11

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d11̃z2n–1→+∞

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)
a11

∑n–1
i=1 (z2i–1 + 2iz2i) + b11z2n–1 + c11

∑n–1
i=1 (̃z2i–1 + 2ĩz2i) + d11̃z2n–1

= lim inf
a11

∑n–1
i=1 (z2i–1+2iz2i)+b11z2n–1+c11

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d11̃z2n–1→+∞

9
5 M[ eM

e–2 ( 3
2 + 5

4 (1 + n))]–δ1 [a11
∑n–1

i=1 (z2i–1 + 2iz2i) + b11z2n–1 + c11
∑n–1

i=1 (̃z2i–1 + 2ĩz2i) + d11̃z2n–1]δ1

a11
∑n–1

i=1 (z2i–1 + 2iz2i) + b11z2n–1 + c11
∑n–1

i=1 (̃z2i–1 + 2ĩz2i) + d11̃z2n–1

= +∞

and

lim inf
a21

∑n–1
i=1 (z2i–1+2iz2i)+b21z2n–1+c21

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d21̃z2n–1→+∞

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)
a21

∑n–1
i=1 (z2i–1 + 2iz2i) + b21z2n–1 + c21

∑n–1
i=1 (̃z2i–1 + 2ĩz2i) + d21̃z2n–1

= lim inf
a21

∑n–1
i=1 (z2i–1+2iz2i)+b21z2n–1+c21

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d21̃z2n–1→+∞

19
10 M[ eM

e–2 ( 7
10 + 5

6 (1 + n))]–δ2 [a21
∑n–1

i=1 (z2i–1 + 2iz2i) + b21z2n–1 + c21
∑n–1

i=1 (̃z2i–1 + 2ĩz2i) + d21̃z2n–1]δ2

a21
∑n–1

i=1 (z2i–1 + 2iz2i) + b21z2n–1 + c21
∑n–1

i=1 (̃z2i–1 + 2ĩz2i) + d21̃z2n–1

= +∞.

Therefore, (H1) holds.

Example 3.4 Let t1 = 1
2 , t2 = 1, and note that

∫ 1
0 k1(t, s) ds = t – 1

2 t2 for t ∈ [0, 1], and if we
consider the case Q̃j ≡ constant, we have

∫ 1

0
k1(t1, s)Q̃1(s) ds =

3
8

Q̃1,
∫ 1

0
k1(t2, s)Q̃2(s) ds =

1
2

Q̃2.

To obtain the first inequality in (H4), we can take Q̃1 = 3M, Q̃2 = 5
2 M.

Let

(
ã11 b̃11 c̃11 d̃11

ã21 b̃21 c̃21 d̃21

)

=

(
1

20(n–1)
1

10
1

80(n–1)
1

40
1

40(n–1)
1

20
1

100(n–1)
1

50

)

.
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Then we have

b̃11 + ã11(n – 1) =
1

10
+

1
20

< 1, d̃21 + c̃21(n – 1) =
1

50
+

1
100

< 1,

�22 =

∣
∣
∣
∣
∣

0.85 –[ 1
40 + 1

80 ]
–[ 1

20 + 1
40 ] 0.97

∣
∣
∣
∣
∣
≈ 0.82 > 0.

Let

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

= 3M exp
{

M
(
0.125 + 0.0625(1 + n)

)}

× exp
{

–̃a11(z1 + z3 + · · · + z2n–3) – ã11
(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)

– b̃11z2n–1 – c̃11(̃z1 + z̃3 + · · · + z̃2n–3)

– c̃11
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
– d̃11̃z2n–1

}
,

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)

= 2.5M exp
{

M
(
0.07 + 0.035(1 + n)

)}

× exp
{

–̃a21(z1 + z3 + · · · + z2n–3) – ã21
(
2z2 + 4z4 + · · · + 2(n – 1)z2n–2

)

– b̃21z2n–1 – c̃21(̃z1 + z̃3 + · · · + z̃2n–3)

– c̃21
(
2̃z2 + 4̃z4 + · · · + 2(n – 1)̃z2n–2

)
– d̃21̃z2n–1

}
,

for all t ∈ [0, 1], zi, z̃i ∈ R+, i = 1, 2, . . . , 2n – 1.
For all t ∈ [0, 1], zi, z̃i ∈ [0, M], i = 1, 2, . . . , 2n – 1, j = 1, 2, we have

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1) ≥ 3M,

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1) ≥ 2.5M,

and thus (H4) holds. On the other hand, for all t ∈ [0, 1] we also have

lim sup
ã11

∑n–1
i=1 (z2i–1+2iz2i)+̃b11z2n–1+̃c11

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d̃11̃z2n–1→+∞

F1(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)
ã11

∑n–1
i=1 (z2i–1 + 2iz2i) + b̃11z2n–1 + c̃11

∑n–1
i=1 (̃z2i–1 + 2ĩz2i) + d̃11̃z2n–1

= lim sup
ã11

∑n–1
i=1 (z2i–1+2iz2i)+̃b11z2n–1+̃c11

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d̃11̃z2n–1→+∞

(

3M exp
{

M
(
0.125 + 0.0625(1 + n)

)}

× exp

{

–

[

ã11

n–1∑

i=1

(z2i–1 + 2iz2i) + b̃11z2n–1 + c̃11

n–1∑

i=1

(̃z2i–1 + 2ĩz2i) + d̃11̃z2n–1

]}

/
(

ã11

n–1∑

i=1

(z2i–1 + 2iz2i) + b̃11z2n–1 + c̃11

n–1∑

i=1

(̃z2i–1 + 2ĩz2i) + d̃11̃z2n–1

))

= 0
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and

lim sup
ã21

∑n–1
i=1 (z2i–1+2iz2i)+̃b21z2n–1+̃c21

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d̃21̃z2n–1→+∞

F2(t, z1, z2, . . . , z2n–3, z2n–2, z2n–1, z̃1, z̃2, . . . , z̃2n–3, z̃2n–2, z̃2n–1)
ã21

∑n–1
i=1 (z2i–1 + 2iz2i) + b̃21z2n–1 + c̃21

∑n–1
i=1 (̃z2i–1 + 2ĩz2i) + d̃21̃z2n–1

= lim sup
ã21

∑n–1
i=1 (z2i–1+2iz2i)+̃b21z2n–1+̃c21

∑n–1
i=1 (̃z2i–1+2ĩz2i)+d̃21̃z2n–1→+∞

(

2.5M exp
{

M
(
0.07 + 0.035(1 + n)

)}

× exp

{

–

[

ã21

n–1∑

i=1

(z2i–1 + 2iz2i) + b̃21z2n–1 + c̃21

n–1∑

i=1

(̃z2i–1 + 2ĩz2i) + d̃21̃z2n–1

]}

/
(

ã21

n–1∑

i=1

(z2i–1 + 2iz2i) + b̃21z2n–1 + c̃21

n–1∑

i=1

(̃z2i–1 + 2ĩz2i) + d̃21̃z2n–1

))

= 0.

Therefore, (H3) holds.

4 Conclusion
In this paper we use the fixed point index to study the existence of positive solutions for
the system of 2nth-order boundary value problems (1.1) involving semipositone nonlin-
earities. Our nonlinearities not only depend on all derivatives of unknown functions, but
they also grow superlinearly and sublinearly at infinity.
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