Hao et al. Journal of Inequalities and Applications (2020) 2020:20 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-020-2296-z a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

Positive solutions for a system of 2uth-order
boundary value problems involving
semipositone nonlinearities

Xinan Hao' @, Donal O'Regan? and Jiafa Xu'

“Correspondence:
haoxinan2004@163.com Abstract
'School of Mathematical Sciences, . N . - .
Qufu Normal University, Qufu In this paper we use the fixed point index to study the existence of positive solutions
PR.China for a system of 2nth-order boundary value problems involving semipositone

Fu\ll\ist of author information .Is nonlinearities.

available at the end of the article

MSC: 34B18;45J05; 47H11

Keywords: 2nth-order boundary value problems; Fixed point index; Positive solution

1 Introduction
In this paper we investigate the existence of positive solutions for the following system of

2nth-order boundary value problems involving semipositone nonlinearities:

(_1)nx(2n) :fl(t: x, x/’ o (_l)n—Zx(Zn—ZL), (_l)n—Zx(Zn—S), (_l)n—lx(Zn—2)’
_)’,_)/,, o (_1)n—2y(2n—4), (—1)”_2)/(2”_3), (—1)"_1)/(2"_2)),

(_l)ny(Zn) :fz(t, X, x/’ o (_l)n—Zx(Zn—IL)’ (_l)n—Zx(Zn—?a), (_l)n—lx(Zn—Z)’ (1.1)
y,y/, o, (_l)n—2y(2n—4)’ (_l)n—zy(Zn—B), (_l)n—ly(Zn—Z)),

220(0) = x2+D(1) = 0, y2(0) =y@#(1) =0, i=0,1,...,m—1,

where n € N with n > 1, and f; € C([0, 1] x R¥“%,R) (R, := [0,00), R := (=00, +0), j = 1,2)
satisfy the semipositone condition:

(HO) there is a positive constant M such that
ﬁ(t,Zl,Zz,...,Z4n_2) >-M, te [0, 1],Zi S R+,i =1,2,...,4n — 2,] =1,2.

In recent years, coupled systems of boundary value problems have been investigated by
many authors since such systems appear naturally in many real-world situations. Some
recent results on the topic can be found in a series of papers [1-26] and the references

therein. In [1], Yang used nonnegative matrix theory to study the existence of positive
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solutions for the system of generalized Lidstone problems,

(1)U = fi(t,u,—ut", ..., (=1)" @Dy, (1) T22))
(1)) = foy(tu,—u”, ..., (=1)" 22 Ly L (=1) D),

oo (0) = Bou®*V(0) =y u® (1) + B1u®* V(1) =0, i=0,1,...,m—1,
agv®(0) — Bov@*(0) =y v@ (1) + pv@* V(1) =0, j=0,1,...,n—1,

(1.2)

where fi,f, € C([0,1] x R7*",R,), and in [2] Xu and Yang used some concave functions to
depict the coupling behaviors for the nonlinearities f; (i = 1,2), and they established the
existence of positive solutions for (1.2). In [3], Wang and Yang used similar methods as
in [1] to study the existence of positive solutions for the system of higher-order boundary

value problems involving all derivatives of odd orders

(1) W = f(t,w,w,—w", ..., (=1)" WD 7 2 2", .., (1) 1)y,
(1) = g(t, w, W, —w", ..., (=1)" w1 7 2 2", (=1) D),
w@(0) = w(1)=0, i=0,1,...,m-1,

Z#(0)=2%V(1)=0, j=0,1,...,n—1,

where f,g € C([0,1] x R™"*2,R,). Moreover, they used a condition of Berstein—-Nagumo

2m-1 21-1)_For related papers, we refer the

type to obtain a priori estimates for w1 and z
reader to [27-33]. In [27] the authors used topological degree theory to study the existence
of nontrivial solutions for the higher-order nonlinear fractional boundary value problem

involving Riemann-Liouville fractional derivatives:

D2, u(t) = —f(t, u(t), DY u(t), DP2u(t), ..., DEm1(2)), 0<t<1,
w(0) = /(0) = --- = u2(0) = D}, u(1) = 0,

where Dj,, D§+, Dgi are the Riemann-Liouville fractional derivatives, and f € C([0,1] x
R"R).

Motivated by the above work, in this paper we investigate the positive solutions for the
system of 2nth-order boundary value problems (1.1) involving semipositone nonlinear-
ities. We first use the method of order reduction to transform (1.1) into an equivalent
system of integro-integral equations, and then we establish a system of nonnegative oper-
ator equations. Using the fixed point index and nonnegative matrix theory, we study the
existence of positive fixed points for the operator equations, and obtain positive solutions
for (1.1).

2 Preliminaries
LetE= C[Or 1]) llzll = maX¢e[o,1] |Z(t)|) P={te [0’ 1] :Z(t) >0,Vie [Or 1]} Then (E’ Il- ”) isa
Banach space, and P a cone on E. Let

1
kq(t,s) := min{t, s}, ki(t,s) := / ki_1(t, ©)k1(z,8)dt, t,s€(0,1],i=2,3,...,n,
0



Hao et al. Journal of Inequalities and Applications (2020) 2020:20 Page 3 of 17

and
1
(Bi2)(t) := / kit,9)z(s)ds,  hilt,s) = dki(t,9)/9t, i=1,2,...,n—1.
0
Note
1
(Biz)(®)) := / hi(t,8)z(s)ds, i=1,2,...,
0

and B;, B; : E — E are completely continuous linear operators, B;, B; are also positive op-
erators, i.e., they will map P into P.

Lemma 2.1 ([28]) Letky =1—2/e, and y(t) = te', t € [0,1]. Then we have

1
K U(s) < /0 Kty (@) dt < (s)

Lemma 2.2 ([28]) Let z € P. Then we have

n-2

1 1
/ [(Bn_lz)(t) ; 22((Bn_1_iz)<t>)}w<t) = [ =)
i=0

Lemma 2.3 ([34]) Let E be a real Banach space and P a cone on E. Suppose that 2 C E
is a bounded open set and that A : 2 N P — P is a continuous compact operator. If there
exists a wg € P\ {0} such that

w—Aw #Awy, YA>0,0€d2NP,

then i(A, 2 N P, P) = 0, where i denotes the fixed point index on P.

Lemma 2.4 ([34]) Let E be a real Banach space and P a cone on E. Suppose that 2 C E is
a bounded open set with 0 € 2 and that A : 2 NP — P is a continuous compact operator.

If
w—-AMw#0, Yre[0,1],we€d2NP,
then i(A,2 NP,P) =1.

Now, we consider the following auxiliary problem associated with (1.1):

(_l)nx(Zn) =f(t, x, x/, o (_l)n—2x(2n—4)’ (_l)n—zx(Zn—?,)’ (_l)n—lx(2n—2)),

x@(0) = x2*0(1)=0, i=0,1,...,n—1,

where f € C([0,1] x R>"~1, R) satisfies the condition:
(HO)' there is a positive constant M such that

f(t,Zl,Z2,...,Zzn_1) 2 _M» te [011])Zi €R+xi: 112:'--1271_ 1.
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Let (=1)1x@"=2(¢) = 2(¢), £ € [0, 1]. Then we have

(2.1)

=2"(t) = f (¢, (By-12)(8), (Bu-12)(1))', ..., (B12)(8), (B12)(2))', 2()),
z(0) =Z/(1) =0,

which can be expressed in the integral form

1

2(t) = /0 k(& 8)f (5, (Bu-12)(8), ((Bu-12)(9)) ..., (B12)(s), ((B12)(5)) , 2(s)) ds. (2.2)
For convenience, let

Az)(t) = (B2®), tel01],i=12,...,n-1
As a result, we can also write (2.2) in the form

1
2(t) = / ky(t,8)f (5, (Bu-12)(5), (An12)(8), ..., (B12)(5), (A12)(s), 2(s)) ds.
0

Let w(t) =M fol ky(t,s)ds = M(t — t2/2). We need to consider the following problem:

~2"(t) = f(t, (Buor (2 = w))(®), (Ays (2 = WD), ...
(Bi(z = w))(0), (A1(z = w))(2), (2 — w)(¢)), (2.3)
z(0)=2'(1) =0,

where
f(tz o) ft,z1,...,z0n1)+ M, te€][0,1],2,>0,i=1,2,...,2n—1,
13&1yeerZ2n-1) =
" f(t0,...,0) + M, t € [0, 1], for else cases.

Note that (2.3) can be expressed in the integral form

1 ~
00 = [ K6 (s (Burale =)0, (Aale= )G
(Bi(z = w))(s), (A1(z — W) (s), (z — w)(s)) dis.
Using (HO), we see that f € C([0,1] x R*"L,R,).

Lemma 2.5
(i) Ifz* is a positive solution of (2.1), then z* + w is a positive solution of (2.3).
(i) Ifz** is a positive solution of (2.3), and greater than w, then z** — w is a positive
solution of (2.1).

Proof Substituting z* + w into (2.3), we have

—2(8) =W (8) = f(t, (Buor (2" + w = w))(8), (Ao (* + w=w))(B), ...,
(B1(z" + w=w))(®), (A1(z* + w = w))(2), (2" + w — w)(2)), (2.4)
(z* +w)(0) = (z* + w)'(1) = 0.

Page 4 of 17
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Note that w satisfies the boundary value problem

—Z'(t) = M,
z(0)=2/(1) = 0.

By virtue of (2.4), we have

=2(6) = w'(8) = (& (Bur2*)(0), (A1 2°)(0), ..., (Brz")(8), (Ar2")(2), 2 (£)) + M,
z%(0)=2z"(1) =0,

which is (2.1).
On the other hand, we substitute z** — w into (2.1), and obtain

=Z() + wW'(t) = f (&, (By1 (2 = w))(8), (A1 (2 = w))(), ...,
(Bi(z" = w))(), (A (2™ = w))(2), (z" = w) (1)),
(" =w)(0) = (" —w)' (1) = 0.

Note that, from the definitions of w andf, we have

2" (t) = f(t, (Buor (27 = W))(E), (Apr (2 = W) (D), ...,
(By(2** = w))(0), (A1 (2" = w))(E), (2 — ) (D)),
Z*(0) = z**/(1) = 0,

which is (2.3). This completes the proof. O

From Lemma 2.5, if we wish to seek the positive solutions for (2.1), we only need to
study the positive solutions for (2.3), which are greater than w. Consequently, we define
an operator T : P — E as follows:

1 ~
(T2)(t) = /0 ky(£,8)f (s, (Bu-i(z = w))(5), (Au-1(z = W) (5),...,

(Bi(z = w))(s), (A1(z — ) (s), (z — w)(s)) dis.

Then T is a completely continuous operator, and if there exists a z € P with z > w such
that Tz = z, we see that zZ — w is a positive solution of (2.1).
Let

Py ={zeP:z(t) > t|zl|,Vt € [0,1]}.
Then Py is also a cone on E, and we have the following lemma.

Lemma 2.6 T(P) C Py.

Note that, for ¢,s € [0,1], tki(s,s) < ki(¢,s) < ki(s,s) and ky(s,s) = s, so we can easily ob-
tain this lemma (the details are omitted).
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From Lemmas 2.5 and 2.6, we have z € P, if z is a fixed point of T. Consequently, if

IIZ|l > M we have
Z(t) — w(t) > tl|zll - M (¢ - £2/2) > t]|Z]| - tM > 0.

Hence, we only need to seek T’s positive fixed point Z with ||Z|| > M, and then z - w is a

positive solution of (2.1).

3 Main results
In (1.1), let (-~1)""'x>"2 =y and (~1)""'y®*~?) = v, then we obtain the following system

of boundary value problems:

—u"(t) = fi(t, (Buau)(t), (Apau)(2), ..., (Bau)(8), (A1) (), u(t),
(Bu—1V)(8), (Ap_1v)(B), ..., (B1v) (D), (A1v)(2), v(1)),

—V'(8) = folt, (Buau)(8), (A a1)(8), ..., (Bru)(8), (Ayu)(2), u(t), (3.1)
(BuaV) (), (Ap1v)(®), ..., (B1v)(8), (A1v)(8), v(2)),

u(0) =4'(1) = 0, v(0) =v(1) =0,

which has the integral form

ut) = [y ki(t,)fi (s, Buort)(), (Ap-11)(), ..., (Brua)(s), (A114)(s), u(s),
(Br-1v)(8), (Ap-1)(5), - .., (B1v)(s), (A1v)(s), v(s)) dis,

v(t) = fol ki(t, 8)fa (s, (Buo124)(5), (Ap—12)(S), . . ., (Brue)(s), (A12)(s), u(s),
(Bu-1v)(8), (Ap-1v)(8), - .., (B1v)(5), (A1v)(5), v(s)) dis.

Forj=1,2,let

Fi(t, 21,22, ..., Zan2)

ﬁ(t,Zl,Zz,...,Z4n_2) +M, te [0, 1],Zl' >0,i=12,...,4n -2,
f(t,0,0,...,0) + M, t € [0, 1], for other cases.

Then we can define the operators 7j (j = 1,2) : P*"> — P and T : P> — P? as follows:

1
Tj(u, v)(t) = /O ky(t,)E; (s, (Buo1 (e = w))(8), (Apr (2 = )) (5), ...,

(By(u = w))(s), (A1 (e — w)) (s), (e — w)(s),
(B (v = W) ), (Apes (v = W) 8)s ..,
(B1(v = w))(s), (A1 (v = w))(s), (v — w)(s)) dis

and

T (u,v)(t) = (T1, To)(u,v)(£), te]0,1].
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Then, if we find the positive fixed point (&*, v*) of T with u*,v* > w, then (u* — w,v* —w)
is a positive solution for (3.1). Let
1

1
x(t) = /o k1 (2, s)(u*(s) - w(s)) ds, y(¢) = /0‘ ku_1(2,s) (v*(s) - w(s)) ds, (3.2)

and we will obtain the positive solution for (1.1) (note from the discussion in Sect. 2, we
need the norms of u*, v* to be greater than M).
Now, we list our assumptions for F; (j = 1,2):
(H1) There exist a1, bj1, ¢j1,dj1, ;> 0 (j = 1,2) such that
Ky (bu + au(n - 1)) <1, Ky (dQl + C21(l’l - 1)) <1,

Ay = det kyldn+cn(n-1))  ky(bn+ann-1)) -1 S0,
ky(dy +cn(n—-1)) =1 ky(by +an(n-1))

and, forall t € [0,1],z;,Z; €R,,i=1,2,...,2n -1,

Fi(t,21,22, -+ Zon-3, 2202, 221-1, 21, 225 + - +» Z2n-3» Z2n-2> Z2m-1)
>an(z1+23+ -+ Zons) + 11 (220 + 4za + -+ + 2(n — 1)2342) + b112aun
+e1@1+Z3+ +Zans) + 11 (222 + 424 + -+ +2(n = 1)Zoa) + d1Zon1 — by
Fy(t,21,20, - -+ Zon-3, 2202, 221-1, 21, 225 + - +» Z2n-3» Z2n-2 Z2m-1)
>an(z1+23+ -+ Zons) + a21 (220 + 4za + -+ + 2(n — 1)2242) + bo1Zona

+ 621(51 +Eg + +z2,,_3) + Co1 (22’2 + 4%4 + o+ 2(1’1 - I)Ezn_z) + dzlzzn_l - lz.

(H2) There exist Q; (j = 1,2) : [0, 1] — R such that

1
/ k(s,8)Q;j(s)ds < M
0
and
Fi(t, 21,22, ., Z20-3 Z2n-2) Zan-1,21, 225 + - Zan-3 Zan-2, Zon-1) < Q;(t),

forall t € [0,1], z;,Z; € [0,M], i =
(H3) There exist Z,»l,zjl,%ﬂﬂ

1,2,...,2n-1,j=1,2.
,7}- >0 (j = 1,2) such that
le +Eu(n - 1) < 1, 321 +321(I’l — 1) < 1,

Ag =det [ - [bu +an(n-1)] ~[du +euti-11 )
by + a1 (n=1)]  1=[day +Tr(n—1)]

and, forall t € [0,1], z;,z; €R,,i=1,2,...,2n -1,

Fi(t,21,22 -+ s Z01-3+ Z221-25 Zan=1, 215 Z2s + + - s 2203 Z21-25 Z25-1)

<an(zi+zs+ - +2o03) + 11 (222 + 420 + -+ 2(n — Dzppa) + b1izon

Page 7 of 17
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+ 611(21 +zZ3+---+ ZZn_?)) + 611(2Z2 + 424 + e+ 2(1’1 — l)Zzy,_z) + duZzn_l + ll,
Fo(t,21,225 -+ Z21-3+ 221-25 Z2n-1> 21, 225 + + - 1 2203 Z21-25 Z25-1)
<Un(z1+23+ -+ Zons) + da1 (222 + 424 + - + 2(n — 1)2342) + bo1Zany

+2121(51 +53 +o +’52n,3) +’521 (2’52 + 454 +oeet 2(n - 1)52,,,2) + EleZn—l +72.

(H4) There exist Q; (j = 1,2): [0,1] — R and £, £, € (0,1] such that

/0 1 ki (t;,5)Q;(s) ds > M
and
Fi(t, 21,22, » Zon-3) Zon-2, Zan-1 215 22 - -+ Z2n-3 Z2n-2> Zon-1) = <~2,~(t),
forall¢€[0,1], 2,z € [O,M],i=1,2,...,2n-1,j=1,2.
Let B, = {u € P: ||lu|| < p} for p > 0 in the sequel. Then we easily have 0B, = {u € P:

lull = p}, B, = {ueP: |ull < p}.

Theorem 3.1 Suppose that (H0)—(H2) hold. Then (1.1) has at least one positive solu-

tion.

Proof We first prove that there exists Ry > M such that
(Ll, V) 7{ T(ur V) + )\(d)l: ¢)2): fOI' (I/l, V) € aBRl N (P X P),)" Z 0’ (3'3)

where ¢; (i = 1,2) are given elements in the cone Py. We argue by contradiction. Suppose
there exist (#,v) € dBg, N (P x P) and A¢ > 0 with

(,v) = T(u,v) + ho(¢1, $2). (3.4)

This, together with Lemma 2.6, implies that u, v € Py. Moreover, from (H1) we have

u(t)

v(t)

T1(u,v)(t) + o1 (2) - T (u, v)(2)

To(u, v)(t) + hoda(t) | — \ To(u,v)(2)

[ k(8 5) (@ YU (Biu — w))(s) + 201 — )(Aiu — w))(8)] + buy (u — w)(s)) ds

+ fol ki(t,5)(cir Yo [(Bi(v = w))(s) + 2(n — i) (Ai(v = w))(5)] + d1 (v — w)(s)) ds

| -n [ ka(t,s)ds
| Ji k) an I Biw - w))(s) + 201 — ) (A — w))($)] + bon (s — w)(s)) s

+ fol ki(t,8)(car Yory [(Bi(v = w))(8) + 21 — i)(Ai(v — w))(5)] + doy (v — w)(s)) ds
— L [ ki(t,5) ds
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Multiply by ¥ () on both sides, integrate over [0,1], and use Lemma 2.1, and we

have

[ u@yw (@) de
[ vy (¢) dt

Ky o U@ Y (Bl —w)(8) + 201 — )(Aiu — w)()] + buy (e — w)(8)) dt
+iey fy WOen i (Bi(v = w)(E) + 201 = ) Ai(v = w)()] + dir (v — w)(0)) dt
— b [y w(e)dt

Ky Jo U(E) (@ Y [Bilu —w)(8) + 201 — )(Aiu — w)()] + by (e — w)(2)) dt
+ iy fol Y () (can Y1 TBi(v = w)(0) + 2(n = (A (v = w)(O)] + dor (v — w)(8)) dt
~b [y w()dt

Ky Jo w@an Y0 (Bilu - W))(t) +2(n = ))(Bi(u—w)) ()] + b1y (u — w)(t)) dt

_ +iey [y U()(en Zf LB = w))(8) + 2(n = D)(Bi(v = w)) (O] + daa (v — w)(8)) dt — Iy
Ky j;)l Y () 30 (Bi(u — W))(t) +2(n = ) (Bi(u — w)) ()] + ba1 (u — w)(¢)) dt

+ Ky fol (e X1 By = w)) (@) + 2(n = ) (Bi(v — w)) (D] + doa (v = w)(®)) dt — I

Using Lemma 2.2 we obtain

INZOYAGY
Jo vy (e) dt

o (kb +an(n=1) [y = w)OWY @) dt + iy (diy + et =1)) [, (V= w)OY @ dt - by
iy (bar + an (n=1)) [ (w=w)(O)Y (&) dt + icy (day + e (n=1)) [y v=w) Q)Y () dt -]’

Let

1
Nl = K}/,[(bll + ﬂu(ﬂ - 1)) + (dll + cu(n - 1))] / W(t)'(ﬂ(t) dt + ll
0
= K]/,[(bll + (ln(ﬂ - 1)) + (dll + Cn(ﬂ - 1))](26 - 5)M + 11,
1
Nz = Kw[(bgl + ﬂzl(}’l - 1)) + (d21 + C21 (}’1 - 1))] A W(t)lﬁ(t) dt + 12

= K,/,[(bﬂ + (121(1’1 - 1)) + (d21 + Czl(l’l - 1))](26 - 5)M + 12.

Therefore, we have

[Kv, (bu + 6{11 n— 1 fO dt t Ky (dll + Cll(l’l 1)) f (t)w(t) dt
iy (boy + a (n — 1))/1 u(t)y(t )dt+ licy (dar + e1(n = 1)) = 1] [ (D) (2) it

()

kyldn+cnn-1)) ky(bn+anm-1))-1 fo V()Y (t) dt M
kyldn +cn(m—1)) =1 ky(by +an(n-1)) fo Oy (t)dt No)

and



Hao et al. Journal of Inequalities and Applications (2020) 2020:20

Solving this matrix inequality, we obtain
fo vy (¢) dt L ky(by +an(n—-1))  1-ky(by +anrn-1))\ (M
fo up@)dt) — A \1-ky(dy +cu(n—1))  ky(dn +cn(n-1)) N,
Consequently, there exist N1, N3 > 0 such that

fo vy (t) dt Vi
Jy u(t)w(t) dt 2

Note that u, v € Py, and we have

Therefore, we can choose R; > max{M, == N ) 7; } such that (3.4) is false, and thus (3.3) holds.
From Lemma 2.3 we have

i(T,Bg, N (P x P),P x P) =0. (3.5)
Next we prove that
(1,v) # AT (u,v), for (u,v) € 9By N (P x P),VA €[0,1]. (3.6)
If not, there exist (#,v) € 3By N (P x P) and A; € [0,1] such that
(u,v) = M T (u,v).
This, combining with (H2), implies that
)3
M vl ) — \IITa( NSt (s)d M
This is a contradiction, and thus (3.6) is true. From Lemma 2.4 we have
(T,ByN(P xP),PxP)=1. (3.7)
From (3.5) and (3.7) we have

i(T,(Bg, \ By) N (P x P),P x P)
=i(T,Bg, N(P x P),P x P) —i(T,ByN(Px P),PxP)=0-1=-1.
Therefore the operator T has at least one fixed point (u*,v*) on (Bg, \ By) N (P x P) with

llee*|| = M, ||v*|| = M, and note from (3.2) we see that (1.1) has at least one positive solution.
This completes the proof. O

Page 10 of 17
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Theorem 3.2 Suppose that (HO), and (H3)—(H4) hold. Then (1.1) has at least one positive
solution.

Proof We first prove that
(,9) # T(1,v) + A1, ), for (w,v) € 3By N (P x P), 1 =0, (3.8)

where ¢~3i (i=1,2) € P are fixed elements. If this claim is false, there exist (#,v) € 9By N
(P x P) and A, > 0 such that

(,9) = T(1,v) + ha(1, o).
This, together with (H4), gives
<||u||) N (u(m) . (Tl(u, v)(tn) (fo k(81,5901 () ds) . (M) '
Ivil] — \v(t2) ] — \Ta(u,v)(t2) fo ki (t3,5)Qa(s) ds M
This is a contradiction, and thus (3.8) holds. From Lemma 2.3 we have
i(T,ByN (P x P),P x P)=0. (3.9)
Next we show that there is a large number R, > M such that
(u,v) #1T(u,v), for (u,v) € 9Bp, N (P x P),Y1 €[0,1]. (3.10)

We argue by contradiction, so we assume there exist (u,v) € 0Bg, N (P x P) and A3 € [0,1]
such that

(u,v) = 3T (u, v).

Lemma 2.6 implies that u, v € Py, and from (H3) we obtain

Jo ka(t,9)@n Z”‘f[(B (1= W))(s) + 20 — Ayt = W))(s)] + by (1 = w)(s)) ds
+f0 ki(t,9) @11 Y0 [(Bi(v = w))(s) + 2(n — D)(Ai(v = w))(s)] + dr1 (v — w)(s)) ds
- +1 fo ki(t,s)ds
=1/ kl(t 8)(@a1 Y1 [(Bilu — w))(s) +2(n — i) (A(u — w))(5)] +b21(u w)(s)) ds
+f0 ki(t,s (5212 By — w))(s) + 21 — i) (Ai(v = W)($)] + da1 (v — w)(s)) ds
+1 fo ki(t,s)ds
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Multiply by v(£) on both sides, integrate over [0, 1], and use Lemma 2.1, we have

( S u(w () dt)
Jo v

fo )@ Y [(Biu — w)(©) +2(n — i) (A (u ~
+fo GIEDS Ll[( ((v=—w)(t) +2(n - ) A(v-w

= | o v O S B )0 + 20— (A~ u 5
+f0 Y ()@ X1 By = w)(©) + 201 — i) (Ai(v = w) (O] + doy (v — w) (D)) dt +

This, combining with Lemma 2.2, implies that

INGYAGY
[ v (¢) dt

Jo v (@)@ Y5 B (©) + 2(n — i) (Bas) ()] + buyult)) dt
| A6 v@@ T Bm@) + 200 - (B (0] + duv() de + Ty
| v © @ X B () + 201 — )(Byu) ()] + b u(t)) dt
s v (OCu S B + 20 = ) (Bv) (8)] + doav(®)) dt + 1

_ [b1y + 0 (n— 1)] fo u(t)yr(t) dt + [dyy + T (n - 1)]f0 v w (@) de+ Ty
(21 + o (n - 1)] fo u(t)y () dt + [doy + T (n - 1)] fo vy () dt + 1

Consequently, we have

1= (b +a@n(n=1]  ~[du +2u(n-1)] fo u@y@®dt\ _ (I
by +An(n-1)] 1 [dy +Tu(n-1)] fo V()Y (2) dt L)’

Solving this matrix inequality, we obtain

o u@y@®de\ _ 1 (1-[dn+Enn-1]  du+eu-1) (i
fol vy (@) dt ] — Ay by +dy (n—1) 1-[by+aum-1]1) \L)

Therefore, there exist ./\73.,./% > 0 such that

[ u@w (@) de Vs
[ v (¢) dt A

Note that u, v € Py, and then we obtain

(-0

If we choose R, > max{M, (/3\/3’ Ny 3} then (3.10) holds. From Lemma 2.4 we have

i(T,Br, N (P x P),P x P) =1. (3.11)
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From (3.9) and (3.11) we have
i(T, (B, \ By) N (P x P),P x P)

=i(T,Br, N (P x P),P x P) —i(T,ByN(PxP),PxP)=1-0=1.

Therefore the operator T has at least one fixed point (&*, v*) on (Bg, \ Bx) N (P x P) with
llee*|| = M, ||v¥|| > M, and note from (3.2) we see that (1.1) has at least one positive solution.
This completes the proof. O

Example 3.3 Let

a = ¢ by = _°
" 4e-2)m-1) TV 2(e-2)
e e
= 7, d = y
D= e )m-1) n=es
e b e
ay=——, =—)
172 —2m-1) 7 5e-2)
e e
- dy= )
N3 )m-1) 217 %e-2)
Then
e—-2 e e 3
b -1) = - )=-<1
ky (b +anr-1) = — (2(e—2) Y ie 2" )) 3 -
e—2 e e 5
d -1)) = -1))==-x<1,
o (dor + enln=1) == <2(e—2) e )> 6"
Ay = 2G5+ e - D) -1 _163 .
_% %(5(;2) + 2(9—2§(n—1) (n-1))] 120
Consider

Fi(t,21,20 . . s 20135 20123 Z25-1 215 225 + - + » Z221-3 Z21~2 Z2n—1)

9 [eM (3 5 >]51
=-M —+—-(1+n)
57e-2\2 " 4

x [a11(z1 + 23+ + Zon3) + a11 (222 + 424 + - + 2(n = 1)z242)

+buzyu1+ i@+ 23+ - +Zon3)
~ ~ ~ ~ 81
+en (2% +42a+ -+ 2(n— DZaua) + duiZona] s

Fy(t, 21,225 -+ 221-3 221-2: Z21-1, 215 225 + + +» 2203 Z2n—2 Z2n—1)
19 [eM (7 5 2
=—M|—\—+-=-(1+n)
10 e—2\10 6
X [am(zl +23 4+ 2Zop3) + a1 (222 +4zp+ - +2(n— l)zgn,z)

+ b1z + 021(51 +Z3+ +Zou-3)

~ - ~
+1(22 + 423+ -+ + 2(n — VZoua) + dnZona] s

forallt€[0,1],2,2z; €R,,i=1,2,...,2n—1,and 81,8, > 1.
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Forallt €[0,1],2z;,z; € [0,M],i=1,2,...,2n—1,j = 1,2, we have

~ ~ o o~ o~ 9
Fi(t,21,225 -+ - s Z01-3+ 221-25 Zan-1> 215 225 + + - 1 223 22125 Zon-1) < EM’

~ ~ ~ ~ ~ 19
Fo(t, 21,20+ - s Z00-35 20123 200115 Z1» 225 + + +» 2213 Z21~2 Z2n-1) < EM
Consequently, if let Q(t) = 2M, Qu(t) = }—gM for t € [0,1], then (H2) holds.
On the other hand, for all ¢ € [0, 1] we note that

liminf
a11 Y1 (e +2izp) +h11 2o +e11 Yrt Boio1 +2Z0)) +d11 Fan_1—> +00
Fi(t,21,225 -« Z21-3+ 220125 Zan=1, 21, 225 - + - s 223 Z21-25 Z2n-1)

-1 . —1 ~ ~
an Yoy (Zaic1 + 2iz0) + b11zon-1 + c11 Ypy Raic + 20Z0) + d11Zan

= liminf
-1 ) -1 ~ ~
ar1 Yy (zim1+2iz9i)+b112an-1+c11 Yjoy Fai1 +2iZ0;)+d11Z25—1—> +00

— -1 . -1 ~ ~
M3+ 2(L+ m)] ™ [an Y1 (20 + 2iz0:) + brizon-y + c11 Y1 Baic + 2Z) + d1Zap1]”!

1 ) =] po =
an Yy (i1 + 2iz0i) + b11zon_1 + 11 Y iy @it + 2iZ01) + diZou

and

liminf
an Y (e +2izy) +ho1 21 +ea1 Y Pt Boio1 4220 +d1 Fap_1 — +00
Fo(t,21,22 -« s Z21-3+ 220125 Zan=1, 21> 225 - + + s 223 Z21-25 Z2n-1)

—1 . -1 ~ ~
an Y iy (Zoi-1 + 2iz0;) + borzon-1 + €1 Y1y Zaic1 + 2iZ0;) + doiZon1

= liminf
-1 . 1 ~ -
a1 Yy (20i-1+2iz9i)+bo12on_1+¢a1 Yo (Raic1 +2iZ0;)+d21Zop_1—> +00

- -1 ) -1 ~ ~
%M[ﬂ % + %(1 + )72 (a0 Y (2201 + 2i200) + ba1zon-1 + €a1 iy Boic1 + 2iZ0) + A1 Zan1)%

e—2
] ; - = =
an Y i (Zaic1 + 2iz0i) + byrzan_1 + €1 Yy (Zaic1 + 2iZ0;) + da1Zon1

= +00.
Therefore, (H1) holds.

Example 3.4 Let t; = 1, t, = 1, and note that fol ki(t,s)ds =t — 3¢* for t € [0,1], and if we

consider the case Q; = constant, we have

1 1
/ k61, 5)On(s) ds = Séb / ka6, )0a(9)ds = 0.
0 0

To obtain the first inequality in (H4), we can take 61 =3M, (32 = %M .

Let
~ T~ 1 1 1 1
an bu n du) _ 200n-1) 10 80(n—1) 40
= 1 1 1 1

dyn by dn (-1 20 100(i-1) 50
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Then we have

~ 1 1 ~ 1
bu+anm-1)=—+— <1, do +C(n—1)= — + — <1,
11 11( ) 10 20< 21 21( ) 50 T 100
0.85 [+ L
Ap=| | [ *+ 5o ~0.82>0.
—l5 + 3! 0.97
Let

Fi(t, 21,22, .+ Zon-3, Z2n-2, Z2n-1, 21, 225 +  +» Zan—3» Zan-2> Zn-1)
= 3Mexp{M(0.125 + 0.0625(1 + n))}
X exp{—'én(zl +23+ - +29,3) —511(222 +4z4 + -+ 2(n = 1)z9,5)
—511Z2n—1 —n@ +Z3+ - +Zop3)
—Cn (2% + 420+ -+ 2(n = 1)Zona) - zlﬁzn_l},
Fy(t,21,20, -+ Zon-3, 2202, 221-1, 21, 225 + - +» Z2n-3» Z2n-2 Z2n-1)
=2.5Mexp{M(0.07 + 0.035(1 + n))}
X exp{—%l(zl +23+ - +2oy3) — 521(2z2 +4zy+ -+ 2(n = 1)z9,2)
_ZZIZZn—l —Cn(Z1 +23 + - +Zop3)
(22 + 4Za+ -+ 21— 1)Zu) — EZIEZ;':—I};
forallt€[0,1],2,Z; €R,,i=1,2,...,2n—1.
Forallt € [0,1], 2,7 € [O,M],i=1,2,...,2n—1,j=1,2, we have
Fi(t,21,22 -+ Zon-3, Z2n-2, Z20-1, 21, 225 +  +» Zan-3» Zan-2 Zan-1) = 3M,

Fy(t,21,225 -+ Z21-3 221-2 Z221-1 215 225 + - +» Z2n—3» Zan—2 Zan-1) = 2.5M,
and thus (H4) holds. On the other hand, for all ¢ € [0, 1] we also have

lim sup
~ -1 . = ~ 1 N
a11 Y1 (20im1+2iz9))+b1120n-1+C11 Xoje (Faic1 +2iZ0;)+d11Z2p—1—>+00

Fl(tr 215225+ ++9221n-3>22n-25 Z2n-1>215 225 + + + s Z2n-3» Z2n-2> 22;'1—1)

= ) 5 = = =) ~ .~ =
di1 Y iy (zoio1 + 2iz0;) + b11zon-1 +C11 iy Roic1 + 2iZ0) + d11Zon-1

= lim sup
~ -1 . % ~ -1 PO T
a11 Y (20i-1+2iz0i)+b1120n-1+C11 D_jo; (Faic1+2iZ0;)+d11Z0p-1—> +00

(3M exp{M(0.125 + 0.0625(1 + 1)) }

n-1 n-1
X expi— |:6l11 Z(Zzi-l +2iz9;) + bi1zop-1 + C11 E (Zaio1 + 2iz0) + dIIZZn—1j| }

i=1 i=1

i=1 i=1

n-1 n-1
/(ﬂn E (221 + 2iz9;) + bi1zoy—1 +cn1 E (521—1 +20Zy;) + dllz2n—l))

=0
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and

lim sup
~ 1 , ~ ~ 1 ~ N~
A1 Y1 (20im1+2iz9))+bo120n-1+C1 Y 1o (Fain1 +2iZ0;)+d21Z0p—1—>+00

Fy(t,21,225 -+ 221-35 Z21-2 Z21-15 21 225 - + + » 2213 Z21-25 Z2n-1)

~ ) 5 = = =) ~ .~ ~
do1 Y1y (Zoim1 + 2iz0i) + bo1Zon-1 + T Y1y Zoic1 + 2iZ0) + do1Zon1

= lim sup
~ -1 ., ~ ~ -1 ~ Y~
a1 Yoy (22im1+2iz0i)+bo122n-1+Co1 D1y @in1+2Z2;)+d21Z2n-1—>+00

2.5M exp{M(0.07 + 0.035(1 + n)) }

n-1 n-1
X expy —| d21 E (z2i-1 + 2iz9;) + b2122p-1 + o1 E (Zaic1 + 2i22) + do1Zon1
i-1 i1
n-1 n-1
/ ds E (Z2i-1 + 2iz9;) + bnzoy-1 + 0 E (Zaiz1 + 2i29) + doiZon1
i1 i-1

=0.

Therefore, (H3) holds.

4 Conclusion

In this paper we use the fixed point index to study the existence of positive solutions for
the system of 2nth-order boundary value problems (1.1) involving semipositone nonlin-
earities. Our nonlinearities not only depend on all derivatives of unknown functions, but

they also grow superlinearly and sublinearly at infinity.
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