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Abstract
In this paper, we introduce an algorithm for solving classical variational inequalities
problem with Lipschitz continuous and monotone mapping in Banach space. We
modify the subgradient extragradient methods with a new and simple iterative step
size, the strong convergence of algorithm is established without the knowledge of
the Lipschitz constant of the mapping. Finally, a numerical experiment is presented to
show the efficiency and advantage of the proposed algorithm. Our results generalize
some of the work in Hilbert spaces to Banach spaces.
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1 Introduction
The variational inequality problem (VIP) which was first introduced by Hartman and
Stampacchia [1] in 1966, is a very important tool in studying engineering mechanics,
physics, economics, optimization theory and applied sciences in a unified and general
framework (see [2, 3]). Under appropriate conditions, there are two general approaches
for solving the variational inequality problem, one is the regularized method and the other
is the projection method. Many projection-type algorithms for solving the variational in-
equalities problem have been proposed and analyzed by many authors [4–22]. The gradi-
ent method is the simplest algorithm in which only one projection on feasible set is per-
formed, and the convergence of the method requires a strongly monotonicity. To avoid
the hypothesis of the strongly monotonicity, Korpelevich [4] proposed an algorithm for
solving the variational inequalities in Euclidean space, which was called the extragradient-
type method. The subgradient extragradient-type algorithm was introduced by Censor et
al. in [5] for solving variational inequalities in real Hilbert space. Yao et al. in [6] proposed
an iterative algorithm for solving a common solution of the pseudomonotone variational
inequalities and fixed point of pseudocontractive operators in Hilbert spaces.

In the past, most variational inequalities were in Euclidean or Hilbert space, recently,
extragradient-type method was extended from Hilbert spaces to Banach spaces (see [23–
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27]). In [23] they used the subgradient extragraduent method and Halpern method to
propose an algorithm for solving variational inequalities in Banach spaces. In [24], they
proposed a splitting algorithm for finding a common zero of a finite family of inclusion
problems of accretive operators in Banach space. Inspired by the work mentioned, in this
work, we extend subgradient extragradient algorithm proposed by [8] for solving vari-
ational inequalities from Hilbert spaces to Banach spaces. It is worth stressing that our
algorithm has a simple structure and the convergence of algorithms is not required to
know the Lipschitz constant of the mapping. The paper is organized as follows. In Sect. 2,
we present some preliminaries that will be needed in the sequel. In Sect. 3, we propose an
algorithm and analyze its convergence. Finally, in Sect. 4 we present a numerical example
and comparison.

2 Mathematical preliminaries
This section we will introduce some definitions and basic results that will be used in our
paper. Assume that X is a real Banach space with its dual X∗, ‖ · ‖ and ‖ · ‖∗ denote the
norms of X and X∗, respectively, 〈x, x∗〉 the duality coupling in X × X∗ for all x∗ ∈ X∗

and x ∈ X, xn −→ x strong convergence of a sequence {xn} of X to x ∈ X, xn ⇀ x weak
convergence of a sequence {xn} of X to x ∈ X. SX denote the unit sphere of X, and BX

the closed unit ball of X. Let C be a nonempty closed convex subset of X, its closure be
denoted by C̄ and F : C −→ X∗ be a continuous mapping. Consider with the variational
inequality (for short, VI(F , C)) which consists in finding a point x ∈ C such that

〈
F(x), y – x

〉 ≥ 0, ∀y ∈ C. (1)

Let S be the solution set of (1). Finding a solution of S is fundamental problem in opti-
mization theory. It is well known that x is the solution of the VI(F , C) if and only if x is
the solution of the fixed-point equation x = PC(x – λF(x)), where λ is an arbitrary pos-
itive constant. Therefore, the knowledge of fixed-point algorithms can be used to solve
VI(F , C).

We next recall some properties of the Banach space. Let X be a real Banach space and
X∗ be the corresponding dual space.

Definition 1 Assume that C ⊆ X is a nonempty set, F : C −→ X∗ is a continuous mapping,
then

(A1) The mapping F is monotone, i.e.,

〈
F(x) – F(y), x – y

〉 ≥ 0, ∀x, y ∈ C. (2)

(A2) The mapping F is Lipschitz-continuous with constant L > 0, i.e., there exists L > 0
such that

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C. (3)

(A3) ([28]) The mapping F is called hemicontinuous of C into X∗ iff for any x, y ∈ C and
z ∈ X the function t �→ 〈z, F(tx + (1 – t)y)〉 of [0, 1] into R is continuous.
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The normalized duality mapping JX (usually written J) of X into X∗ is defined by

J(x) =
{

x∗ ∈ X∗|〈x, x∗〉 =
∥∥x∗∥∥2 = ‖x‖2}

for all x ∈ X. Let q ∈ (0, 2]. The generalized duality mapping Jq : X → 2X∗ is defined (for
the definitions and properties, see [24]) by

Jq(x) =
{

jq(x) ∈ X∗|〈jq(x), x
〉
= ‖x‖∥∥jq(x)

∥∥,
∥∥jq(x)

∥∥ = ‖x‖q–1}

for all x ∈ X.
Let U = {x ∈ X : ‖x‖ = 1}. The norm of X is said to be Gâteaux differentiable if, for each

x, y ∈ U , the limit

lim
t→0

‖x + ty‖ – ‖x‖
t

(4)

exists. In this case, the space X is also called smooth. We know that X is smooth iff J is a
single-valued mapping of X into X∗, X is reflexive iff J is surjective, and X is strictly convex
iff J is one-to-one. Therefore, if X is a smooth, strictly convex and reflexive Banach space,
then J is a single-valued bijection, and then there exist the inverse mapping J–1 coincides
with the duality mapping J∗ on X∗. More details can be found in [29–31]. If (4) converges
uniformly in x, y ∈ SX , X is said to be uniformly smooth. It is said to be strictly convex if
‖ x+y

2 ‖ < 1 whenever x, y ∈ SX and x 
= y. The modulus δX of convexity is defined by

δX(ε) = inf

{
1 –

∥∥∥∥
x + y

2

∥∥∥∥
∣∣∣x, y ∈ BX ,‖x – y‖ ≥ ε

}
, (5)

for all ε ∈ [0, 2]. A Banach space X is said to be uniformly convex if δX(ε) > 0. It is well
known that a Banach space X is uniformly convex if and only if for any two sequences {xn}
and {yn} in X such that

lim
n→∞‖xn‖ = lim

n→∞‖yn‖ = 1 and lim
n→∞‖xn + yn‖ = 2, lim

n→∞‖xn – yn‖ = 0

hold. A uniformly convex Banach space is strictly convex and reflexive. By [24] we know
that a Banach space X is smooth if and only if the duality mapping Jq is single valued and is
uniformly smooth if and only if the duality mapping Jq is single valued and norm-to-norm
uniformly continuous on bounded sets of X. Moreover, if there exists c > 0 such that, for
all ε ∈ [0, 2], δX(ε) > cε2, then X is said to be 2-uniformly convex. It is obvious that every
2-uniformly convex Banach space is uniformly convex and all Hilbert spaces are uniformly
smooth and 2-uniformly convex, and therefore are reflexive.

Now, we recall some useful definitions and results. Firstly, let us introduce the gener-
alized projection operator of X. Let C ⊆ X be a nonempty closed convex subset of a real
uniformly convex Banach space X. Then we know that, for any z ∈ X, there exists a unique
element z̃ ∈ C such that ‖z – z̃‖ ≤ ‖z – y‖ for all y ∈ C. Putting z̃ = PCz, the operator
PC : X∗ −→ C ⊂ X is called the generalized projection (or metric projection) operator of
X onto C.
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To avoid the hypothesis of the strongly monotonicity, Korpelevich [4] give the extra-
gradient-type method:

yn = PC
(
xn – λF(xn)

)
, xn+1 = PC

(
xn – λF(yn)

)
, (6)

where λ ∈ (0, 1
L ).

The subgradient extragradient-type algorithm extend (6) in which the second orthogo-
nal projection onto some constructible set in Euclidean space for solving VI(F , C) in real
Hilbert space. Their method is of the following form:

yn = PC
(
xn – λF(xn)

)
, xn+1 = PTn

(
xn – λF(yn)

)
, (7)

where Tn = {x ∈ X|〈xn – λF(xn) – yn, x – yn〉 ≤ 0} and λ ∈ (0, 1
L ). Cai et al. [23] suggested the

following method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ X,

yn = PC(Jxn – λnF(xn)),

Tn = {x ∈ X|〈Jxn – λnF(xn) – Jyn, x – yn〉 ≤ 0},
zn = PTn (Jxn – λnF(yn)),

xn+1 = J–1(αnJx0 + (1 – αn)Jzn),

(8)

where J is the normalized duality mapping of X into X∗, λn ∈ (0, 1
L ), αn ⊂ (0, 1), αn → 0 and

∑∞
n=1 αn = +∞. They proved that the sequence {xn} generated by (8) converges strongly to

PSJx0.
The main drawback of algorithms (7) and (8) is a requirement to know the Lipschitz

constant or to know some estimation of it. Yekini and Olaniyi [7] proposed the following
subgradient extragradient method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ρ ∈ (0, 1),μ ∈ (0, 1),

yn = PC(xn – λnF(xn)), where λn = ρ ln and ln is the smallest nonnegative inter l

such that λn‖F(xn) – F(yn)‖ ≤ μ‖xn – yn‖,

zn = PTn (xn – λnF(yn)), where Tn = {x ∈ H|〈xn – λnF(xn) – yn, x – yn〉 ≤ 0},
xn+1 = αnf (xn) + (1 – αn)zn, where f : H → H is a contraction mapping.

(9)

The algorithm of (9) does not require one to know the Lipschitz constant, but the method
may involve computation of additional projections.

In [32], Alber introduced a functional V (x∗, y) : X∗ × X −→ R by

V
(
x∗, y

)
=

∥∥x∗∥∥2
∗ – 2

〈
x∗, y

〉
+ ‖y‖2. (10)

Clearly,

V
(
x∗, y

) ≥ (∥∥x∗∥∥∗ – ‖y‖)2.
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The operator PC : X∗ −→ C ⊆ X is said to be generalized projection operator if it asso-
ciates to an arbitrary fixed point x∗ ∈ X∗, the solution to the minimization problem

V
(
x∗, x̃∗) = inf

y∈C
V

(
x∗, y

)
,

where x̃∗ = PCx∗ ∈ C ⊂ X is called a generalized projection of the point x∗. For more results
about PC , see [32]. The next lemma can describe the properties of PC .

Lemma 1 Let C be a nonempty closed convex set in X and x∗, y∗ ∈ X∗, x̃∗ = PCx∗. Then

(i)
〈
Jx̃∗ – x∗, y – x̃∗〉 ≥ 0, ∀y ∈ C.

(ii) V
(
Jx̃∗, y

) ≤ V
(
x∗, y

)
– V

(
x∗, x̃∗), ∀y ∈ C.

(iii) V
(
x∗, z

)
+ 2

〈
J–1x∗ – z, y∗〉 ≤ V

(
x∗ + y∗, z

)
, ∀z ∈ X.

In [32], Alber also introduced the Lyapunov functional ϕ : X × X −→ R by

ϕ(x, y) = ‖x‖2 – 2〈Jx, y〉 + ‖y‖2, ∀x, y ∈ X.

Then, combining (10), we obtain V (x∗, y) = ϕ(J–1x∗, y), for all x∗ ∈ X∗, y ∈ X. Moreover, we
have the following lemma (see [33]).

Lemma 2 ([33]) Let X be a real 2-uniformly convex Banach space. Then, there exists μ ≥ 1
such that, for all x, y ∈ X,

1
μ

‖x – y‖2 ≤ ϕ(x, y).

The following two lemmas which will be useful to our subsequent convergence analysis,
and they are stated and proved in [34, 35].

Lemma 3 ([34]) Let {an} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {anj} of {an} which satisfies anj < anj+1 for all
j ∈N . Define the sequence {τ (n)}n≥n0 of integers as follows:

τ (n) = max{k ≤ n : ak < ak+1},

where n0 ∈N such that {k ≤ n0 : ak < ak+1} is nonempty. Then the following hold:
(i) τ (n) ≤ τ (n + 1) ≤ · · · , and τ (n) −→ ∞;

(ii) aτ (n) ≤ aτ (n)+1 and an ≤ aτ (n)+1.

Lemma 4 ([35]) Let {an} be a nonnegative real sequence and ∃N > 0, such that ∀n ≥ N ,
satisfying the following relation:

an+1 ≤ (1 – αn)an + αnσn + γn,

where (i) {αn} ⊂ (0, 1),
∑∞

n=0 αn = ∞; (ii) {σn} is a sequence such that lim supn→∞ bn ≤ 0;
(iii) γn ≥ 0,

∑∞
n=0 γn < ∞. Then limn→∞ an = 0.
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The following result for proving our main result relies on certain estimate and other
classical properties of the iterates which are given in [23].

Lemma 5 ([23]) Let x∗ = PSx0. Define an = ϕ(xn, x∗) and bn = 2〈x0 – x∗, xn+1 – x∗〉, then
(i) an+1 ≤ (1 – αn)an + αnbn,

(ii) –1 ≤ lim supn→∞ bn < ∞

Lemma 6 ([36]) Let C be a nonempty convex subset of a topological vector space X and
F : C → X∗ be a hemicontinuous mapping, then x∗ is a solution of (1) if and only if

〈
F
(
x∗), y – x∗〉 ≥ 0, ∀y ∈ C. (11)

3 Main results
In this section, we introduce a new iterative algorithms for solving monotone variational
inequality problems in Banach spaces. In order to present the method and establish its
convergence, we make the following assumption.

Assumption 1
(a) The feasible set C is a nonempty closed convex subset of a real 2-uniformly convex

Banach space X .
(b) F : X → X∗ is a monotone on C and L-Lipschitz continuous on X .
(c) The solution set S of VI(F , C) is nonempty.

Now, we discuss the strong convergence using the following algorithm for solving mono-
tone variational inequality. Our algorithms are of the following forms.

Algorithm A
(Step 0) Take λ0 > 0, x0 ∈ X be a given starting point, μ ∈ (0, 1).
(Step 1) Given the current iterate xn, compute

yn = PC
(
Jxn – λnF(xn)

)
. (12)

If xn = yn, then stop: xn is a solution. Otherwise, go to Step 2.
(Step 2) Construct the set Tn = {x ∈ X|〈Jxn – λnF(xn) – Jyn, x – yn〉 ≤ 0} and compute

zn = PTn

(
Jxn – λnF(yn)

)
, xn+1 = J–1(αnJx0 + (1 – αn)Jzn

)
. (13)

(Step 3) Compute

λn+1 =

⎧
⎨

⎩
min{μ(‖xn–yn‖2+‖zn–yn‖2)

2〈F(xn)–F(yn),zn–yn〉 ,λn}, if 〈F(xn) – F(yn), zn – yn〉 > 0,

λn, otherwise.
(14)

Set n := n + 1 and return to step 1.

We prove the strong convergence theorem for Algorithm A. Firstly, we give the following
theorem, which plays a crucial role in the proof of the main theorem.
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Theorem 1 Assume that Assumption 1 holds and xn, yn, λn be the sequences generated by
Algorithm A, then we have the following result:

(1) If xn = yn for some n ∈ N , then xn ∈ S.
(2) The sequence {λn} is a monotonically decreasing sequence with lower bound

min{μ

L ,λ0}, and therefore, the limit of {λn} exists and is denoted λ = limn→∞ λn. It is
obvious that λ > 0.

Proof (1) If xn = yn, then xn = PC(Jxn – λnF(xn)), so xn ∈ C. By the characterization of the
generalized projection PC onto C, we have

〈
Jxn – λnF(xn) – Jxn, xn – x

〉 ≥ 0 ∀x ∈ C.

Therefore,

〈
–λnF(xn), xn – x

〉
= λn

〈
F(xn), x – xn

〉 ≥ 0 ∀x ∈ C.

Since λn ≥ 0, xn ∈ S.
(2) It is obvious that {λn} is a monotonically decreasing sequence. Since F is a Lipschitz-

continuous mapping with constant L > 0, in the case of 〈F(xn) – F(yn), xn+1 – yn〉 > 0, we
have

μ(‖xn – yn‖2 + ‖zn – yn‖2)
2〈F(xn) – F(yn), zn – yn〉 ≥ 2μ‖xn – yn‖‖zn – yn‖

2‖F(xn) – F(yn)‖‖zn – yn‖ ≥ μ‖xn – yn‖
L‖xn – yn‖ =

μ

L
. (15)

Clearly, the sequence {λn} has the lower bound min{μ

L ,λ0}.
Since {λn} is monotonically decreasing sequence and has the lower bound, the limit of

{λn} exists, and we denote λ = limn→∞ λn. Clearly, λ > 0. �

The following lemma plays a crucial role in the proof of Theorem 2.

Lemma 7 Assume that Assumption 1 holds. Let {xn} be a sequence generated by Algo-
rithm A and {αn} ⊂ (0, 1). Then the sequence {xn} is bounded.

Proof Let u ∈ S. By Lemma 1(ii), we have

V (Jzn, u) = V
(
JPTn

(
Jxn – λnF(yn)

)
, u

)

≤ V
(
Jxn – λnF(yn), u

)
– V

(
Jxn – λnF(yn), zn

)

=
∥∥Jxn – λnF(yn)

∥∥2 – 2
〈
Jxn – λnF(yn), u

〉
+ ‖u‖2

–
∥∥Jxn – λnF(yn)

∥∥2 + 2
〈
Jxn – λnF(yn), zn

〉
– ‖zn‖2

= –2〈Jxn, u〉 + 2λn
〈
F(yn), u – zn

〉
+ 2〈Jxn, zn〉 + ‖u‖2 – ‖zn‖2

= V (Jxn, u) – V (Jxn, zn) + 2λn
〈
F(yn), u – zn

〉
. (16)

Since F is monotone, i.e., 〈F(yn) – F(u), yn – u〉 ≥ 0, for all n ∈ N , combining with u ∈ S,
we have

〈
F(yn), yn – u

〉 ≥ 〈
F(u), yn – u

〉 ≥ 0.
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Then 0 ≤ 〈F(yn), yn – u + zn – zn〉 = 〈F(yn), yn – zn〉 – 〈F(yn), u – zn〉. It implies that

〈
F(yn), yn – zn

〉 ≥ 〈
F(yn), u – zn

〉
, ∀n ∈ N . (17)

By the definition of Tn, we have 〈Jxn – λnF(xn) – Jyn, zn – yn〉 ≤ 0. Then

〈
Jxn – λnF(yn) – Jyn, zn – yn

〉

=
〈
Jxn – λnF(xn) – Jyn, zn – yn

〉
+ λn

〈
F(xn) – F(yn), zn – yn

〉

≤ λn
〈
F(xn) – F(yn), zn – yn

〉
. (18)

Using the definition of λn+1 and (17), (18) to (16), we get

V (Jzn, u) ≤ V (Jxn, u) – V (Jxn, zn) + 2λn
〈
F(yn), u – zn

〉

≤ V (Jxn, u) – V (Jxn, zn) + 2λn
〈
F(yn), yn – zn

〉

= V (Jxn, u) – V (Jxn, yn) – V (Jyn, zn) + 2
〈
Jxn – λnF(yn) – Jyn, zn – yn

〉

≤ V (Jxn, u) – V (Jxn, yn) – V (Jyn, zn) + 2λn
〈
F(xn) – F(yn), zn – yn

〉

≤ V (Jxn, u) – V (Jxn, yn) – V (Jyn, zn) + λn
μ

λn+1

(‖xn – yn‖2 + ‖zn – yn‖2). (19)

By Theorem 1(2), we get limn→∞ λn
μ

λn+1
= μ(0 < μ < 1), which means that there exists

a integer number N0 > 0, such that, for every n > N0, we have 0 < λn
μ

λn+1
< 1, taking this

result in (19), we obtain, for every n > N0,

V (Jzn, u) ≤ V (Jxn, u) – V (Jxn, yn) – V (Jyn, zn) + λn
μ

λn+1

(‖xn – yn‖2 + ‖zn – yn‖2)

≤ V (Jxn, u) – (1 – μ)
(
V (Jxn, yn) + V (Jyn, zn)

)

≤ V (Jxn, u).

Then, by the definition of xn+1, we have, for every n > N0,

V (Jxn+1, u) = V
(
αnJx0 + (1 – αn)Jzn, u

)

=
∥∥αnJx0 + (1 – αn)Jzn

∥∥2 – 2
〈
αnJx0 + (1 – αn)Jzn, u

〉
+ ‖u‖2

≤ αn‖Jx0‖2 – 2αn〈Jx0, u〉 + αn‖u‖2

+
∥∥(1 – αn)Jzn

∥∥2 – 2(1 – αn)〈Jzn, u〉 + (1 – αn)‖u‖2

= αnV (Jx0, u) + (1 – αn)V (Jzn, u)

≤ αnV (Jx0, u) + (1 – αn)V (Jxn, u)

≤ max
{

V (Jx0, u), V (Jxn, u)
}

≤ · · · ≤ max
{

V (Jx0, u), V (JxN0 , u)
}

.

Hence, {V (Jxn, u)} is bounded. Since V (Jxn, u) ≥ 1
μ
‖xn – u‖2, we see that {xn} is

bounded. �
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Theorem 2 Assume that Assumption 1 holds, the sequence {αn} satisfies {αn} ⊂ (0, 1),
∑∞

n=0 αn = ∞ and limn→∞ αn = 0. Let {xn} be a sequence generated by Algorithm A. Then
{xn} strongly converges to a solution x∗ = PSJx0.

Proof Let x∗ = PSJx0, by Lemma 1(i), we have

〈
Jx0 – Jx∗, z – x∗〉 ≤ 0, ∀z ∈ S.

By the proof of Theorem 1, we get ∃N0 ≥ 0, such that ∀n ≥ N0, V (Jzn, x∗) ≤ V (Jxn, x∗).
From Theorem 1(1), we see that the sequence {xn} is bounded, consequently, {yn} and

{zn} are bounded. Moreover, by (19), we see that there exists N0 ≥ 0, such that, for every
n ≥ N0,

V
(
Jxn+1, x∗) = V

(
αnJx0 + (1 – αn)Jzn, x∗)

≤ αnV
(
Jx0, x∗) + (1 – αn)V

(
Jzn, x∗)

≤ αnV
(
Jx0, x∗) + (1 – αn)V

(
Jxn, x∗)

– (1 – αn)(1 – μ)
(
V (Jxn, yn) + V (Jyn, zn)

)
. (20)

Case 1 As in Lemma 5, set an = ϕ(xn, x∗). By Theorem 1(1), we know that there exists
N1 ∈ N (N1 ≥ N0), such that the sequence {ϕ(xn, x∗)}∞n=N1

is nonincreasing. Then {an}∞n=1
converges, using this in (20), we obtain, when n > N1 ≥ N0,

(1 – αn)(1 – μ)
(
V (Jxn, yn) + ϕ(yn, zn)

)

≤ αnV
(
Jx0, x∗) – V

(
Jxn+1, x∗) + (1 – αn)V

(
Jxn, x∗)

≤ V
(
Jxn, x∗) – V

(
Jxn+1, x∗) + αnV

(
Jx0 – Jxn, x∗). (21)

By V (Jx0 – Jxn, x∗) being bounded and because {an}∞n=1 converges, we have, when n −→ ∞,

(1 – αn)(1 – μ)
(
ϕ(xn, yn) + ϕ(yn, zn)

) ≤ ϕ
(
xn, x∗) – ϕ

(
xn+1, x∗) + αnϕ

(
x0 – xn, x∗) −→ 0.

Notice that ϕ(xn, yn) ≥ 0 and 0 < μ, αn < 1, we have, when n −→ ∞,

‖xn – yn‖2 −→ 0 and ‖yn – zn‖2 −→ 0. (22)

Furthermore, by the definition of xn+1, we have

‖Jxn+1 – Jzn‖ = αn‖Jx0 – Jzn‖ −→ 0, as n −→ ∞.

Since J–1 is norm-to-norm uniformly continuous on bounded subset of X∗, we have
‖xn+1 – zn‖ −→ 0. Therefore, we get

‖xn+1 – xn‖ = ‖xn+1 – zn‖ + ‖zn – yn‖ + ‖yn – xn‖ −→ 0, n −→ ∞.

By Theorem 1(1), we know that {xn} is bounded, then there exists a subsequence {xnk }
that converges weakly to some z0 ∈ X, such that xnk ⇀ z0 and

lim sup
n→∞

〈
Jx0 – Jx∗, xn – x∗〉 = lim

k→∞
〈
Jx0 – Jx∗, xnk – x∗〉 =

〈
Jx0 – Jx∗, z0 – x∗〉 ≤ 0. (23)
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Then ynk ⇀ z0 and z0 ∈ C. Since F is monotone and ynk = PC(xnk – λnk F(xnk )), by
Lemma 1(i), we have 〈Jxnk – λnk F(xnk ) – Jynk , z – ynk 〉 ≤ 0, ∀z ∈ C. That is, for all z ∈ C,

0 ≤ 〈Jynk – Jxnk , z – ynk 〉 + λnk

〈
F(xnk ), z – ynk

〉

= 〈Jynk – Jxnk , z – ynk 〉 + λnk

〈
F(xnk ), z – xnk

〉
+ λnk

〈
F(xnk ), xnk – ynk

〉

≤ 〈Jynk – Jxnk , z – ynk 〉 + λnk

〈
F(z), z – xnk

〉
+ λnk

〈
F(xnk ), xnk – ynk

〉
.

Let k → ∞, using the facts that limk→∞ ‖ynk – xnk ‖ = 0, {ynk } is bounded and limk→∞ λnk =
λ > 0, we obtain 〈F(z), z – z0〉 ≥ 0, ∀z ∈ C. By Lemma 6, we have z0 ∈ S.

By Lemma 1(iii) and (19), we have

ϕ
(
xn+1, x∗) = V

(
Jxn+1, x∗) = V

(
αnJx0 + (1 – αn)Jzn, x∗)

≤ V
(
αnJx0 + (1 – αn)Jzn – αn

(
Jx0 – Jx∗), x∗) + 2αn

〈
Jx0 – Jx∗, xn+1 – x∗〉

≤ αnV
(
Jz, x∗) + (1 – αn)V

(
Jzn, x∗) + 2αn

〈
Jx0 – Jx∗, xn+1 – x∗〉

= (1 – αn)V
(
Jzn, x∗) + 2αn

〈
Jx0 – Jx∗, xn+1 – x∗〉

≤ (1 – αn)ϕ
(
xn, x∗) + 2αn

〈
Jx0 – Jx∗, xn+1 – x∗〉.

It follows from Lemma 5 and Lemma 4 that limn→∞ ϕ(xn, x∗) = 0, which means

lim
n→∞ xn = x∗.

Case 2 Suppose that there exists a subsequence {xnj} of {xn} such that ϕ(xmj , x∗) <
ϕ(xmj+1, x∗) for all j ∈ N . From Lemma 3, there exists a nondecreasing sequence mk ∈ N
such that limn→∞ mk = ∞ and the following inequalities hold for all k ∈N :

ϕ
(
xmk , x∗) < ϕ

(
xmk +1, x∗) and ϕ

(
xk , x∗) < ϕ

(
xmk +1, x∗). (24)

By (21), we know

(1 – αmk )
(

1 – λmk

μ

λmk +1

)(
ϕ(xmk , ymk ) + ϕ(ymk , zmk )

)

≤ ∥∥xmk – x∗∥∥2 –
∥∥xmk +1 – x∗∥∥2 + αmk

∥∥x0 – x∗∥∥2. (25)

Since {xnk } is bounded, there exists a subsequence {xmk } of {xnk } which converges weakly
to z0 ∈ X. Using the same argument as in the proof of Case 1, and Combining (25) and
limk→∞(1 – λmk

μ

λmk +1
) = 1 – μ > 0, we obtain

lim
k→∞

‖xmk – ymk ‖ = 0, lim
k→∞

‖zmk – ymk ‖ = 0, lim
k→∞

‖xmk +1 – xmk ‖ = 0.

Similarly we can conclude that

lim sup
k→∞

〈
Jx0 – Jx∗, xmk +1 – x∗〉 = lim sup

k→∞

〈
Jx0 – Jx∗, xmk – x∗〉 ≤ 0. (26)
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It follows from (25) and the proof of case 1 that, for all mk ≥ N0, we have

∥∥xmk +1 – x∗∥∥2 ≤ (1 – αmk )
∥∥xmk – x∗∥∥2 + 2αmk

〈
x0 – x∗, xmk +1 – x∗〉

≤ (1 – αmk )
∥∥xmk +1 – x∗∥∥2 + 2αmk

〈
x0 – x∗, xmk +1 – x∗〉,

ϕ
(
xmk +1, x∗) ≤ (1 – αmk )ϕ

(
xmk , x∗) + αmk

〈
Jx0 – Jx∗, xmk +1 – x∗〉

≤ (1 – αmk )ϕ
(
xmk +1, x∗) + αmk

〈
Jx0 – Jx∗, xmk +1 – x∗〉.

Since αn > 0, this implies that ∀mk ≥ N1, we have

ϕ
(
xmk , x∗) ≤ ϕ

(
xmk +1, x∗) ≤ 〈

Jx0 – Jx∗, xmk +1 – x∗〉.

And then

lim sup
k→∞

ϕ
(
xmk , x∗) ≤ lim sup

k→∞

〈
Jx0 – Jx∗, xmk +1 – x∗〉 ≤ 0,

we obtain lim supk→∞ ϕ(xmk , x∗) = 0, which means limk→∞ ‖xmk – x∗‖2 = 0. Since ‖xk –
x∗‖ ≤ ‖xmk +1 – x∗‖, we have limk→∞ ‖xk – x∗‖ = 0. Therefore xk → x∗. This concludes the
proof. �

4 Numerical experiments
In this section, we present two numerical experiments relative to the variational inequal-
ities.

Example 4.1 We compare the proposed algorithm with the Algorithm 3.5 in [23]. For
Algorithm A and Algorithm 3.5 in [23], we take αn = 1

100(n+2) . To terminate the algorithms,
we use the condition ‖yn – xn‖ ≤ ε and ε = 10–3 for all the algorithms.

Let H = L2([0, 2π ]) with norm ‖x‖ = (
∫ 2π

0 |x(t)|2 dt) 1
2 and inner product 〈x, y〉 =

∫ 2π

0 x(t)y(t) dt, x, y ∈ H . The operator F : H → H is defined by Fx(t) = max(0, x(t)),
t ∈ [0, 2π ] for all x ∈ H . It can be easily verified that F is Lipschitz-continuous and mono-
tone. The feasible set is C = {x ∈ H :

∫ 2π

0 (t2 + 1)x(t) dt ≤ 1}. Observe that 0 ∈ S and so
S 
= ∅. We take λ0 = 0.7 and μ = 0.9 for Algorithm A. For Algorithm 3.5 in [23], we take
λ = 0.7. The numerical results are showed in Table 1.

Example 4.2 The example is classical. The feasible set is C = Rm and F(x) = Ax, where A
is a square m × m matrix given by the condition

ai,j =

⎧
⎪⎪⎨

⎪⎪⎩

–1, if j = m + 1 – i and j > i,

1, if j = m + 1 – i and j < i,

0, otherwise.

Table 1 Comparison between the Algorithm A and Algorithm 3.5 in [23]

x0 Algorithm A Algorithm 3.5 in [23]

iter. time iter. time
1
4 t

2e–3t 6 0.84 6 0.73
1
120 (1 – t

2) 8 6.55 8 6.21
1
150 sin(t) 9 18.28 9 16.33
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Table 2 Comparison between Algorithm A and Algorithm 3.5 in [17]

m AlgorithmA
(λ0 = 0.7)

Algorithm 3.5 in
[17] (λ = 0.7)

AlgorithmA
(λ0 = 0.9)

Algorithm 3.5 in
[17] (λ = 0.9)

iter. time iter. time iter. time iter. time

500 58 0.057 58 0.054 109 0.074 109 0.066
1000 258 1.03 258 1.01 109 0.78 109 0.78
2000 366 8.70 366 8.57 118 7.15 118 7.12
4000 517 64.8 517 64.5 469 63.7 469 63.2

This is a classical example of a problem where the usual gradient method does not con-
verge. For even m, the zero vector is the solution of the Example 4.1. We take λ = 0.7
(λ = 0.9) and μ = 0.9 for Algorithm A. For Algorithm 3.5 in [17], we take λ = 0.7 and L = 1.
For all tests, we take x0 = (1, . . . , 1). The numerical results are showed in Table 2.

Tables 1 and 2 illustrate that algorithms may behave similarly to when we have knowl-
edge of the Lipschitz constant.

5 Conclusions
In this paper, we consider a strong convergence result for monotone variational inequali-
ties problem with Lipschitz continuous and monotone mapping in uniformly convex Ba-
nach spaces. Our algorithm is based on the subgradient extragradient methods with a new
step size, the convergence of algorithm is established without the knowledge of the Lips-
chitz constant of the mapping. Our results extend the results of Yang and Liu in [8] from
Hilbert spaces to uniformly convex Banach spaces which are also uniformly smooth and
show strong convergence. Finally, a numerical experiment demonstrates the validity and
advantage of the proposed method.
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