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Abstract
The purpose of the paper is to study the coefficient multipliers of the Hardy spaces Hp

associated with Jacobi expansions of exponential type. The main results are about the
boundedness from Hp to �q of the multiplier operators in terms of Jacobi expansions
of exponential type for (i) p = 1, 2 ≤ q <∞; (ii) γ (α,β)–1 < p < 1 ≤ q <∞, under
appropriate conditions, where γ (α,β) ∈ (1,∞] is a number depending on the
parameters of the Jacobi system.
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1 Introduction and main results
1.1 Jacobi expansions of exponential type
Assume that α,β > –1. Let R(α,β)

n (x) be the Jacobi polynomial on [–1, 1] of degree n nor-
malized so that R(α,β)

n (1) = 1. It follows that the system {R(α,β)
n (cos t)}∞n=0 is orthogonal over

[0,π ] with respect to the weight sin2α+1(t/2) cos2β+1(t/2). In particular,

R(–1/2,–1/2)
n (cos t) = cos nt, R(1/2,1/2)

n (cos t) =
sin(n + 1)t
(n + 1) sin t

.

In analogy to the relation of cos nt and sin nt, the system {R(α+1,β+1)
n–1 (cos t) sin t}∞n=1 is in-

troduced in [8], which is a conjugate one of {R(α,β)
n (cos t)}∞n=0 based on a pair of gener-

alized Cauchy–Riemann equations. This allows us to define an exponential type system
{E(α,β)

n (t)}∞n=–∞ as in [9], by E(α,β)
0 = 1/

√
2, and for n ≥ 1,

E(α,β)
n (t) =

1
2

[
R(α,β)

n (cos t) + i
ρn

2α + 2
R(α+1,β+1)

n–1 (cos t) sin t
]

,

E(α,β)
–n (t) = E(α,β)

n (t),

(1)

with ρn =
√

n(n + α + β + 1), which is orthogonal over [–π ,π ] with respect to the weight
w(t) = φα,β (t)2, where

φα,β (t) =
∣∣sin(t/2)

∣∣α+1/2∣∣cos(t/2)
∣∣β+1/2.
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It is interesting that each E(α,β)
n is an eigenfunction of the first order differential-difference

operator T defined by

Tf (t) =
d
dt

f (t) + ηα,β (t)
[
f (t) – f (–t)

]
, ηα,β (t) =

(α + β + 1) cos t + α – β

2 sin t
,

that is,

TE(α,β)
±n (t) = ±iρnE(α,β)

±n (t) for n ≥ 0.

This resembles the functions eint satisfying d
dt e±int = ±ine±int . The system {E(α,β)

n (t)}∞n=–∞
induces an orthonormal system {E (α,β)

n (t)}∞n=–∞ over [–π ,π ] with respect to the Lebesgue
measure, that is,

∫ π

–π

E (α,β)
m (t)E (α,β)

n (t) dt = δm,n, m, n = 0,±1,±2, . . . ,

where, for n = 0,±1,±2, . . . ,

E (α,β)
n (t) =

√
ω

(α,β)
n E(α,β)

n (t)φα,β(t),

and 1/ω(α,β)
n =

∫ π

–π
|E(α,β)

n (t)|2φα,β (t)2 dt. From [9, Lemma 4] and [8, (2.2)] it follows that, for
n = 0, 1, 2, . . . ,

ω(α,β)
n =

(2n + α + β + 1)Γ (n + α + β + 1)Γ (n + α + 1)
Γ (α + 1)Γ (α + 1)Γ (n + β + 1)Γ (n + 1)

,

and ω
(α,β)
–n = ω

(α,β)
n . It is easy to see that

ω(α,β)
n = 2Γ (α + 1)–2n2α+1(1 + O

(
n–1)) for n ≥ 1. (2)

Sometimes we write En(t) = E(α,β)
n (t) and En(t) = E (α,β)

n (t) for simplicity.
In what follows we assume that α,β ≥ –1/2, for which the functions E (α,β)

n (t) are con-
tinuous on [–π ,π ]. For f ∈ L(–π ,π ), its Jacobi expansion of exponential type is defined
by

f (t) ∼
∞∑

n=–∞
cn(f )E (α,β)

n (t), cn(f ) =
∫ π

–π

f (t)E (α,β)
n (t) dt, (3)

where cn(f ) are called the Fourier–Jacobi coefficients of f .

1.2 The main results
The purpose of the paper is to study the coefficient multipliers of the real Hardy spaces
Hp(–π ,π ) associated with Jacobi expansions of exponential type. We recall that a function
F analytic in the unit disk D is said to be in the Hardy space Hp(D), 0 < p < ∞, if ‖F‖Hp :=
sup0≤r<1 Mp(F ; r) < ∞, where

Mp(F ; r) =
{

1
2π

∫ π

–π

∣∣F(
reiθ )∣∣p dθ

}1/p

.
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The real Hardy space Hp(–π ,π ) consists of boundary values of real parts of functions F
in Hp(D), with real F(0).

Since H1(–π ,π ) ⊂ L(–π ,π ), the Fourier–Jacobi coefficients of f ∈ H1(–π ,π ) may be
defined as in (3); but if f ∈ Hp(–π ,π ) for 0 < p < 1, we need a substitute definition of its
Fourier–Jacobi coefficients cn(f ), which is based on the duality relation of the Hardy space
Hp(–π ,π ) and the Lipschitz space Λp–1–1(–π ,π ). For m ≥ 1 and m – 1 < δ ≤ m, Λδ(–π ,π )
is the set of (m – 1)-times differentiable and 2π-period functions f satisfying

‖f ‖Λδ
:= sup

x,h

∣∣f (m–1)(x + h) – f (m–1)(x)
∣∣/|h|δ+1–m < ∞

for δ 
= m, and

‖f ‖Λδ
:= sup

x,h

∣∣f (m–1)(x + h) – 2f (m–1)(x) + f (m–1)(x – h)
∣∣/|h| < ∞

for δ = m. Here we use a unified notation Λδ(–π ,π ) for all δ > 0, without use of Zygmund’s
notation Λ∗

δ (–π ,π ) for δ = m.

Lemma 1.1 ([1, Theorem 7.5]) To each bounded linear functional L on Hp(D), 0 < p < 1,
there is a function g ∈ Λp–1–1(–π ,π ) such that, for all F(z) =

∑∞
n=0 cnzn ∈ Hp(D),

L(F) = lim
r→1–

∫ π

–π

F
(
reit)g(t) dt. (4)

Conversely, for any g ∈ Λp–1–1(–π ,π ), the above limit exists for all F ∈ Hp(D) and defines
a bounded linear functional satisfying

∣∣L(F)
∣∣ ≤ c‖g‖Λp–1–1

‖F‖Hp ,

where c is a constant independent of g and F .

A convenient notation is Lg = L once L and g satisfy relation (4).
The linear functional L on the real Hardy space Hp(–π ,π ), 0 < p < 1, is identified with

the associated one on Hp(D), that means L(f ) = L(F), where f (t) = the real part of F(eit)
for F ∈ Hp(D) with real F(0).

For 0 < p < 1, the Fourier–Jacobi coefficients cn(f ) of f ∈ Hp(–π ,π ) are defined by

cn(f ) = L
E (α,β)

n
(f ) for n = 0,±1,±2, . . . .

It is easy to see that this definition is identical with the previous definition in (3) for “good”
functions. However, it is not always meaningful in general for all Hp(–π ,π ), 0 < p < 1,
since the functions E (α,β)

n (t) are not sufficiently smooth for most of α, β . Indeed we have
the following.

Proposition 1.2 Let α,β ≥ –1/2. The functions En(t) = E (α,β)
n (t) are in Λp–1–1(–π ,π ) for

γ (α,β)–1 ≤ p < 1, where

γ (α,β) = +∞ if both α + 1/2 and β + 1/2 are nonnegative even integers

= min{α,β} + 3/2 if neither α + 1/2 nor β + 1/2 is an even integer
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= α + 3/2 or β + 3/2 if α + 1/2 or β + 1/2 is not an even integer

and the other one is an even integer.

Consequently, for f ∈ Hp(–π ,π ), γ (α,β)–1 ≤ p < 1, its Fourier–Jacobi coefficients cn(f ) =
L
E (α,β)

n
(f ) are well defined.

It is obvious that γ (α,β) > 1 for all α,β ≥ –1/2.
The main results in the present paper are about the boundedness of the multiplier

operators associated with Jacobi expansions of exponential type from the Hardy spaces
Hp(–π ,π ) to the sequence spaces �q for some ranges of p and q. The details are stated in
the following two theorems.

Theorem 1.3 Let α,β ≥ –1/2 and 2 ≤ q < ∞. If a bilateral sequence {λn}∞n=–∞ satisfies the
condition

∑
N≤|n|≤2N

|λn|q = O(1) for N ≥ 1, (5)

then, for all f ∈ H1(–π ,π ) having the Jacobi expansion (3) of exponential type,

∞∑
n=–∞

∣∣λncn(f )
∣∣q ≤ c‖f ‖q

H1 . (6)

Theorem 1.4 Let α,β ≥ –1/2 and

γ (α,β)–1 < p < 1 ≤ q < ∞.

If a bilateral sequence {λn}∞n=–∞ satisfies the condition

∑
N≤|n|≤2N

|λn|q = O
(
Nq(1–1/p)) for N ≥ 1, (7)

then, for all f ∈ Hp(–π ,π ), the Fourier–Jacobi coefficients cn(f ) = L
E (α,β)

n
(f ) satisfy

∞∑
n=–∞

∣∣λncn(f )
∣∣q ≤ c‖f ‖q

Hp . (8)

As a consequence of Theorems 1.3 and 1.4, a Paley-type inequality associated with Jacobi
expansions (3) can be obtained. We first note that if {nk} is a Hadamard sequence satisfying
nk+1/nk ≥ ρ > 1 (k = 1, 2, . . .), then for any N = 1, 2, . . . , the number of elements in {nk}
locating in [N , 2N] has a bound independent of N . Indeed, if nk–1 < N ≤ nk , then for j ≥
k satisfying nj ≤ 2N , we have 1 ≤ 2Nn–1

j ≤ 2Nn–1
k ρk–j ≤ 2ρk–j, and hence the bound to

be determined is 2/(1 – ρ–1). Now if λn = n1–1/p
k for |n| = nk , and 0 otherwise, then the

sequence {λn}∞n=–∞ satisfies (5) or (7) for p = 1 or 0 < p < 1 respectively, and hence applying
Theorems 1.3 and 1.4 to q = 2, we have the following corollary.
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Corollary 1.5 Let α,β ≥ –1/2 and γ (α,β)–1 < p ≤ 1. If {nk} is a Hadamard sequence sat-
isfying nk+1/nk ≥ ρ > 1 (k = 1, 2, . . .), then for f ∈ Hp(–π ,π ), the Fourier–Jacobi coefficients
cn(f ) satisfy

∞∑
k=1

n2(1–1/p)
k

(∣∣cnk (f )
∣∣2 +

∣∣c–nk (f )
∣∣2) ≤ c‖f ‖2

Hp . (9)

The Paley-type inequality for usual Jacobi expansions is a special case of (9) with p = 1
and for even functions, which has been proved in [7] by the duality of H1 and BMO.

Throughout the paper, c or c′ denotes constants independent of variables, functions, n,
k, etc., which may be different in different occurrences.

1.3 Backgrounds and remarks
1. The research on multipliers for power series and Fourier series has a long history and
rich contents. One of the criteria of multipliers in the Hardy spaces, proved in Hardy and
Littlewood [4, 5], is that, for 1 ≤ p ≤ 2 ≤ q and p–1 – q–1 = 1 – δ–1, the sequence {λn} is a
multiplier of Hp(D) into Hq(D) if the function hλ(z) =

∑∞
k=0 λkzk satisfies

Mδ

(
h′

λ; r
) ≤ c(1 – r)–1. (10)

It was pointed out in [13] (see [12] too) that (10) with δ = q is also necessary for the se-
quence {λn} being a multiplier of H1(D) into Hq(D) when 1 ≤ q ≤ ∞, and hence, for q ≥ 2,
it provides a characterization of multipliers from H1(D) into Hq(D). In particular, by Par-
seval’s theorem, (10) for δ = 2 is equivalent to

2N∑
n=N

|λn|2 = O(1) for N ≥ 1. (11)

That means the sequence {λn} is a multiplier of H1(D) into H2(D) if and only if (11) is
satisfied.

Turning to the case for 1 ≤ p ≤ q < 2, the situation is completely different from (10).
A sequence {λn} is constructed in [12] (see Theorem 3.1 there), which satisfies (10) but
is not a multiplier of Hp(D) into Hq(D). However, it was shown in [2] (and first stated in
[4, 5]) that a modification of (10) allows to extend the theorem of Hardy and Littlewood
to smaller p. Indeed, if 0 < p < 1 ≤ q ≤ ∞ and (ν + 1)–1 ≤ p < ν–1 with ν = 1, 2, . . . , then
the sequence {λn} is a multiplier of Hp(D) into Hq(D) if and only if the function hλ(z) =∑∞

n=0 λnzn satisfies Mq(h(ν+1)
λ ; r) ≤ c(1 – r)

1
p –ν–2.

A different type of multipliers is the coefficient multipliers of the Hardy spaces Hp(D)
into the sequence spaces �q. For 0 < q < ∞, �q = {{ak} : ‖{ak}‖q = (

∑∞
k=0 |ak|q)1/q < ∞}; and

�∞ is the set of bounded sequences. We use the same notations for a bilateral sequence.
That a sequence {λn} is such a multiplier means that {λncn} ∈ �q whenever

∑∞
n=0 cnzn ∈

Hp(D).
A basic criterion following from that on multipliers of H1(D) into H2(D) (alias �2) men-

tioned above is stated as follows: the sequence {λn} is a multiplier of H1(D) into �q for
2 ≤ q < ∞ if and only if

∑2N
n=N |λn|q = O(1) for N ≥ 1. For details, see [2, pp. 72–73]. A gen-

eral extension of this criterion to the case 0 < p < 1 is given in [2]. It is proved in [2] that (see
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Theorem 2 there), for 0 < p < 1 and p ≤ q < ∞, the sequence {λn} is a multiplier of Hp(D)
into �q if and only if

∑2N
n=N |λn|q = O(Nq(1–1/p)) for N ≥ 1. We note that this condition is

equivalent to what is given in [2] by the following proposition.

Proposition 1.6 ([10, Proposition 1.8]) Let a, b be real and a > 0. Then, for a nonnegative
sequence {μn}, the following conditions are equivalent:

(i)
∑N

n=1 nbμn = O(Na) for N ≥ 1;
(ii)

∑2N
n=N μn = O(Na–b) for N ≥ 1;

(iii)
∑2k+1

n=2k μn = O(2k(a–b)) for k ≥ 0;
(iv) For some δ > 0,

∑∞
n=N nb–a–δμn = O(N–δ) for N ≥ 1.

Since an element in the real Hardy spaces Hp(–π ,π ) has an expansion associated with
{einθ }∞n=–∞, or equivalently with {1, cos nθ , sin nθ , n = 1, 2, . . .}, the coefficient multiplier cri-
teria given above can be restated as follows.

Theorem 1.7
(i) If a bilateral sequence {λn}∞n=–∞ satisfies condition (5), then it is a multiplier of

H1(–π ,π ) into �q for 2 ≤ q < ∞, which means {λncn} ∈ �q whenever∑∞
n=–∞ cneint ∈ H1(–π ,π ).

(ii) Suppose 0 < p < 1. If a bilateral sequence {λn}∞n=–∞ satisfies condition (7), then it is a
multiplier of Hp(–π ,π ) into �q for p ≤ q < ∞, which means {λncn} ∈ �q whenever∑∞

n=–∞ cneint ∈ Hp(–π ,π ).

2. If f ∈ L(–π ,π ) is even or f ∈ L(0,π ), (3) is identical with the following usual Jacobi
expansion:

f (t) ∼
∞∑

n=0

an(f )p(α,β)
n (t), an(f ) =

∫ π

0
f (t)p(α,β)

n (t) dt,

where

p(α,β)
n (t) =

√
ω

(α,β)
n R(α,β)

n (cos t)φα,β (t), n = 0, 1, 2, . . . ,

which form an orthonormal system over [0,π ] with respect to the Lebesgue measure.
3. In our previous work [10], the problem on coefficient multipliers of the Hardy spaces

Hp(R) associated with Hermite expansions was studied. A sufficient condition given in
[10] for a sequence {λn}∞n=0 to be a multiplier of Hp(R) into the sequence space �q associated
with Hermite expansions for (i) p = 1, 2 ≤ q < ∞ and (ii) 0 < p < 1 ≤ q < ∞ is

2n∑
k=n

|λk|q = O
(
n

q
2 ( 7

6 – 1
p )). (12)

In comparison to (5) and (7), condition (12) might seem peculiar. For a Hadamard se-
quence {nk}, a Paley-type inequality following (12) is of the form (see [10, Corollary 3.3])

∞∑
k=1

n
7
6 – 1

p
k

∣∣ank (f )
∣∣2 ≤ c‖f ‖2

Hp(R), f ∈ Hp(R), (13)
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where an(f ), n ≥ 0, are the coefficients of the Hermite expansion of f . It is noted that the
Hardy inequality associated with Hermite expansions was proved in [11], that is,

∞∑
n=1

n– 3
4
∣∣an(f )

∣∣ ≤ c‖f ‖H1(R), f ∈ H1(R). (14)

The sharpness of (14) was verified by Kanjin in [6], who showed that there exists f0 ∈ L1(R)
such that

∞∑
n=1

n– 3
4
∣∣an(f0)

∣∣ = ∞.

4. The original proofs of the classical multiplier theorems depend on the complex vari-
able structure of analytic functions, which is not workable for the Jacobi expansions of
exponential type. We shall apply, in Sect. 3, the duality of H1 and BMO in proving The-
orem 1.3, and the duality of Hp(–π ,π ) and Λp–1–1(–π ,π ) in the proof of Theorem 1.4.
Applications of these principles base upon some evaluations of the exponential type Ja-
cobi functions E (α,β)

n (t) which are given in Sect. 2.

2 Several lemmas
Lemma 2.1 Let α,β > –1 and let 0 < ε0 < π be fixed. Then, for 0 ≤ |t| ≤ π – ε0 and for
n = 1, 2, . . . ,

E (α,β)
n (t) =

√
ω

(α,β)
n

2

( |t|
2

)α+1/2

eα+1/2(iNt) + O
[

1
n

(
n|t|

1 + n|t|
)α+3/2]

(15)

with N = n + (α + β + 1)/2, where eλ is the one-dimensional Dunkl kernel

eλ(z) = jλ–1/2(iz) +
z

2λ + 1
jλ+1/2(iz), z ∈C, (16)

and jα(z) is the normalized Bessel function jα(z) = 2αΓ (α + 1)z–αJα(z).

Proof The proof is essentially based upon the well-known formula [14, (8.21.17)] of “Hilb’s
type”, which is rewritten as

φα,β (t)R(α,β)
n (cos t) =

(
t
2

)α+1/2

jα(Nt) + O
[(

t
1 + nt

)α+3/2]

for 0 ≤ t ≤ π – ε0. Applying to R(α+1,β+1)
n–1 (cos t) and noting that ρn = N + O(1), then equal-

ity (15) follows from (1)–(2) and these estimates. If –π + ε0 ≤ t ≤ 0, we use the relation
E (α,β)

n (t) = E (α,β)
n (–t) to obtain (15) again. �

Corollary 2.2 Let α,β > –1 and let 0 < ε0 < π be fixed. Then, for n–1 ≤ |t| ≤ π – ε0 and for
n = 1, 2, . . . ,

E (α,β)
n (t) =

1√
2π

[(
1 + i

(2α + 1)2

8Nt

)
ei(sgn t)(N |t|– π

2 α– π
4 )

+ i
2α + 1

4Nt
e–i(sgn t)(N |t|– π

2 α– π
4 )

]
+ O

(
1

n2t2 +
1
n

)
. (17)
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Proof We rewrite [3, 7–13(3)] as

jα(x) =
cα+1/2

|x|α+1/2

[
cos

(
|x| –

π

2
α –

π

4

)
+

1 – 4α2

8|x| sin

(
|x| –

π

2
α –

π

4

)
+ O

(
1
x2

)]

for x → ∞, where cλ = 2λΓ (λ + 1/2)/
√

π . Applying to jλ–1/2 and jλ+1/2, then from (16) it
follows that

eλ(ix) =
cλ

|x|λ
[(

1 + i
λ2

2x

)
ei(sgn x)(|x|– π

2 λ) + i
λ

2x
e–i(sgn x)(|x|– π

2 λ) + O
(

1
x2

)]
.

Putting λ = α + 1/2, x = Nt, and then substituting into (15) proves (17) on account of (2). �

Lemma 2.3 Let α,β > –1 and let 0 < ε0 < π be fixed. Then, for k = 0, 1, . . . and 0 ≤ |t| ≤
π – ε0,

∣∣∣∣ dk

dtk E(α,β)
n (t)

∣∣∣∣ ≤ cnk(1 + n|t|)–α–1/2, (18)

where c is a constant independent of n, t.

Proof The key step is the following equality:

dk

dtk

[
R(α,β)

n (cos t)
]

=
k∑

j=0

Uj(n)R(α+j,β+j)
n–j (cos t)ψj(t), (19)

where Uj(n) is a polynomial in n of degree 2j and Uj(n) � n2j as n → ∞, ψj(t) is a ho-
mogeneous polynomial in cos t and sin t of degree j, and when [(k + 1)/2] ≤ j ≤ k, ψj(t) =
(sin t)2j–k× is a homogeneous polynomial in cos t and sin t of degree k – j.

The equality in (19) is a consequence of the formula (see [8, (2.9)])

d
dx

R(α,β)
n (x) =

ρ2
n

2α + 2
R(α+1,β+1)

n–1 (x)

after induction. And hence, by means of the estimate |R(α,β)
n (cos t)| ≤ c(1 + |nt|)–α–1/2 (see

[14, (7.32.5)]), | dk

dtk [R(α,β)
n (cos t)]| is dominated by a multiple of

k∑
j=[(k+1)/2]

n2j|t|2j–k

(1 + |nt|)j+α+1/2 +
[(k–1)/2]∑

j=0

n2j

(1 + |nt|)j+α+1/2 ,

and consequently by cnk(1 + n|t|)–α–1/2, since n2j|t|2j–k ≤ nk(1 + |nt|)2j–k in the first sum-
mation and n2j ≤ nk in the second one. Furthermore, we also have

ρn

2α + 2
∣∣[R(α+1,β+1)

n–1 (cos t) sin t
](k)

t

∣∣ =
1
ρn

∣∣[R(α,β)
n (cos t)

](k+1)
t

∣∣
≤ cnk(1 + n|t|)–α–1/2,

and then by (1) the desired estimate (18) follows immediately. �
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Lemma 2.4 Let α,β ≥ –1/2 and let 0 < ε0 < π be fixed. Then there is a constant c inde-
pendent of n, t such that

∣∣∣∣ dk

dtk E
(α,β)
n (t)

∣∣∣∣ ≤ cnk
( |nt|

1 + |nt|
)α–k+1/2

for (i) 0 ≤ k < α + 1/2, 0 ≤ |t| ≤ π – ε0, and (ii) k ≥ α + 1/2, 0 < |t| ≤ π – ε0. Furthermore,
(iii) if α + 1/2 is an even integer, then | dk

dtk E
(α,β)
n (t)| ≤ cnk for k ≥ α + 1/2 and 0 ≤ |t| ≤ π – ε0.

Proof By Leibnitz’s rule,

dk

dtk E
(α,β)
n (t) =

√
ω

(α,β)
n

k∑
j=0

(
k
j

)
E(k–j)

n (t)φ(j)
α,β (t). (20)

It is obvious that φ
(j)
α,β (t) = | sin(t/2)|α+1/2–jh(t), where h(t) is a continuous function for 0 ≤

|t| ≤ π – ε0. We have |φ(j)
α,β (t)| ≤ c|t|α+1/2–j for t 
= 0 and also for t = 0 when j < α + 1/2, and

|φ(j)
α,β (t)| ≤ c for j ≥ α + 1/2 when α + 1/2 is an even integer. Now by Lemma 2.3 we obtain

∣∣∣∣ dk

dtk E
(α,β)
n (t)

∣∣∣∣ ≤ cnα+1/2
k∑

j=0

nk–j|t|α–j+1/2

(1 + n|t|)α+1/2 ≤ cnk
( |nt|

1 + |nt|
)α–k+1/2

for 0 < |t| ≤ π – ε0 and also for t = 0 when k < α + 1/2. If α + 1/2 is an even integer and
k ≥ α + 1/2, again by Lemma 2.3 the summation with j < α + 1/2 is, as above, bounded by
cnk , and the remainder part is dominated by

cnα+1/2
k∑

j=α+1/2

nk–j(1 + n|t|)–α–1/2 ≤ cnk .

Combining all the evaluations finishes the proof of the lemma. �

Corollary 2.5 Let α,β ≥ –1/2. Then, for 0 ≤ k < γ (α,β) – 1,

∣∣∣∣ dk

dtk E
(α,β)
n (t)

∣∣∣∣ ≤ cnk .

The corollary is a consequence of Lemma 2.4 and the relation

E (α,β)
n (t) = (–1)nE (β ,α)

n (π – t). (21)

Lemma 2.6 Let α,β ≥ –1/2. Then if 1 ≤ m < γ (α,β) – 1,

∣∣E (m–1)
n (s) – E (m–1)

n (t)
∣∣ ≤ cnm|s – t|; (22)

if γ (α,β) is finite and γ (α,β) – 1 ≤ m < γ (α,β), then

∣∣E (m–1)
n (s) – E (m–1)

n (t)
∣∣ ≤ cnγ (α,β)–1|s – t|γ (α,β)–m. (23)
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Proof For 1 ≤ m < γ (α,β)–1, (22) is a consequence of the mean-value theorem and Corol-
lary 2.5.

In what follows we assume that γ (α,β) is finite and γ (α,β) – 1 ≤ m < γ (α,β). If |s –
t| ≥ (2n)–1, the estimate is obvious since |E (m–1)

n (t)| ≤ cnm–1. Now we consider the case
when |s – t| ≤ (2n)–1 (≤ π/6). Furthermore, we assume that γ (α,β) = α + 3/2 and restrict
ourselves to the case for –π/4 ≤ t ≤ 3π/4, which implies –5π/12 ≤ s ≤ 11π/12. By (20),
|E (m–1)

n (s) – E (m–1)
n (t)| is dominated by a multiple of nα+1/2 times

∣∣En(s)φ(m–1)
α,β (s) – En(t)φ(m–1)

α,β (t)
∣∣ +

m–2∑
j=0

∣∣(E(m–1–j)
n (t)φ(j)

α,β(t)
)′

t=ξ1

∣∣|s – t| (24)

with some ξ1 lying between s and t. The second term above is bounded by, applying
Lemma 2.3,

m–2∑
j=0

∣∣E(m–j)
n (ξ1)φ(j)

α,β (ξ1) + E(m–1–j)
n (ξ1)φ(j+1)

α,β (ξ1)
∣∣|s – t|

≤ c
m–2∑
j=0

[
nm–j|ξ1|α–j+1/2

(1 + |nξ1|)α+1/2 +
nm–j–1|ξ1|α–j–1/2

(1 + |nξ1|)α+1/2

]
|s – t|

≤ cnm–α–1/2|s – t|,

since |nξ1|α–j–1/2 ≤ (1 + |nξ1|)α–j–1/2 for j ≤ m – 2. In the meantime, it is easy to see that the
first term in (24) is bounded by

∣∣E′
n(ξ2)

∣∣∣∣φ(m–1)
α,β (t)

∣∣|s – t| +
∣∣En(s)

∣∣∣∣φ(m–1)
α,β (s) – φ

(m–1)
α,β (t)

∣∣
for some ξ2 lying between s and t. Since

φ
(m–1)
α,β ∈ Lip(α – m + 3/2), 0 < α – m + 3/2 ≤ 1,

and (1+ |nξ2|) � (1+ |nt|) for s, t under consideration, again applying Lemma 2.3 we obtain
an upper bound of the first term in (24) as a multiple of

n|t|α–m+3/2

(1 + |nξ2|)α+1/2 |s – t| + |s – t|α–m+3/2 ≤ cnm–α–1/2|s – t| + |s – t|α–m+3/2.

Substituting the two estimates into (24) yields

∣∣E (m–1)
n (s) – E (m–1)

n (t)
∣∣ ≤ cnα+1/2|s – t|α–m+3/2

for |s – t| ≤ (2n)–1 and α + 1/2 ≤ m < α + 3/2.
If 3π/4 ≤ t ≤ 7π/4 or γ (α,β) = β + 3/2, the associated estimate in (23) is a consequence

of the proved case and formula (21). �

Lemma 2.7 Let α,β ≥ –1/2. There exists a constant c such that, for all interval I , |I| ≤ π/4,
∣∣∣∣
∫

I
Ek(t)Ej(t) dt

∣∣∣∣ ≤ c
( |j|

|k| |I| +
1
|k|

)
.
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Proof If |k|/2 ≤ |j| ≤ |k|, then by Corollary 2.5, | ∫I Ek(t)Ej(t) dt| ≤ c|I|. In what follows, we
assume that |j| ≤ |k|/2. Since |I| ≤ π/4, we may suppose I ⊆ [–3π/4, 3π/4], and the case
when I ⊆ [π/4, 7π/4] has a similar result by appealing to (21). If I contains 0 as an interior
point, then we divide it by 0 into two parts, and hence we may assume I ⊆ [0, 3π/4]. We
also assume that k, j > 0 without loss of generality. At first we have

∣∣∣∣
∫

I∩{t:t≤k–1}
Ek(t)Ej(t) dt

∣∣∣∣ ≤ ck–1 by Corollary 2.5.

It remains to show that, for j ≤ k/2,

∣∣∣∣
∫

I∩{t:t≥k–1}
Ek(t)Ej(t) dt

∣∣∣∣ ≤ c
(

j
k
|I| +

1
k

)
. (25)

We apply (17) to the Ek(t) in (25). The contribution of the O-term, in conjunction with
Corollary 2.5, to the integral is dominated by

c
∫ 3π/4

k–1

[
(kt)–2 + k–1]dt ≤ c′k–1.

We need to evaluate the critical part of the integral in (25) according to (17), that is,

Aj,k :=
∫

I∩{t:t≥k–1}
eiKtEj(t) dt,

where K = k + (α + β + 1)/2. But the evaluation of the part of the integral associated with
the terms in (17) with additional factor (Kt)–1 is a little easier.

Taking integration by parts yields

Aj,k =
i
K

∫
I∩{t:t≥k–1}

eiKtE ′
j (t) dt + O

(
k–1). (26)

By Lemma 2.4, |E ′
j (t)| ≤ cj for α = –1/2 and |E ′

j (t)| ≤ cj(jt/(1 + jt))α–1/2 for α > –1/2. It
follows from (26) that, for α = –1/2, |Aj,k| ≤ c(j|I| + 1)/k, and for α > 1/2,

|Aj,k| ≤ c
j

K

∫
I

(
jt

1 + jt

)α–1/2

dt + O
(
k–1).

It is obvious that the integration over I is dominated by a multiple of

∫ j–1

0
(jt)α–1/2 dt +

∫
I

dt ≤ c′(j–1 + |I|),

and immediately one has an upper bound for |Aj,k| as in (25), as desired. �

3 Proofs of the main results
3.1 Proof of Theorem 1.3
We first note that the conclusion for 2 < q < ∞ follows from that for q = 2. Indeed, if
we put νn = |λn|q/2, then (5) implies

∑
N≤|n|≤2N |νn|2 = O(1), and since |ck(f )| ≤ c‖f ‖H1 by
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Corollary 2.5 with k = 0, we have

∞∑
k=–∞

∣∣λkck(f )
∣∣q ≤ c′‖f ‖q–2

H1

∞∑
k=–∞

∣∣νkck(f )
∣∣2 ≤ c‖f ‖q

H1 .

Now we turn to the proof of the theorem for q = 2. We fix a sequence {bn}∞n=–∞ ∈ �2 and
for n = 1, 2, . . . , put

gn(t) =
n∑

k=–n

λkbkEk(t). (27)

In terms of the duality of H1(–π ,π ) and BMO, one has | ∫ π

–π
f (t)gn(t) dt| ≤ c‖gn‖BMO‖f ‖H1 ,

or equivalently,

∣∣∣∣∣
n∑

k=–n

λkbkck(f )

∣∣∣∣∣ ≤ c‖gn‖BMO‖f ‖H1 , (28)

where ‖g‖BMO = supI(1/|I|) ∫I |g(t) – gI |dt for taking I to be all interval of the line and
gI = (1/|I|) ∫I g(t) dt with |I| being the length of I . We shall show that

‖gn‖BMO ≤ c′
( n∑

k=–n

|bk|2
)1/2

(29)

for a constant c′ independent of n and {bk}∞k=–∞ ∈ �2. Once (29) is true, then from (28) it
follows that (

∑n
k=–n |λkck(f )|2)1/2 ≤ c‖f ‖H1 , which proves the theorem by letting n → ∞.

As usual, in order to prove (29), it suffices to show that, for any interval I , there exists a
constant γI satisfying

1
|I|

∫
I

∣∣gn(t) – γI
∣∣dt ≤ c′

( n∑
k=–n

|bk|2
)1/2

. (30)

For an interval I , if 2mπ < |I| ≤ 2(m + 1)π for some m ≥ 1, then

(
1
|I|

∫
I

∣∣gn(t)
∣∣dt

)2

≤ 1
|I|

∫
I

∣∣gn(t)
∣∣2 dt ≤ m + 1

2mπ

∫ π

–π

∣∣gn(t)
∣∣2 dt ≤ c

n∑
k=–n

|bk|2.

If π/4 ≤ |I| ≤ 2π , we have a similar estimate.
In what follows we assume that 2π/(m + 1) < |I| ≤ 2π/m for some m ≥ 8. For such an

interval, if m ≥ n, then choosing tI to be one of the end points of I , we have

∣∣gn(t) – gn(tI)
∣∣2 ≤

n∑
k=–n

|bk|2
n∑

k=–n

|λk|2
∣∣Ek(t) – Ek(tI)

∣∣2,

and by Lemma 2.6,

∣∣gn(t) – gn(tI)
∣∣2 ≤ c

n∑
k=–n

|bk|2
n∑

k=–n

|λk|2|k|2δ|t – tI |2δ ,
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where δ = γ (α,β) – 1 if γ (α,β) is finite and 1 < γ (α,β) ≤ 2, and δ = 1 otherwise. From
assumption (5),

∑
N≤|n|≤2N |λn|2 = O(1), which implies

∑n
k=–n |λk|2|k|2δ ≤ cn2δ by Propo-

sition 1.6 ((ii) ⇒ (i) with b = a = 2δ > 0). Therefore

∣∣gn(t) – gn(tI)
∣∣2 ≤ c

∑
|k|≤n

|bk|2
(
n|I|)2δ ≤ c′ ∑

|k|≤n

|bk|2,

and (30) is true with γI = gn(tI).
If m < n, we again choose tI to be one of the end points of I to get

∣∣gn(t) – gm(tI)
∣∣ ≤ ∣∣gm(t) – gm(tI)

∣∣ +
∣∣∣∣

∑
m<|k|≤n

λkbkEk(t)
∣∣∣∣.

Hence by what has been verified,

1
|I|

∫
I

∣∣gn(t) – gm(tI)
∣∣dt ≤ c′

( m∑
k=–m

|bk|2
)1/2

+ Fm,n, (31)

where Fm,n = |I|–1 ∫
I |∑m<|k|≤n λkbkEk(t)|dt. But for Fm,n, we first note

F2
m,n ≤ 1

|I|
∫

I

∣∣∣∣
∑

m<|k|≤n

λkbkEk(t)
∣∣∣∣
2

dt

≤
∑

m<|k|≤n

∑
m<|j|≤n

|λkbkλjbj| 1
|I|

∣∣∣∣
∫

I
Ek(t)Ej(t) dt

∣∣∣∣.

By symmetry, it suffices to evaluate the part
∑

m<|k|≤n
∑

m<|j|≤|k|, and for these j, k,
2π |I|–1 ≤ m + 1 ≤ |j|, and by Lemma 2.7,

|I|–1
∣∣∣∣
∫

I
Ek(t)Ej(t) dt

∣∣∣∣ ≤ c
(|j| + |I|–1)/|k| ≤ 2c|j|/|k|.

Thus the evaluation of F2
m,n is reduced to showing the following inequality:

Sm,n :=
∑

m<|k|≤n

∑
m<|j|≤|k|

|λkbkλjbj| |j|
|k| ≤ c

∑
m<|k|≤n

|bk|2.

For the purpose, we rewrite Sm,n as

Sm,n ≤ 1
2

∑
m<|k|≤n

∑
m<|j|≤|k|

(|λjbk|2 + |λkbj|2
) |j|
|k|

=
1
2

∑
m<|k|≤n

|bk|2
|k|

∑
m<|j|≤|k|

|λj|2|j| +
1
2

∑
m<|j|≤n

|bj|2|j|
∑

|j|≤|k|≤n

|λk|2
|k| . (32)

Since assumption (5) (q = 2) implies

∑
|j|≤|k|

|λj|2|j| ≤ c|k| and
∑
|k|≥|j|

|λk|2
|k| ≤ c|j|–1,
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by Proposition 1.6 ((ii) ⇒ (i) and (ii) ⇒ (iv) with b = a = δ = 1). Incorporating these into
(32) proves that Sm,n ≤ c′ ∑

m<|k|≤n |bk|2; furthermore Fm,n ≤ c(
∑

m<|k|≤n |bk|2)1/2. Inserting
this into (31) proves (30) with γI = gm(tI).

The proof of Theorem 1.3 is completed.

3.2 Proof of Theorem 1.4
We fix a sequence {bn}∞n=–∞ ∈ �q′ , q–1 + q′–1 = 1, and for n = 1, 2, . . . , define gn as in (27). By
Proposition 1.2 and Lemma 1.1,

∣∣∣∣∣
n∑

k=–n

λkbkck(f )

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=–n

λkbkLEk
(f )

∣∣∣∣∣ =
∣∣Lgn (f )

∣∣ ≤ c‖gn‖Λp–1–1
‖f ‖Hp .

In order to prove (6), it suffices to show that there is a constant c′ independent of n and
{bk} ∈ �q′ such that

‖gn‖Λp–1–1
≤ c′∥∥{bk}

∥∥
q′ . (33)

Assume m – 1 < δ := p–1 – 1 < m ≤ γ (α,β) – 1. From (27) we have, for h 
= 0,

∣∣g(m–1)
n (t + h) – g(m–1)

n (t)
∣∣ ≤

n∑
k=–n

|λkbk|
∣∣E (m–1)

k (t + h) – E (m–1)
k (t)

∣∣. (34)

If n ≤ |h|–1, we apply Lemma 2.6 for m ≤ γ (α,β) – 1 to get an upper bound of |g(m–1)
n (t +

h) – g(m–1)
n (t)| as a multiple of

n∑
k=–n

|λkbk||k|m|h| ≤ |h|∥∥{bk}
∥∥

q′

( n∑
k=–n

|λk|q|k|mq

)1/q

. (35)

Since q(1 – p–1) = a – b, where a = q(m + 1 – p–1) > 0, b = mq, condition (7) and Proposi-
tion 1.6 ((ii) ⇒ (i)) give

n∑
k=–n

|λk|q|k|mq ≤ cnq(m+1–p–1) ≤ c|h|q(p–1–m–1) for n ≤ |h|–1.

Substituting this into (35) yields

∣∣g(m–1)
n (t + h) – g(m–1)

n (t)
∣∣ ≤ c

∥∥{bk}
∥∥

q′ |h|p–1–m. (36)

If n > |h|–1, the summation of those terms in (34) for |k| ≤ |h|–1 has the same bound
c‖{bk}‖q′ |h|p–1–m as above and the summation of the terms for |h|–1 < |k| ≤ n, in virtue of
Corollary 2.5, is dominated by

∑
|h|–1<|k|≤n

|λkbk|
(∣∣E (m–1)

k (t + h)
∣∣ +

∣∣E (m–1)
k (t)

∣∣)

≤
∑

|h|–1<|k|≤n

|λkbk||k|m–1 ≤ c
∥∥{bk}

∥∥
q′

( ∑
|h|–1<|k|≤n

|λk|q|k|q(m–1)
)1/q

. (37)
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Since

q(m – 1) = q
(
p–1 – 1

)
– q

(
p–1 – m

)
and q

(
p–1 – m

)
> 0,

condition (7) and Proposition 1.6 ((ii) ⇒ (iv)) give

∑
|h|–1<|k|≤n

|λk|q|k|q(m–1) ≤ c
(|h|–1)–q(p–1–m) = c|h|q(p–1–m).

Substituting this into the previous evaluation yields an upper bound of the summation of
the terms in (34) for |h|–1 < |k| ≤ n as c‖{bk}‖q′ |h|p–1–m. Thus (36) is proved to be true for
all n and h, so that (33) is shown whenever

m – 1 < δ := p–1 – 1 < m ≤ γ (α,β) – 1.

Next we consider the case when γ (α,β) is finite and

m – 1 < δ := p–1 – 1 < γ (α,β) – 1 < m.

Similarly to (35), we apply (23) in (34) to obtain

∣∣g(m–1)
n (t + h) – g(m–1)

n (t)
∣∣

≤ c|h|γ (α,β)–m∥∥{bk}
∥∥

q′

( n∑
k=–n

|λk|q|k|q(γ (α,β)–1)

)1/q

. (38)

Since q(1 – p–1) = a – b, where a = q(γ (α,β) – p–1) > 0, b = q(γ (α,β) – 1), condition (7) and
Proposition 1.6 ((ii) ⇒ (i)) give

n∑
k=–n

|λk|q|k|q(γ (α,β)–1) ≤ cnq(γ (α,β)–p–1) ≤ c|h|q(p–1–γ (α,β))

for n ≤ |h|–1, and substituting this into (38) proves (36) again. If n > |h|–1, we also break
the summation in (34) into two parts according to |k| ≤ |h|–1 and |h|–1 < |k| ≤ n, where
the first part has the same bound c‖{bk}‖q′ |h|p–1–m as just proved and the second part is
dealt with by the same way as in (37). That means (36) is true for all n and h, and hence
(33) is proved for m – 1 < δ := p–1 – 1 < γ (α,β) – 1 < m.

Finally, we prove (33) for

δ := p–1 – 1 = m < γ (α,β) – 1.

It is noted that the verification from (35) to (36) for n ≤ |h|–1 does not work when
p–1 = m + 1. We shall need to evaluate the second order difference of g(m–1)

n , which is
also sufficient by our definition about Λδ for δ = m. From (27) it follows, for h 
= 0, that
|g(m–1)

n (t + h) – 2g(m–1)
n (t) + g(m–1)

n (t – h)| is bounded by

n∑
k=–n

|λkbk|
∣∣E (m–1)

k (t + h) – 2E (m–1)
k (t) + E (m–1)

k (t – h)
∣∣. (39)
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If 1 ≤ m < γ (α,β) – 2, this is dominated by c
∑n

k=–n |λkbk||E (m+1)
k (ξ )||h|2; furthermore, by

virtue of Corollary 2.5, by

c′|h|2
n∑

k=–n

|λkbk||k|m+1 ≤ c′|h|2∥∥{bk}
∥∥

q′

( n∑
k=–n

|λk|q|k|q(m+1)

)1/q

. (40)

Since q(1 – p–1) = –qm = a – b, where a = q > 0, b = q(m + 1), condition (7) and Proposi-
tion 1.6 ((ii) ⇒ (i)) give

n∑
k=–n

|λk|q|k|q(m+1) ≤ cnq ≤ c|h|–q for n ≤ |h|–1.

Substituting this into (40) yields, for n ≤ |h|–1,

∣∣g(m–1)
n (t + h) – 2g(m–1)

n (t) + g(m–1)
n (t – h)

∣∣ ≤ c
∥∥{bk}

∥∥
q′ |h|. (41)

If γ (α,β) is finite and γ (α,β) – 2 ≤ m < γ (α,β) – 1, we note that

∣∣E (m–1)
k (t + h) – 2E (m–1)

k (t) + E (m–1)
k (t – h)

∣∣ =
∣∣E (m)

k (ξ1) – E (m)
k (ξ2)

∣∣|h|

by the mean-value theorem, where ξ1 and ξ2 lay between t – h and t + h; furthermore, by
(23) this is bounded by

cnγ (α,β)–1|h|γ (α,β)–m–1|h| = cnγ (α,β)–1|h|γ (α,β)–m.

Hence the expression in (39) is dominated by a multiple of

n∑
k=–n

|λkbk||k|γ (α,β)–1|h|γ (α,β)–m,

which has the same bound as in (38), and also the bound c‖{bk}‖q′ |h|p–1–m = c‖{bk}‖q′ |h|
for n ≤ |h|–1 as in (36). Thus (41) is shown to be true for n ≤ |h|–1.

If n > |h|–1, the summation of the terms for |k| ≤ |h|–1 in (39) has the same bound as in
(41), and the summation of those for |h|–1 < |k| ≤ n is dealt with by the same way as in (37)
to obtain its bound c‖{bk}‖q′ |h|p–1–m = c‖{bk}‖q′ |h|. Therefore (41) is verified for all n and
h, and hence (33) is proved for δ := p–1 – 1 = m < γ (α,β) – 1.

The proof of Theorem 1.4 is completed.
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