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Abstract
In this paper, we prove that, for x > 0,

√
1 – exp

(
–

x2√
x2 + 1

)
< tanh x < 3

√
1 – exp

(
–

x3√
x3 + 1

)
.

This solves an open problem proposed by Ivády.
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1 Introduction
Ivády (see [1, Problem 51]) proposed the following problem: Show that, for x > 0,

√
1 – exp

(
–

x2
√

x2 + 1

)
< tanh x < 3

√
1 – exp

(
–

x3
√

x3 + 1

)
(1.1)

holds. Subsequently, a solution was presented by the proposer (see [2]).
In [2], the proof of the left-hand side of (1.1) is correct, but the proof of the right-hand

side of (1.1) is not correct.
Using the inverse function of tanh x, the second inequality in (1.1) has the equivalent

form

1
2

ln

(1 + 3
√

1 – exp(– x3√
x3+1

)

1 – 3
√

1 – exp(– x3√
x3+1

)

)
> x for x > 0. (1.2)

According to the mean-value theorem, Ivády [2, Eq. (8)] got on [0, x]

1
2x

ln

( 1 + 3
√

1 – exp(– x3√
x3+1

)

1 – 3
√

1 – exp(– x3√
x3+1

)

)

=

1
2 ln(

1+ 3
√

1–exp(– x3√
x3+1

)

1– 3
√

1–exp(– x3√
x3+1

)
)

x
=

η2(η3 + 2)
2(η3 + 1)3/2(1 – exp(– η3√

η3+1
))2/3(1 – (1 – exp(– η3√

η3+1
))2/3)

(1.3)
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for some 0 < η < x, and then proved that, for all η > 0,

η2(η3 + 2)
2(η3 + 1)3/2(1 – exp(– η3√

η3+1
))2/3(1 – (1 – exp(– η3√

η3+1
))2/3)

> 1.

We note that (1.3) may be corrected as

1
2x

ln

(1 + 3
√

1 – exp(– x3√
x3+1

)

1 – 3
√

1 – exp(– x3√
x3+1

)

)

=
η2(η3 + 2) exp(– η3√

η3+1
)

2(η3 + 1)3/2(1 – exp(– η3√
η3+1

))2/3(1 – (1 – exp(– η3√
η3+1

))2/3)

for some 0 < η < x.
In this paper, we provide a proof of the right-hand side of (1.1).
The numerical values given in this paper have been calculated via the computer program

MAPLE 13.

2 Lemma
Lemma 2.1 Let

G(x) =
x2(x3 + 2)

2(x3 + 1)3/2 exp

(
–

x3
√

x3 + 1

)
–

(
1 – exp

(
–

x3
√

x3 + 1

))2/3

+
(

1 – exp

(
–

x3
√

x3 + 1

))4/3

. (2.1)

Then, for x > 0,

G(x) > 0. (2.2)

Proof We split the proof into three cases.
Case 1. 0 < x < 0.5.
We first prove the following inequalities:

x3 + 2
2(x3 + 1)3/2 exp

(
–

x3
√

x3 + 1

)
> 1 – 2x3, (2.3)

(
1 – exp

(
–

x3
√

x3 + 1

))2/3

< x2 –
2
3

x5 +
7

12
x8, (2.4)

and

(
1 – exp

(
–

x3
√

x3 + 1

))4/3

> x4 –
4
3

x7 (2.5)

for 0 < x < 0.5.
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The inequality (2.3) can be converted to

y√
y + 1

+ ln

(
2(y + 1)3/2(1 – 2y)

y + 2

)
< 0 for 0 < y < 0.125.

We consider the function f1(y) defined, for 0 < y < 0.125, by

f1(y) =
y√

y + 1
+ ln 2 +

3
2

ln(y + 1) + ln(1 – 2y) – ln(y + 2).

Differentiation yields

–2(y + 1)f ′
1(y) =

6y2 + 19y + 4
(1 – 2y)(y + 2)

–
y + 2

(y + 1)1/2 .

By direct computation, we get, for 0 < y < 0.125,

(
6y2 + 19y + 4
(1 – 2y)(y + 2)

)2

–
(y + 2)2

y + 1
=

y(4y4(2 – y) + 199y3 + 597y2 + 601y + 200)
(1 – 2y)2(y + 2)2(y + 1)

> 0.

We then obtain f ′
1(y) < 0 for 0 < y < 0.125. Hence, f1(y) is strictly decreasing for 0 < y <

0.125, and we have

f1(y) =
y√

y + 1
+ ln

(
2(y + 1)3/2(1 – 2y)

y + 2

)
< f1(0) = 0.

The inequality (2.4) can be written for 0 < x < 0.5 as

x3
√

x3 + 1
+ ln

(
1 – x3

(
1 –

2
3

x3 +
7

12
x6

)3/2)
< 0. (2.6)

In order to prove (2.6), it suffices to show that

f2(y) < 0 for 0 < y < 0.125,

where

f2(y) =
y√

y + 1
+ ln

(
1 – y

(
1 –

2
3

y +
7

12
y2

)3/2)
.

Differentiation yields

–f ′
2(y) =

4(3 – 5y + 7y2)
√

36 – 24y + 21y2

72 – (12y – 8y2 + 7y3)
√

36 – 24y + 21y2
–

y + 2
2(y + 1)3/2 .

We now prove f ′
2(y) < 0 for 0 < y < 0.125. It suffices to show that, for 0 < y < 0.125,

4(3 – 5y + 7y2)
√

36 – 24y + 21y2

72 – (12y – 8y2 + 7y3)
√

36 – 24y + 21y2
>

y + 2
2(y + 1)3/2 .
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It is not difficult to prove that

4(3 – 5y + 7y2)
√

36 – 24y + 21y2

72 – (12y – 8y2 + 7y3)
√

36 – 24y + 21y2
> 1 – y +

9
8

y2

and

y + 2
2(y + 1)3/2 < 1 – y +

9
8

y2

for 0 < y < 0.125 (we here omit the proofs). Hence, f ′
2(y) < 0 holds for 0 < y < 0.125. So, f2(y)

is strictly decreasing for 0 < y < 0.125, and we have

f2(y) =
y√

y + 1
+ ln

(
1 – y

(
1 –

2
3

y +
7

12
y2

)3/2)
< f2(0) = 0

for 0 < y < 0.125.
The inequality (2.5) can be written for 0 < x < 0.5 as

x3
√

x3 + 1
+ ln

(
1 – x3

(
1 –

4
3

x3
)3/4)

> 0. (2.7)

In order to prove (2.7), it suffices to show that

f3(y) > 0 for 0 < y < 0.125,

where

f3(y) =
y√

y + 1
+ ln

(
1 – y

(
1 –

4
3

y
)3/4)

.

Differentiation yields

f ′
3(y) =

y + 2
2(y + 1)3/2 –

3 – 7y
3(1 – 4

3 y)1/4(1 – y(1 – 4
3 y)3/4)

.

We now prove f ′
3(y) > 0 for 0 < y < 0.125. It suffices to show that, for 0 < y < 0.125,

1 – y
(

1 –
4
3

y
)3/4

>
2(3 – 7y)(y + 1)3/2

3(y + 2)(1 – 4
3 y)1/4

.

It is not difficult to prove that

1 – y
(

1 –
4
3

y
)3/4

> 1 – y and
2(3 – 7y)(y + 1)3/2

3(y + 2)(1 – 4
3 y)1/4

< 1 – y

for 0 < y < 0.125 (we here omit the proofs). Hence, f ′
3(y) > 0 holds for 0 < y < 0.125. So, f3(y)

is strictly increasing for 0 < y < 0.125, and we have

f3(y) =
y√

y + 1
+ ln

(
1 – y

(
1 –

4
3

y
)3/4)

> f3(0) = 0

for 0 < y < 0.125.
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We then obtain by (2.3), (2.4) and (2.5), for 0 < x < 0.5,

G(x) > x2(1 – 2x3) –
(

x2 –
2
3

x5 +
7

12
x8

)
+ x4 –

4
3

x7

=
1

12
x4(12 – 16x – 16x3 – 7x4) > 0.

Case 2. 0.5 ≤ x ≤ 3.
Let

G(x) = G1(x) + G2(x),

where

G1(x) =
x2(x3 + 2)

2(x3 + 1)3/2 exp

(
–

x3
√

x3 + 1

)
–

(
1 – exp

(
–

x3
√

x3 + 1

))2/3

(2.8)

and

G2(x) =
(

1 – exp

(
–

x3
√

x3 + 1

))4/3

. (2.9)

It is not difficult to prove that

(
1 – exp

(
–

x3
√

x3 + 1

))1/3

< x, x > 0 (2.10)

(we here omit the proof ). Differentiating G1(x) and using (2.10), we obtain, for x > 0,

–
(x3 + 1)3/2

x
exp

(
x3

√
x3 + 1

)
G′

1(x)

=
–(x6 + 8)

√
x3 + 1 + 3x3(x3 + 2)2

4(x3 + 1)3/2 +
x(x3 + 2)

(1 – exp(– x3√
x3+1

))1/3

>
–(x6 + 8)

√
x3 + 1 + 3x3(x3 + 2)2

4(x3 + 1)3/2 + x3 + 2

=
3x3((x3 + 4)

√
x3 + 1 + x6 + 4x3 + 4)

4(x3 + 1)3/2 > 0.

Therefore, the function G1(x) is strictly decreasing for x > 0.
Differentiation yields

G′
2(x) =

(
1 – exp

(
–

x3
√

x3 + 1

))1/3

exp

(
–

x3
√

x3 + 1

)
2x2(x3 + 2)
(x3 + 1)3/2 > 0.

Therefore, the function G2(x) is strictly increasing for x > 0.
Let 0.5 ≤ r ≤ x ≤ s ≤ 3. Since G1(x) is decreasing and G2(x) is increasing, we obtain

G(x) ≥ G1(s) + G2(r) =: σ (r, s).
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We divide the interval [0.5, 3] into 250 subintervals:

[0.5, 3] =
249⋃
k=0

[
0.5 +

k
100

, 0.5 +
k + 1
100

]
for k = 0, 1, 2, . . . , 249.

By direct computation we get

σ

(
0.5 +

k
100

, 0.5 +
k + 1
100

)
> 0 for k = 0, 1, 2, . . . , 249.

Hence,

G(x) > 0 for x ∈
[

0.5 +
k

100
, 0.5 +

k + 1
100

]
and k = 0, 1, 2, . . . , 249.

This implies that G(x) is positive for 0.5 ≤ x ≤ 3.
Case 3. x > 3.
We first prove that, for x > 3,

3x3(x3 + 2) – (x3 + 1)3/2

4
√

x

(
1 – exp

(
–

x3
√

x3 + 1

))1/3

> x2(x3 + 2
)
, (2.11)

which can be written for x > 3 as

x3
√

x3 + 1
+ ln

(
1 –

(
4x5/2(x3 + 2)

3x3(x3 + 2) – (x3 + 1)3/2

)3)
> 0, (2.12)

which can be converted to

y√
y + 1

+ ln

(
1 –

(
4y5/6(y + 2)

3y(y + 2) – (y + 1)3/2

)3)
> 0 for y > 27. (2.13)

It is not difficult to prove that

y√
y + 1

>
√

y –
1

2√y

and

1 –
(

4y5/6(y + 2)
3y(y + 2) – (y + 1)3/2

)3

> 1 –
64

27√y
–

64
27y

–
128

81y3/2

for y > 27 (we here omit the proofs).
In order to prove (2.13), it suffices to show that

√
y –

1
2√y

+ ln

(
1 –

64
27√y

–
64
27y

–
128

81y3/2

)
> 0 for y > 27. (2.14)

We consider the function f4(z) defined, for z > 3
√

3, by

f4(z) = z –
1
2z

+ ln

(
1 –

64
27z

–
64

27z2 –
128
81z3

)
.
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Differentiation yields, for z > 3
√

3,

f ′
4(z) =

162z5 – 384z4 + 81z3 + 320z2 + 576z – 128
2z2(81z3 – 192z2 – 192z – 128)

> 0.

Hence, f4(z) is strictly increasing for z > 3
√

3, and we have

f4(z) = z –
1
2z

+ ln

(
1 –

64
27z

–
64

27z2 –
128
81z3

)
> f4(3

√
3) = 4.289 . . . > 0

for z > 3
√

3. Hence, (2.14) holds for y > 27.
We now prove G(x) > 0 for x > 3. It is easy to see that

x2(x3 + 2)
(x3 + 1)3/2 >

√
x for x > 3.

In order to prove G(x) > 0 for x > 3, it is enough to prove the following inequality:

H(x) > 0 for x > 3,

where

H(x) =
√

x
2

exp

(
–

x3
√

x3 + 1

)
–

(
1 – exp

(
–

x3
√

x3 + 1

))2/3

+
(

1 – exp

(
–

x3
√

x3 + 1

))4/3

.

Differentiating H(x) and using (2.11) yield, for x > 3,

–
(
x3 + 1

)3/2
exp

(
x3

√
x3 + 1

)
H ′(x)

=
3x3(x3 + 2) – (x3 + 1)3/2

4
√

x

(
1 – exp

(
–

x3
√

x3 + 1

))1/3

+ x2(x3 + 2
)

– 2x2(x3 + 2
)(

1 – exp

(
–

x3
√

x3 + 1

))2/3

> 2x2(x3 + 2
){

1 –
(

1 – exp

(
–

x3
√

x3 + 1

))2/3}
> 0.

Therefore, the function H(x) is strictly decreasing for x ≥ 3, and we have

H(x) > lim
t→∞ H(t) = 0 for x ≥ 3.

Hence, we have G(x) > 0 for all x > 0. The proof of Lemma 2.1 is complete. �

3 Proof of the right-hand side of (1.1)
It is sufficient to prove the following inequality:

F(x) =
1
2

ln

(1 + 3
√

1 – exp(– x3√
x3+1

)

1 – 3
√

1 – exp(– x3√
x3+1

)

)
– x > 0 for x > 0. (3.1)



Zhang and Chen Journal of Inequalities and Applications         (2020) 2020:19 Page 8 of 8

Differentiating F(x) and using (2.2), we obtain, for x > 0,

(
1 – exp

(
–

x3
√

x3 + 1

))2/3[
1 –

(
1 – exp

(
–

x3
√

x3 + 1

))2/3]
F ′(x) = G(x) > 0,

where G(x) is given in (2.1). Therefore, F(x) is strictly increasing for x > 0, and we have

F(x) =
1
2

ln

(1 + 3
√

1 – exp(– x3√
x3+1

)

1 – 3
√

1 – exp(– x3√
x3+1

)

)
– x > F(0) = 0

for x > 0. The proof is complete.
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