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Abstract
In this study, a time semi-discretized Crank–Nicolson (CN) scheme of the
two-dimensional (2D) unsteady conduction–convection problems for vorticity and
stream functions is first built together with showing the existence and stability along
with error estimates to the semi-discretized CN solutions. Afterwards, a fully
discretized spectral element CN (SECN) model of the 2D unsteady
conduction–convection problems as regards the vorticity and stream functions is set
up together with showing the proof of the existence and stability along with error
estimates of the SECN solution. Lastly, a set of numerical experiments are offered for
checking the correctness of the theoretical conclusions.
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1 Introduction
Let Ω ⊂ R

2 be a bounded interconnected region. The 2D unsteady conduction–convec-
tion problems are stated as follows (see [1, 2]).

Problem 1 Seek u, v, Q, and p obeying
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu – μ�u + u∂xu + v∂yu + ∂xp = 0, (t, x, y) ∈ (0, T) × Ω ,
∂tv – μ�v + u∂xv + v∂yv + ∂yp = Q, (t, x, y) ∈ (0, T) × Ω ,
∂xu + ∂yv = 0, (t, x, y) ∈ (0, T) × Ω ,
∂tQ – γ0�Q + u∂xQ + v∂yQ = 0, (t, x, y) ∈ (0, T) × Ω ,
u(t, x, y) = ϕu(t, x, y), v(t, x, y) = ϕv(t, x, y), (t, x, y) ∈ (0, T) × Ω ,
Q(t, x, y) = Q0(t, x, y), (t, x, y) ∈ (0, T) × ∂Ω ,
u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y), (x, y) ∈ Ω ,
Q(0, x, y) = Q0(x, y), (x, y) ∈ Ω ,

(1)
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where ∂z = ∂/∂z (z = t, x, y), (u, v)T stands for the velocity vector of flow, p stands for
the pressure, Q stands for the temperature or heat energy, T stands for the total time,
μ =

√
Pr/Re, Re stands for the Reynolds, Pr stands for Prandtl’s number, γ0 = 1/

√
RePr,

(ϕu(x, y, t),ϕv(x, y, t))T and Q0(t, x, y) stand, respectively, for the known boundary values to
the flow velocity and temperature, and (u0(x, y), v0(x, y))T , and Q0(x, y) stand, respectively,
for the known initial values to the flow velocity and the temperature.

For convenience of the theoretic argumentation, we will presume that Q0(t, x, y) =
ϕu(t, x, y) = ϕv(t, x, y) = 0 in the following.

The 2D unsteady conduction–convection problems possess very momentous physical
background and can be applied for simulating the real-world natural phenomena (see [1–
4]). But, due to the nonlinearity for Problem 1, most of all when the computational region
for Problem 1 is of an irregular geometrical shape, one cannot usually find any genuine
solution so one has to find numerical ones.

It is universally acknowledged that the spectral and finite element (FE) together with fi-
nite difference (FD) along with finite volume element (FVE) methods are four welcome nu-
merical means (see [5–10]). Nevertheless, the spectral method possesses the highest pre-
cision among four numerical ones because the unknowns to the spectral method are ap-
proximated with the smooth functions, including trigonometric functions or the Cheby-
shev, Jacobi, and Legendre polynomials, but the unknowns to the FE and FVE methods are
usually approximated by the classic polynomials, while the derivatives to the FD method
are approached with difference quotients. Specially, the spectral element (SE) method pos-
sesses a similar principle to the FVE and FE ones so as to be adapt to the calculated regions
of the non-regular shapes. Hence, it is more popular than the FE and FVE FD methods
and has proverbially been applied for solving the various PDEs such as the hyperbolic and
parabolic along with hydromechanics equations (see [11–15]).

Though the reduced-order extrapolating (SECN) method of the 2D unsteady conduc-
tion–convection problems to the vorticity and stream functions has been developed in
[16], the SECN method has not been minutely developed. Specially, there have been no
theoretic proofs as regards the existence along with stability as well as error estimates
to the SECN solutions. Therefore, in Sect. 2, we firstly intend to set up a semi-discretized
CN scheme as a function of time with second-order temporal precision to the 2D unsteady
conduction–convection problems to the vorticity and stream functions, as well as a proof
of the error estimates to the semi-discretized CN solutions. Afterwards, in Sect. 3, we in-
tend to build the fully discretized SECN model of the 2D unsteady conduction–convection
problems to the vorticity and stream functions, as well as prove the existence along with
stability together with error estimates to the SECN solutions. In the end, in Sects. 4 and
5, we intend to pose a set of numeric experiments to verify the validity to the obtained
theoretic consequences and give the primary conclusions and discussion, respectively.

What is noteworthy is that the SECN model of the 2D unsteady conduction–convection
problems to the vorticity and stream functions is not only spilt into three sets of relatively
linearly independent equations, but also that it possesses the second-order precision as a
function of time. Specially, it is able to avoid the restriction for Babus̆ka–Brezzi’s stability
conditions to spectral subspaces so as to be able to easily seek the SECN solutions, which is
different from the previous other SE methods as stated above. As a consequence, the SECN
model is fully distinguished from the spectral ones (see [8–21]) and is a development or a
supplement to the previous ones.
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2 The generalized solution and semi-discrete solution as a function of time
Thanks to the connectivity and boundedness of Ω and ∂xu + ∂yv = 0, there is only a stream
function θ fulfilling u = ∂yθ and v = –∂xθ . In additional, there is a vorticity function �

meeting � = ∂v/∂x – ∂u/∂y = –�θ .
Thereupon, Problem 1 may be turned into the next systems of equations:

⎧
⎨

⎩

–�θ = � , (t, x, y) ∈ (0, T) × Ω ,

θ = 0, (t, x, y) ∈ (0, T) × Ω ,
(2)

⎧
⎪⎪⎨

⎪⎪⎩

∂t� – μ�� + ∂yθ∂x� – ∂xθ∂y� = ∂xQ, (t, x, y) ∈ (0, T) × Ω ,

� = 0, (t, x, y) ∈ (0, T) × Ω ,

� (0, x, y) = � 0 = ∂v0/∂x – ∂u0/∂y, (x, y) ∈ Ω ,

(3)

⎧
⎪⎪⎨

⎪⎪⎩

∂tQ – γ0�Q + ∂yθ∂xQ – ∂xθ∂yQ = 0, (t, x, y) ∈ (0, T) × Ω ,

Q = 0, (t, x, y) ∈ (0, T) × Ω ,

Q(0, x, y) = Q0, (x, y) ∈ Ω .

(4)

The Sobolev spaces along with norms adopted in the following are normative (see [1,
22]). Set V = H1

0 (Ω). Using the Green formula, we may gain the next weak format.

Problem 2 Find (� , θ , Q) ∈ H1(0, T ; V ) × H1(0, T ; V ) × H1(0, T ; V ) that satisfies

a(θ ,ϕ) = (� ,ϕ), ∀ϕ ∈ V ; (5)

(∂t� ,χ ) + μa(� ,χ ) + a1(θ ,� ,χ ) = (∂xQ,χ ), ∀χ ∈ V , (6)

(∂tQ,ϕ) + γ0a(Q,ϕ) + a1(θ , Q,ϕ) = 0, ∀ϕ ∈ V , (7)

� (0, x, y) = � 0, Q(0, x, y) = Q0, (x, y) ∈ Ω , (8)

where (� ,ϕ) =
∫

Ω
�ϕ dx dy, a(θ ,χ ) =

∫

Ω
(∂xθ∂xχ + ∂yθ∂yχ ) dx dy, and a1(θ ,� ,ϕ) =

∫

Ω
(∂xθ∂y� – ∂yθ∂x� )ϕ dx dy.

Then a1(θ ,� ,ϕ) possesses the next properties (see [1, 16, 23, 24]):

a1(θ ,� ,ϕ) = –a1(θ ,ϕ,� ), a1(θ ,� ,� ) = 0, ∀θ ,ϕ,� ∈ H1
0 (Ω); (9)

∣
∣a1(θ ,� ,ϕ)

∣
∣ ≤ C̃‖∇θ‖0‖∇�‖0‖ϕ‖0, ∀θ ,ϕ,� ∈ H1

0 (Ω), (10)

where C̃ > 0 stands for the constant that is independent of θ , � , and ϕ.

Theorem 1 If (u0, v0, Q0) ∈ H1(Ω) × H1(Ω) × H1(Ω), then Problem 2 possesses only a so-
lution (� , θ , Q) ∈ H1(0, T ; H1

0 (Ω)∩H2(Ω))×H1(0, T ; H1
0 (Ω)∩H2(Ω))×H1(0, T ; H1

0 (Ω)∩
H2(Ω)) that meets

‖∇θ‖0 + ‖�‖0 + ‖∇�‖L2(L2) + ‖Q‖0 + ‖∇Q‖L2(L2) ≤ σ
(
g1, g2, u0, v0,μ

)
, (11)

where ‖ · ‖Hm(Hk ) stands for the norms of space Hm(0, T ; Hk(Ω)) and σ (g1, g2, u0, v0,μ) ≥ 0
stands for a constant that is dependent on g1, g2, u0, v0, and μ.
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Proof When (u0, v0, Q0) ∈ H2(Ω)×H2(Ω)×H2(Ω), from the approaches in Refs. [16, 23],
or [24] we know that the direct variational format for Problem 1 has a unique a set of solu-
tion and from the regularity for PDEs (see [16, 23, 24]) we have (u, v, Q) ∈ H1(0, T ; H1

0 (Ω)∩
L2(Ω)) × H1(0, T ; H1

0 (Ω) ∩ H2(Ω)) × H1(0, T ; H1
0 (Ω) ∩ H2(Ω)). Therefore, Problem 2

has at least a solution � ∈ H1(0, T ; H1
0 (Ω) ∩ H2(Ω)), θ ∈ H1(0, T ; H1

0 (Ω) ∩ H2(Ω)), and
Q ∈ H1(0, T ; H1

0 (Ω) ∩ H2(Ω)). Thus, we only prove the uniqueness of solution to Prob-
lem 2. Namely, we only need to prove that, when � 0 = Q0 = 0, Problem 2 has only a zero
solution.

Selecting ϕ = θ in (5), by the Hölder and Poincaré inequalities (see [1]) we obtain

‖∇θ‖2
0 = (� , θ ) ≤ ‖�‖0‖θ‖0 ≤ C0‖�‖0‖∇θ‖0, (12)

where C0 > 0 stands for the coefficient in the Poincaré inequality: ‖θ‖1 ≤ C0‖∇θ‖0. From
(12) we get

‖∇θ‖0 ≤ C0‖�‖0. (13)

Selecting χ = � in (6), by the Hölder and Poincaré inequalities (see [1]) and (9) we obtain

1
2

d‖�‖2
0

dt
+ μ‖∇�‖2

0 = (∂xQ,� ) ≤ ‖∂xQ‖0‖�‖0

≤ C0‖∇Q‖0‖∇�‖0 ≤ C2
0

2μ
‖∇Q‖2

0 +
μ

2
‖∇�‖2

0. (14)

Thus, we can get

d‖�‖2
0

dt
+ μ‖∇�‖2

0 ≤ C2
0

μ
‖∇Q‖2

0. (15)

Integrating (15) on [0, t] (0 ≤ t ≤ T ) yields

‖�‖2
0 + μ‖∇�‖2

L2(L2) ≤ C2
0

μ
‖∇Q‖2

L2(L2) +
∥
∥� 0∥∥2

0. (16)

Selecting ϕ = Q in (7), by (9) we obtain

1
2

d‖Q‖2
0

dt
+ γ0‖∇Q‖2

0 = 0. (17)

Integrating (17) on [0, t] (0 ≤ t ≤ T ), we get

‖Q‖2
0 + 2γ0‖∇Q‖2

L2(L2) =
∥
∥Q0∥∥2

0. (18)

When � 0 = Q0 = 0, from (13), (16), and (18) we immediately obtain � = θ = Q = 0. And
from (13), (16), and (18) we also acquire (11). This fulfils the proof of Theorem 1. �

Let M > 0 stand for an integer, let 
t = TM–1 stand for the temporal step, let � n(x, y),
θn(x, y), and Qn(x, y) stand, respectively, for the approximations of � (t, x, y), θ (x, y, t), and
Q(t, x, y) at tn = n
t, as well as let ϕ̄ = (ϕn + ϕn–1)/2. If ∂t� and ∂tQ are, respectively,
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approximated with (� n – � n–1)/
t and (Qn – Qn–1)/
t, then the semi-discretized CN
scheme as a function of time with the second-order temporal accuracy is built in the fol-
lowing.

Problem 3 Seek (� n, θn, Qn) ∈ V × V × V (1 ≤ n ≤ M) that satisfy

a
(
θn–1,ϕ

)
=

(
� n–1,ϕ

)
, ∀ϕ ∈ V , 1 ≤ n ≤ M + 1; (19)

(
� n,χ

)
+ μ
ta

(
�̄ n,χ

)
+ 
ta1

(
θn–1, �̄ n,χ

)
=

(
� n–1,χ

)
+ 
t

(
∂xQ̄n,χ

)
,

∀χ ∈ V , 1 ≤ n ≤ M; (20)
(
Qn,ϕ

)
+ γ0
ta

(
Q̄n,ϕ

)
+ 
ta1

(
θn–1, Q̄n,ϕ

)
=

(
Qn–1,ϕ

)
,

∀ϕ ∈ V , 1 ≤ n ≤ M. (21)

Problem 3 has the next consequence.

Theorem 2 Under the hypotheses in Theorem 1, Problem 3 possesses only a series of solu-
tions {� n, θn, Qn}M

n=1 ⊂ V × V × V meeting

∥
∥∇θn∥∥2

0 +
∥
∥� n∥∥2

0 +
∥
∥Qn∥∥2

0 + 
t
n∑

i=1

(∥
∥∇�̄ i∥∥2

0 +
∥
∥∇Q̄i∥∥2

0

) ≤ δ0
(
u0, v0, Q0,μ,γ0

)
, (22)

where δ0(u0, v0, Q0,μ,γ0) is a non-negative constant relying on u0, v0, Q0, μ and γ0.
When the solution of Eq. (6) meets � ∈ [H3(0, T ; L2(Ω)) ∩ H2(0, T ; H1

0 (Ω))] and Q ∈
[H3(0, T ; L2(Ω)) ∩ H2(0, T ; H1

0 (Ω))], we obtain the following estimate errors:

∥
∥∇(

θn – θ (tn)
)∥
∥

0 +
∥
∥� n – � (tn)

∥
∥

0 + 
t
∥
∥∇(

� n – � (tn)
)∥
∥

0

+
∥
∥Qn – Q(tn)

∥
∥

0 + 
t
∥
∥∇(

Qn – Q(tn)
)∥
∥

0 ≤ C
t2, 1 ≤ n ≤ M, (23)

where C > 0 is the generic constant that is independent of 
t.

Proof (1) The existence along with uniqueness to solution of Problem 3
Firstly, it is easily seen that the bilinear functional a(θ ,ϕ) to the left hand side in (19) is

bounded and coercive in V × V for given � n–1 ∈ V (1 ≤ n ≤ M + 1). Thus, from Lax–
Milgram’s theorem (see [1]) we conclude that Eq. (19) possesses only a series of solutions
{θn}M

n=0 ⊂ H1
0 (Ω).

Next, for the obtained θn–1, let Ã(Q,ϕ) = (Q,ϕ) + γ0
t
2 a(Q,ϕ) + 
t

2 a1(θn–1, Q,ϕ) and
F̂(ϕ) = (Qn–1,ϕ) – γ0
t

2 a(Qn–1,ϕ) – 
t
2 a1(θn–1, Qn–1,ϕ). Then Ã(Q,ϕ) is the bilinear func-

tional and F̂(ϕ) is the linear functional. By (9) and the Hölder inequality we have

Â(Q,ϕ) = (Q,ϕ) +
γ0
t

2
a(Q,ϕ) +


t
2

a1
(
θn–1, Q,ϕ

)

≤ ‖Q‖0‖ϕ‖0 +
γ0
t

2
‖∇ϕ‖0‖∇Q‖0 +


t
2

∥
∥∇θn–1∥∥

0‖∇ϕ‖0‖∇Q‖0

≤
(

1 +
γ0
t

2
+


t
2

∥
∥∇θn–1∥∥

0

)

‖Q‖1‖ϕ‖1, ∀Q,ϕ ∈ V ;
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Â(ϕ,ϕ) = (ϕ,ϕ) +
γ0
t

2
a(ϕ,ϕ) +


t
2

a1
(
θn–1,ϕ,ϕ

)

= ‖ϕ‖2
0 +

γ0
t
2

‖∇ϕ‖2
0 ≥ α̂‖ϕ‖2

1, ∀ϕ ∈ V ,

where α̂ = min{1,γ0
t/2}. Therefore, the bilinear functional Â(·, ·) is bounded and coer-
cive on V × V for obtained θn–1 ∈ V . Moreover, by (9) and the Hölder inequality we have

F̂(ϕ) =
(
Qn–1,ϕ

)
–

γ0
t
2

a
(
Qn–1,ϕ

)
–


t
2

a1
(
θn–1, Qn–1,ϕ

)

≤ ∥
∥Qn–1∥∥

0‖ϕ‖0 +
γ0
t

2
‖∇ϕ‖0

∥
∥∇Qn–1∥∥

0 +

t
2

∥
∥∇Qn–1∥∥

0

∥
∥∇θn–1∥∥

0‖∇ϕ‖0

≤
(

∥
∥Qn–1∥∥

0 +
γ0
t

2
∥
∥∇Qn–1∥∥

0 +

t
2

∥
∥∇θn–1∥∥

0

∥
∥∇Qn–1∥∥

0

)

‖ϕ‖1, ∀ϕ ∈ V .

Therefore, the linear function F̂(ϕ) is bounded in V for the known θn–1 and Qn–1. Conse-
quently, by the Lax–Milgram theorem (see [1]) we may assert that Eq. (21) possesses only
a series of solutions {Qn}M

n=1 ⊂ V for the known θn–1 and Qn–1.
Further, let A(� ,χ ) = (� ,χ ) + μ
t

2 a(� ,χ ) + 
t
2 a1(θn–1,� ,χ ) and let F(χ ) = (� n–1,χ ) –

μ
t
2 a(� n–1,χ ) – 
t

2 a1(θn–1,� n–1,χ ) +
t(∂xQ̄n,χ ). Then, by (9) and the Hölder inequality,
we obtain

A(� ,χ ) = (� ,χ ) +
μ
t

2
a(� ,χ ) +


t
2

a1
(
θn–1,� ,χ

)

≤ ‖�‖0‖χ‖0 +
μ
t

2
‖∇�‖0‖∇χ‖0 +


t
2

∥
∥∇θn–1∥∥

0‖∇�‖0‖∇χ‖0

≤
(

1 +
μ
t

2
+


t
2

∥
∥∇θn–1∥∥

0

)

‖�‖1‖χ‖1, ∀� ,χ ∈ V ;

A(� ,� ) = (� ,� ) +
μ
t

2
a(� ,� ) +


t
2

a1
(
θn–1,� ,�

)

= ‖�‖2
0 +

μ
t
2

‖∇�‖2
0 ≥ α‖�‖2

1, ∀� ∈ V ,

where α = min{1,μ
t/2}. Therefore, the bilinear functional A(·, ·) is bounded and coer-
cive on V × V for obtained θn–1 ∈ V . The linear functional F(·) is obviously bounded for
the obtained � n–1, θn–1, Q̄n ∈ V , thereupon, from Lax–Milgram’s theorem (see [1]) we
conclude that Eq. (20) possesses only a series of solutions {� n}M

n=1 ⊂ H1
0 (Ω).

(2) The stability to solution of Problem 3
First, selecting ϕ = θn–1 in (19), by the Hölder and Poincaré inequalities we have

∥
∥∇θn–1∥∥2

0 = a
(
θn–1, θn–1) =

(
θn–1,� n–1)

≤ ∥
∥θn–1∥∥

0

∥
∥� n–1∥∥

0 ≤ C0
∥
∥∇θn–1∥∥

0

∥
∥� n–1∥∥

0. (24)

Thus, we get

∥
∥∇θn–1∥∥

0 ≤ C0
∥
∥� n–1∥∥

0, 1 ≤ n ≤ M + 1. (25)
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Next, selecting χ = � n + � n–1 in (20), by (9) along with the Hölder, Cauchy–Schwarz
and the Poincaré inequalities we get

∥
∥� n∥∥2

0 –
∥
∥� n–1∥∥2

0 + 2μ
t
∥
∥∇�̄ n∥∥2

0

=
(
� n – � n–1,� n + � n–1) +

μ
t
2

a
(
� n + � n–1,� n + � n–1)

= 2
t
(
∂xQ̄n, �̄ n) ≤ 2C0
t

∥
∥∇Q̄n∥∥

0

∥
∥∇�̄ n∥∥

0

≤ C2
0
tμ–1∥∥∇Q̄n∥∥2

0 + μ
t
∥
∥∇�̄ n∥∥2

0, n = 1, 2, . . . , M. (26)

Hence, we obtain

∥
∥� n∥∥2

0 –
∥
∥� n–1∥∥2

0 + μ
t
∥
∥∇�̄ n∥∥2

0 ≤ C2
0
tμ–1∥∥∇Q̄n∥∥2

0, n = 1, 2, . . . , M. (27)

Summing (27) from 1 to n, we obtain

∥
∥� n∥∥2

0 + μ
t
n∑

i=1

∥
∥∇�̄ i∥∥2

0 ≤ ∥
∥� 0∥∥2

0 + C2
0
tμ–1

n∑

i=1

∥
∥∇Q̄i∥∥2

0, 1 ≤ n ≤ M. (28)

Then selecting ϕ = Qn + Q–1 in (21), by (9) we get

∥
∥Qn∥∥2

0 –
∥
∥Qn–1∥∥2

0 + 2γ0
t
∥
∥∇Q̄n∥∥2

0 = 0, n = 1, 2, . . . , M. (29)

Summing (29) from 1 to n, we obtain

∥
∥Qn∥∥2

0 + 2γ0
t
n∑

i=1

∥
∥∇Q̄i∥∥2

0 =
∥
∥Q0∥∥2

0, n = 1, 2, . . . , M. (30)

By (25), (27), and (30) we obtain (22).
(3) The convergence of solution for Problem 3
Let En = θn – θ (tn), en = � n – � (tn), and rn = Qn – Q(tn).
First, selecting ϕ = En–1 after (19) subtracting (5), by means of the Hölder and Poincaré

inequalities we obtain

‖∇En–1‖2
0 = a(En–1, En–1) = (En–1, en–1)

≤ ‖En–1‖0‖en–1‖0 ≤ C0‖∇En–1‖0‖en–1‖0. (31)

Therefore, we obtain

‖∇En–1‖0 ≤ C0‖en–1‖0, 1 ≤ n ≤ M + 1. (32)

Next, selecting χ = en + en–1 after (20) subtracts (6) at t = tn– 1
2

, by (9), (10), the Hölder,
Poincaré and the Cauchy–Schwarz inequalities along with (32) we obtain

‖en‖2
0 – ‖en–1‖2

0 +
μ
t

2
∥
∥∇(en–1 + en)

∥
∥2

0

= (en – en–1, en + en–1) +
μ
t

2
a(en–1 + en, en–1 + en)



Teng et al. Journal of Inequalities and Applications         (2020) 2020:15 Page 8 of 18

= –

t
2

a1
(
En–1,� (tn) + � (tn–1), en + en–1

)

+

t3

24
(
∂ttt� (ξ1n), en + en–1

)
+

μ
t3

16
a
(
∂tt� (ξ2n), en + en–1

)

+

t3

4
a1

(
θ (tn– 1

2
), ∂tt� (ξ3n), en–1 + en

)
+ 
t(∂xr̄n, en–1 + en)

–

t3

4
(
∂xtttQ(ξ4n), en–1 + en

)

≤ C̃
t
2

‖∇En–1‖0
∥
∥∇(

� (tn–1) + � (tn)
)∥
∥

0

∥
∥∇(en–1 + en)

∥
∥

0

+

t3

24
∥
∥∂ttt� (ξ1n)

∥
∥

0‖en + en–1‖0 +
μ
t3

16
∥
∥∇∂tt∂� (ξ2n)

∥
∥

0

∥
∥∇(en + en–1)

∥
∥

0

+
C̃
t3

4
∥
∥∇θ (tn– 1

2
)
∥
∥

0

∥
∥∇∂tt� (ξ3n)

∥
∥

0

∥
∥∇(en–1 + en)

∥
∥

0

+ C0
t‖∇ r̄n‖0
∥
∥∇(en + en–1)

∥
∥

0 +

t3

4
∥
∥∂xQ(ξ4n)

∥
∥

0

∥
∥∇(en–1 + en)

∥
∥

0

≤ C
t‖en–1‖2
0 + C
t5 + C
t‖∇ r̄n‖2

0 +
μ
t

4
∥
∥∇(en–1 + en)

∥
∥2

0, (33)

where tn–1 ≤ ξin ≤ tn (i = 1, 2, 3, 4) and n = 1, 2, . . . , M. From (33) we get

‖en‖2
0 – ‖en–1‖2

0 +
μ
t

4
∥
∥∇(en–1 + en)

∥
∥2

0

≤ C
t‖en–1‖2
0 + C
t5 + C
t‖∇ r̄n‖2

0, n = 1, 2, . . . , M. (34)

Noting that e0 = 0 and summing (34) from 1 to n, we obtain

‖en‖2
0 +

μ
t
4

n∑

i=1

∥
∥∇(ei + ei–1)

∥
∥2

0

≤ Cn
t5 + C
t
n–1∑

i=0

‖ei‖2
0 + C
t

n∑

i=1

∥
∥∇(ri + ri–1)

∥
∥2

0, n = 1, 2, . . . , M. (35)

And then, after (21) subtracting (7), selecting ϕ = rn + rn–1 and t = tn– 1
2

, by (9), (10), the
Hölder, Poincaré and Cauchy–Schwarz inequalities along with (32) we have

‖rn‖2
0 – ‖rn–1‖2

0 +
γ0
t

2
∥
∥∇(rn + rn–1)

∥
∥2

0

= (rn – rn–1, rn + rn–1) +
γ0
t

2
a(rn + rn–1, rn + rn–1)

= –

t
2

a1
(
En–1, Q(tn) + Q(tn–1), rn + rn–1

)

+

t3

24
(
∂tttQ(ζ1n), rn + rn–1

)
+

γ0
t3

16
a
(
∂ttQ(ζ2n), rn + rn–1

)

+

t3

4
a1

(
θ (tn– 1

2
), ∂ttQ(ζ3n), rn + rn–1

)

≤ C̃
t
2

‖∇En–1‖0
∥
∥∇(

Q(tn) + Q(tn–1)
)∥
∥

0

∥
∥∇(rn + rn–1)

∥
∥

0
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+

t3

24
∥
∥∂tttQ(ζ1n)

∥
∥

0‖rn + rn–1‖0 +
γ0
t3

16
∥
∥∇∂ttQ(ζ2n)

∥
∥

0

∥
∥∇(rn + rn–1)

∥
∥

0

+
C̃
t3

4
∥
∥∇θ (tn– 1

2
)
∥
∥

0

∥
∥∇∂ttQ(ζ3n)

∥
∥

0

∥
∥∇(rn + rn–1)

∥
∥

0

≤ C
t‖en–1‖2
0 + C
t5 +

γ0
t
4

∥
∥∇(rn + rn–1)

∥
∥2

0, n = 1, 2, . . . , M, (36)

where tn–1 ≤ ζin ≤ tn (i = 1, 2, 3). From (36) we obtain

‖rn‖2
0 – ‖rn–1‖2

0 +
γ0
t

4
∥
∥∇(rn + rn–1)

∥
∥2

0 ≤ C
t‖en–1‖2
0 + C
t5, (37)

where n = 1, 2, . . . , M. Note that r0 = 0. Summing (37) from 1 to n, we get

‖rn‖2
0 +

γ0
t
4

n∑

i=1

∥
∥∇(ri + ri–1)

∥
∥2

0 ≤ C
t
n∑

i=1

‖ei–1‖2
0 + Cn
t5, (38)

where n = 1, 2, . . . , M. By (35) and (38) we obtain

‖en‖2
0 + 
t

n∑

i=1

∥
∥∇(ei + ei–1)

∥
∥2

0 ≤ C
t4 + C
t
n–1∑

i=0

‖ei‖2
0, 1 ≤ n ≤ M. (39)

Applying the Gronwall inequality (see [1]) to (39) yields

‖en‖2
0 + 
t

n∑

i=1

∥
∥∇(ei + ei–1)

∥
∥2

0 ≤ C
t4 exp(Cn
t) ≤ C
t4, n = 1, 2, . . . , M. (40)

From (32), (40), and (37) we obtain

‖∇En‖0 ≤ C
t2, n = 1, 2, . . . , M; (41)

‖en‖0 ≤ C
t2, n = 1, 2, . . . , M; (42)

‖rn‖2
0 ≤ C
t4, n = 1, 2, . . . , M; (43)


t‖∇en‖0 ≤
√


t√
n

n∑

i=1

(‖∇ei‖0 – ‖∇ei–1‖0
) ≤

√

t√
n

n∑

i=1

‖∇ei–1 + ∇ei‖0

≤
(


t
n∑

i=1

‖∇ei–1 + ∇ei‖2
0

)1/2

≤ C
t2, n = 1, 2, . . . , M; (44)


t‖∇rn‖0 ≤
√


t√
n

n∑

i=1

(‖∇ri‖0 – ‖∇ri–1‖0
) ≤

√

t√
n

n∑

i=1

∥
∥∇(ri–1 + ri)

∥
∥

0

≤
(


t
n∑

i=1

‖∇ri + ∇ri–1‖2
0

)1/2

≤ C
t2, n = 1, 2, . . . , M. (45)

From (41)–(45) we acquire (23), which fulfils the demonstration to Theorem 2. �

Remark 1 The inequalities (22) and (23) to Theorem 2 signify that the sequence to solu-
tions for Problem 3 is stable and convergent, respectively.
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3 The SECN method for 2D unsteady conduction–convection problems
Let �N stand for the quasi-uniform quadrangle partition for Ω̄ . A spectral element space
is defined as

VN =
{

wN ∈ H1
0 (Ω) ∩ C0(Ω̄) : wN |Kj ∈P1(Kj), Kj ∈ �N , 1 ≤ j ≤ N

}
,

where N stands for the number of quadrangles and P1(Kj) is defined by the following:

P1(Kj) = span{Nij : 1 ≤ i ≤ 4}, j = 1, 2, . . . , N ,

where Nij = N̂i ◦ F–1
j (x, y), N̂i(ξ ,η) = 1

4 [1 + cosπ (ξ – ξi)][1 + cosπ (η – ηi)], (x, y) = Fj(ξ ,η) =
(
∑4

i=1 N̂i(ξ ,η)xij,
∑4

i=1 N̂i(ξ ,η)yij) stands for an invertible mapping from the reference
quadrangle K̂ = [–1, 1] × [–1, 1] to Kj ∈ �N , and (xij, yij) and (ξi,ηi) are, respectively, the
vertices of Kj and K̂ .

Let RN : H1
0 (Ω) → VN stand for the H1-orthogonal operator, i.e., ∀ϕ ∈ H1

0 (Ω) satisfies

∫

Ω

∇(RNϕ – ϕ) · ∇vN dx dy = 0, ∀vN ∈ VN .

Note that when �N is the quasi-uniform quadrangle partition to Ω , the number of nodes
equals the number of quadrangles (see [1]). Hence, RN shows the next consequence (see
[7]).

Theorem 3 ∀ϕ ∈ Hq(Ω) (m ≥ 2) meets

‖∇RNϕ‖0 ≤ Cr‖∇ϕ‖0,
∥
∥∂k(RNϕ – ϕ)

∥
∥

0 ≤ CNk–1–m, 0 ≤ k ≤ m ≤ N + 1,

where C > 0 stands for a generic constant as well as N also stands for the number of nodes
in �N .

With the spectral element space, the SECN model is built in the following.

Problem 4 Find (� n
N , θn

N ) ∈ VN × VN (1 ≤ n ≤ M) satisfying

a
(
θn–1

N ,ϕN
)

=
(
� n–1

N ,ϕN
)
,∀ϕN ∈ VN , n = 1, 2, . . . , M + 1; (46)

(
� n

N ,χN
)

+ μ
ta
(
�̄ n

N ,χN
)

+ 
ta1
(
θn–1

N , �̄ n
N ,χN

)

=
(
� n–1

N ,χ
)

+ 
t
(
∂xQ̄n

N ,χN
)
, ∀χN ∈ VN , n = 1, 2, . . . , M; (47)

(
Qn

N ,ϕ
)

+ γ0
ta
(
Q̄n

N ,ϕN
)

+ 
ta1
(
θn–1

N , Q̄n
N ,ϕN

)
=

(
Qn–1

N ,ϕN
)
,

∀ϕN ∈ VN , n = 1, 2, . . . , M, (48)

where � 0
N = RN� 0 and Q0

N = RN Q0.

Problem 4 possesses the next result as regards existence, convergence, and stability.
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Theorem 4 Under the hypotheses in Theorem 2, Problem 4 uniquely has three sets of so-
lutions {� n

N }M
n=1 ⊂ VN , {θn

N }M
n=0 ⊂ VN , and {Qn

N }M
n=0 ⊂ VN meeting

∥
∥∇θn

N
∥
∥

0 +
∥
∥� n

N
∥
∥

0 + 
t
∥
∥∇� n

N
∥
∥

0 +
∥
∥Qn

N
∥
∥

0 + 
t
∥
∥∇Qn

N
∥
∥

0 ≤ σ̃
(
u0, v0, Q0,μ,γ0

)
, (49)

where σ̃ (u0, v0, Q0,μ,γ0) is a non-negative constant dependent on u0, v0, Q0, μ, and γ0.
When the solution of Eq. (6) meets (� , θ , Q) ∈ [H3(0, T ; Hq(Ω) ∩ H1

0 (Ω))] × [H3(0, T ;
Hq(Ω) ∩ H1

0 (Ω))] × [H3(0, T ; Hq(Ω) ∩ H1
0 (Ω))] (2 ≤ q ≤ N + 1), we obtain the following

estimate errors:

∥
∥∇(

θn
N – θ (tn)

)∥
∥

0 +
∥
∥� n

N – � (tn)
∥
∥

0 + 
t
∥
∥∇(

� n
N – � (tn)

)∥
∥

0 +
∥
∥Qn

N – Q(tn)
∥
∥

0

+ 
t
∥
∥∇(

Qn
N – Q(tn)

)∥
∥

0 ≤ C
(

t2 + N–q), 1 ≤ n ≤ M; 2 ≤ q ≤ N + 1. (50)

Proof (1) The existence as well as stability to solution of Problem 4
Using the same proving approach as the existence and stability of solutions to Problem 3

in Theorem 2, we can prove that for Problem 4 there uniquely exist three series of solutions
{� n

N }M
n=1 ⊂ VN , {θn

N }M
n=0 ⊂ VN , and {Qn

N }M
n=0 ⊂ VN to meet the stability (49).

(2) The convergence to solution of Problem 4
Let ρn = θn – RNθn, ẽn = θn – θn

N , Ẽn = RNθn – θn
N , ρ̂n = � n – RN� n, Ên = RN� n – � n

N ,
ên = � n – � n

N , R̂n = RN Qn – Qn
N , ρ̃n = Qn – RN Qn, and r̂n = Qn – Qn

N .
First, selecting ϕN = Ẽn–1 after (19) subtracting (46), by the Hölder, Poincaré and the

Cauchy–Schwarz inequalities as well as Theorem 3 we get

‖∇ ẽn–1‖2
0 = a(ẽn–1, ẽn–1) = a(ẽn–1, Ẽn–1) + a(ẽn–1,ρn–1)

= (ên–1, Ẽn–1) + a(ρn–1,ρn–1)

= ‖∇ρn–1‖2
0 + (ên–1, ẽn–1) – (ên–1,ρn–1)

≤ ‖∇ρn–1‖2
0 + C0‖∇ρn–1‖0‖ên–1‖0 + C0‖∇ ẽn–1‖0‖ên–1‖0

≤ C
(
N–2q+2) + ‖ên–1‖2

0) +
1
2
‖∇ ẽn–1‖2

0. (51)

Therefore, we acquire

‖∇ ẽn‖0 ≤ C
(
N–q + ‖ên‖0

)
, n = 0, 1, 2, . . . , M. (52)

Next, after (20) subtracting (47), by (9), (10), the Hölder, Poincaré and the Cauchy–
Schwarz inequalities as well as Theorem 3 together with (52) we have

‖ên‖2
0 – ‖ên–1‖2

0 +
μ
t

2
‖∇ ên–1 + ∇ ên‖2

0

= (ên – ên–1, ên–1 + ên) +
μ
t

2
a(ên–1 + ên, ên–1 + ên)

= (ên – ên–1, ρ̂n–1 + ρ̂n) + (ên – ên–1, Ên–1 + Ên)

+
μ
t

2
a(ρ̂n–1 + ρ̂n, ρ̂n–1 + ρ̂n) +

μ
t
2

a(ên–1 + ên, Ên–1 + Ên)

= (ên – ên–1, ρ̂n–1 + ρ̂n) +
μ
t

2
a(ρ̂n–1 + ρ̂n, ρ̂n–1 + ρ̂n)
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–

t
2

a1
(
ẽn–1,� n + � n–1, Ên + Ên–1

)
–


t
2

a1
(
θn–1

N , ên + ên–1, Ên + Ên–1
)

+ 
t
(
∂x(r̂n + r̂n–1), Ên + Ên–1

)

= (ên – ên–1, ρ̂n + ρ̂n–1) +
μ
t

2
∥
∥∇(ρ̂n + ρ̂n–1)

∥
∥2

0

–

t
2

a1
(
ẽn–1,� n + � n–1, ρ̂n + ρ̂n–1

)
–


t
2

a1
(
ẽn–1,� n + � n–1, ên + ên–1

)

+

t
2

a1
(
θn–1

N , ên + ên–1, ρ̂n + ρ̂n–1
)

+ 
t
(
∂x(r̂n + r̂n–1), ên – ρ̂n + ên–1 – ρ̂n–1

)

≤ CN–1(‖ên–1‖2
0 + ‖ên‖2

0
)

+ CN–1–2q + C
t‖∇ ẽn–1‖2
0

+ C
tN–2q + C
t
∥
∥∇(r̂n–1 + r̂n)

∥
∥2

0 +
μ
t

4
∥
∥∇(ên–1 + ên)

∥
∥2

0. (53)

Therefore, when 
t = O(N–1), by (52) and (53) we get

‖ên‖2
0 – ‖ên–1‖2

0 +
μ
t

4
∥
∥∇(ên–1 + ên)

∥
∥2

0

≤ C
t
(‖ên‖2

0 + ‖ên–1‖2
0
)

+ C
t
∥
∥∇(r̂n + r̂n–1)

∥
∥2

0 + C
tN–2q. (54)

Summing for (54) from 1 to n, by Theorem 3 we obtain

‖ên‖2
0 +

μ
t
4

n∑

i=1

∥
∥∇(êi + êi–1)

∥
∥2

0

≤ C
t
n∑

i=0

(‖êi‖2
0 +

∥
∥∇(r̂i + r̂i–1)

∥
∥2

0

)
+ Cn
tN–2q +

∥
∥� 0 – RN� 0∥∥2

0

≤ C
t
n∑

i=0

(‖êi‖2
0 + ‖∇ r̂i‖2

0
)

+ CN–2q. (55)

As 
t is small enough to meet C
t ≤ 3/4 in (55), we get

‖ên‖2
0 + μ
t

n∑

i=1

∥
∥∇(êi + êi–1)

∥
∥2

0

≤ C
t
n–1∑

i=0

‖êi‖2
0 + C
t

n∑

i=0

∥
∥∇(r̂i + r̂i–1)

∥
∥2

0 + CN–2q. (56)

After (21) subtracting (49), with (9), (10), using the Hölder, Poincaré and the Cauchy–
Schwarz inequalities as well as Theorem 3 and (52) we have

‖r̂n‖2
0 – ‖r̂n–1‖2

0 +
γ0
t

2
‖∇ r̂n–1 + ∇ r̂n‖2

0

= (r̂n – r̂n–1, r̂n–1 + r̂n) +
γ0
t

2
a(r̂n–1 + r̂n, r̂n–1 + r̂n)

= (r̂n – r̂n–1, ρ̃n–1 + ρ̃n) + (r̂n – r̂n–1, R̂n–1 + R̂n)
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+
μ
t

2
a(ρ̃n–1 + ρ̃n, ρ̃n–1 + ρ̃n) +

γ0
t
2

a(r̂n–1 + r̂n, R̂n–1 + R̂n)

= (r̂n – r̂n–1, ρ̃n–1 + ρ̃n) +
γ0
t

2
a(ρ̃n–1 + ρ̃n, ρ̃n–1 + ρ̃n)

–

t
2

a1
(
ẽn–1, Qn–1 + Qn, R̂n–1 + R̂n

)
–


t
2

a1
(
θn–1

N , r̂n–1 + r̂n, R̂n + R̂n–1
)

= (r̂n – r̂n–1, ρ̃n + ρ̃n–1) +
γ0
t

2
∥
∥∇(ρ̃n + ρ̃n–1)

∥
∥2

0

–

t
2

a1
(
ẽn–1, Qn–1 + Qn, ρ̃n–1 + ρ̃n

)
–


t
2

a1
(
ẽn–1, Qn–1 + Qn, r̂n–1 + r̂n

)

+

t
2

a1
(
θn–1

N , r̂n–1 + r̂n, ρ̃n–1 + ρ̃n
)

≤ CN–1(‖r̂n–1‖2
0 + ‖r̂n‖2

0
)

+ CN–1–2q + C
t‖∇ ẽn–1‖2
0

+ C
tN–2q +
μ
t

4
∥
∥∇(r̂n + r̂n–1)

∥
∥2

0. (57)

Therefore, when 
t = O(N–1), by (57) we obtain

‖r̂n‖2
0 – ‖r̂n–1‖2

0 +
γ0
t

4
∥
∥∇(r̂n + r̂n–1)

∥
∥2

0

≤ C
t
(‖r̂n‖2

0 + ‖r̂n–1‖2
0
)

+ C
t‖∇ ẽn–1‖2
0 + C
tN–2q. (58)

Summing (58) from 1 to n, by Theorem 3 and (52) we obtain

‖r̂n‖2
0 +

γ0
t
4

n∑

i=1

∥
∥∇(r̂i + r̂i–1)

∥
∥2

0

≤ C
t
n∑

i=0

‖r̂i‖2
0 + C
t

n–1∑

i=0

‖êi‖2
0 + Cn
tN–2q +

∥
∥Q0 – RN Q0∥∥2

0

≤ C
t
n∑

i=0

‖r̂i‖2
0 + C
t

n–1∑

i=0

‖êi‖2
0 + ‖∇ ẽn–1‖2

0) + CN–2q. (59)

As 
t is small enough to meet C
t ≤ 3/4 in (59), one gets

‖r̂n‖2
0 + γ0
t

n∑

i=1

∥
∥∇(r̂i + r̂i–1)

∥
∥2

0

≤ C
t
n–1∑

i=0

‖r̂i‖2
0 + C
t

n–1∑

i=0

‖êi‖2
0 + CN–2q. (60)

By applying the discrete Gronwall inequality (see [1]) to (60), one gets

‖r̂n‖2
0 + γ0
t

n∑

i=1

∥
∥∇(r̂i + r̂i–1)

∥
∥2

0 ≤
(

C
t
n–1∑

i=0

‖êi‖2
0 + CN–2q

)

exp(Cn
t)

≤ C
t
n–1∑

i=0

‖êi‖2
0 + CN–2q. (61)
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From (56) and (61) we get

‖ên‖2
0 + μ
t

n∑

i=1

∥
∥∇(êi + êi–1)

∥
∥2

0 ≤ C
t
n–1∑

i=0

‖êi‖2
0 + CN–2q. (62)

By using the discrete Gronwall inequality (see [1]) to (62), one obtains

‖ên‖2
0 + μ
t

n∑

i=1

∥
∥∇(êi + êi–1)

∥
∥2

0

≤ CN–2q exp(Cn
t) ≤ CN–2q, n = 1, 2, . . . , M. (63)

By (62), (52), and (63) we obtain

‖∇ ẽn‖0 ≤ CN–q, n = 0, 1, 2, . . . , M; (64)

‖r̂n‖2
0 + γ0
t

n∑

i=1

∥
∥∇(r̂i + r̂i–1)

∥
∥2

0 ≤ CN–2q. (65)

From (63) we have

‖ên‖0 +
√

μ
t
(‖∇ ên‖0 –

∥
∥∇(

� 0 – � 0
N
)∥
∥

0

)

≤
√

μ
t√
n

n∑

i=1

(‖∇ êi‖0 – ‖∇ êi–1‖0
)

+ ‖ên‖0

≤
√

μ
t√
n

n∑

i=1

‖∇ êi + ∇ êi–1‖0 + ‖ên‖0

≤ ‖ên‖0 +

(

μ
t
n∑

i=1

∥
∥∇(êi–1 + êi)

∥
∥2

0

)1/2

≤ CN–q. (66)

By Theorem 3 and (66) we obtain

‖ên‖0 + 
t‖∇ ên‖0 ≤ CN–q + C
t
∥
∥∇(

� 0 – RN� 0)∥∥
0 ≤ CN–q, (67)

where n = 1, 2, . . . , M. Using the same ways as deducing (67) for (65), we obtain

‖r̂n‖0 + 
t‖∇ r̂n‖0 ≤ CN–q, n = 1, 2, . . . , M. (68)

From (67), (68), and (64) along with Theorem 2 we acquire (50), which fulfills the proof to
Theorem 4. �

Remark 2 The inequalities (49) and (50) in Theorem 4 signify that the sequence to the
SECN solutions of Problem 4 is stable and convergent, respectively.
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By u = ∂θ/∂y and v = –∂θ/∂x one directly obtains the next consequence.

Theorem 5 Under the hypotheses in Theorems 1 and 4, Problem 4 possesses only a set of
SECN solutions (un

N , vn
N , Qn

N ) (1 ≤ n ≤ M) satisfying the stability estimates

∥
∥un

N
∥
∥

0,∞ +
∥
∥vn

N
∥
∥

0 ≤ σ̃
(
g1, g2, u0, v0,μ

)
, (69)

and the error estimates

∥
∥u(tn) – un

N
∥
∥

0 +
∥
∥v(tn) – vn

N
∥
∥

0 +
∥
∥Q(tn) – Qn

N
∥
∥

0 + 
t
∥
∥∇(

Q(tn) – Qn
N
)∥
∥

0

≤ σ
(

t2 + N–q), 2 ≤ q ≤ N + 1. (70)

Remark 3 Even if Ω is a bounded polygonal region, the error estimations of Theorem 5
reach optimal order due to u, v, Q ∈ H3(0, T ; H1

0 (Ω) ∩ H2(Ω)).

4 Numerical examples
Here, we provide a set of experiments to check the correctness of the theoretical conse-
quences.

Let the computational region Ω be a channel with a total length of 20 and a width of 6
that has two identical rectangular protrusions with a length of 4 and a width of 2 at the
top and at the bottom (see Fig. 1). When the quadrilateral elements in �N are the squares
about edge length �x = �y = 0.01, N = 3 × 136 × 104. In addition to the outflow velocity
u(t, x, y) = u(20 – 1/M, y, t) (20 – 1/M ≤ x ≤ 20, 2 ≤ y ≤ 8, 0 ≤ t ≤ T ) on the right boundary
as well as the inflow velocity (u, v) = (0.1(y – 2)(8 – y) sin 2π t, 0) (x = 0, 2 ≤ y ≤ 8) on the
left boundary, the other boundary and initial values are chosen as 0. The temporal step

t = 0.0001. In the case, the theoretic errors reach O(10–8).

Using the SECN model (Problem 4), we seek the SECN solutions at t = 4 and 8, painted
in Figs. 2 to 5, respectively. The numerical test results are very ideal.

When 0 ≤ t ≤ 8, the errors of velocity and energy solutions are approximately estimated
by ‖un–1

N – un
N‖0 + ‖vn–1

N – vn
N‖0 and ‖Qn–1

N – Qn
N‖0 (1 ≤ n ≤ 80,000), painted in Figs. 6

and 7, respectively, which also accord with the theoretic consequences since two types of
errors do not exceed O(10–8). This signifies that the SECN method is reliable and valid
for settling the 2D unsteady conduction–convection problems to the vorticity and stream
functions.

Figure 1 The calculated region along with boundary conditions of flow
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Figure 2 The SECN velocity solution at t = 4

Figure 3 The SECN energy solution at t = 4

Figure 4 The SECN velocity solution at t = 8

Figure 5 The SECN energy solution at t = 8

Figure 6 The errors of the SECN velocity solutions on 0 ≤ t ≤ 8
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Figure 7 The errors of the SECN energy solutions on 0 ≤ t ≤ 8

5 Conclusions and discussions
Hereto, we have built the time semi-discretized CN and fully discretized SECN models
of the 2D unsteady conduction–convection problems to vorticity and stream functions
and analyzed the existence, convergence, and stability to the time semi-discretized CN
along with SECN solutions, respectively. We have also posed a set of numeric experiments
to verify the reliability and validity to the SECN method and to verify that the numeric
consequences accord with the theoretic ones.

Though we here only dealt with the 2D unsteady conduction–convection problems to
the vorticity and stream functions, the SECN method may be popularized to the three-
dimensional unsteady conduction–convection problems or more complicated flow dy-
namics problems, even to be used for the more complicated actual engineering computa-
tions. Thereupon, the SECN method shows an extensive prospect as regards applications.
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