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Abstract
The convex nonlinear second-order cone programming with linear constraints is
equivalent to a separate structure convex programming. A prediction-correction
inexact alternating direction method is proposed for the separate structure convex
programming. In the proposed method, the convex objective function is not required
to be Lipschitz continuous and only needs satisfy an inequality. The global
convergence result is given. Numerical results demonstrate that our method is
efficient for some random second-order cone programming problems in lower
accuracy. In addition, our method can be extended to the convex nonlinear circular
cone programming with linear constraints. We also give the simulation results of the
three-fingered grasping force optimization problems.
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1 Introduction
In this paper, we consider the convex nonlinear second-order cone programming
(CNSOCP) with linear constraints

min f (x)

s.t. Ax = b, x ∈ K ,
(1)

where f : Rn → R is a nonlinear continuously differentiable convex function, A ∈ R
m×n

is a full row rank matrix, b ∈ R
m is a vector, x = [x1, . . . , xN ] ∈ R

n1 × · · · × R
nN is viewed

as a column vector in R
n1+···+nN , and

∑N
i=1 ni = n. In addition, K is a Cartesian product of

second-order cones

K = Kn1 × Kn2 × · · · × KnN ,
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xi ∈ Kni , and Kni is the ni-dimensional second-order cone

Kni :=

{

xi =

[
xi1

xi0

]

∈R
ni–1 ×R : ‖xi1‖ ≤ xi0

}

, (2)

where ‖ · ‖ denotes the Euclid norm.
The projection PKni (xi) on the second-order cone Kni is [1, 2]

PKni (xi) =
(
λ1(xi)

)
+c1(xi) +

(
λ2(xi)

)
+c2(xi), i = 1, 2, . . . , N , (3)

where s+ := max(0, s), λ1(xi) = xi0 – ‖xi1‖, λ2(xi) = xi0 + ‖xi1‖, c1(xi) = 1
2
[ –w

1
]
, c2(xi) = 1

2
[ w

1
]

with w = –xi1
‖xi1 ‖ if xi1 �= 0, and any vector in R

ni–1 satisfying ‖w‖ = 1 if xi1 = 0. Then the
projection PK (x) on the cone K is

PK (x) =
[
PKn1 (x1), . . . , PKnN (xN )

]
. (4)

The second-order cone programming has wide applications in engineering problems,
such as FIR filter design, antenna array weight design, and truss design [3, 4]. There
have been many methods proposed for solving linear second-order cone program-
ming (LSOCP) [5–8]. However, the study of nonlinear second-order cone programming
(NSOCP) is much more recent and still in its preliminary phase. In paper [9], a primal-
dual interior point method was proposed for solving nonlinear second-order cone pro-
gramming. In paper [10], theoretical properties of an augmented Lagrangian method for
solving nonlinear second-order cone optimization problems were considered. The SQP-
type method and trust region SQP-filter method were developed for NSOCP in papers
[11] and [12]. In paper [13], a Sl1QP based algorithm with trust region technique was
proposed for solving nonlinear second-order cone programming problems. A homotopy
method was presented for nonlinear second-order cone programming in paper [14], and
global convergence was proven under mild conditions.

The alternating direction method has been an effective first-order approach for solv-
ing optimization problems such as variational inequality problems [15], linear program-
ming [16], and semidefinite programming [17]. In paper [18], a modified alternating direc-
tion method was presented for convex nonlinear semidefinite programming problem. The
method gives a prototype for nonlinear semidefinite programming. The algorithm needs
compute the projection on the semidefinite cone and the convex constraints set. The pro-
jection on the convex constraints set is very difficult except for some easy constraints, such
as linear constraints.

Inspired by paper [18], a prediction-correction inexact alternating direction method is
proposed for convex second-order cone programming problems with linear constraints.
In the algorithm, the problem is equivalent to a separate structure convex nonlinear pro-
gramming. Different from the direct extension method in paper [18], we do not need com-
pute the projection on the linear constraints set, and we only compute the projection on
the second-order cone. Moreover, the convex objective function in the proposed method is
not required to be Lipschitz continuous and only needs satisfy an inequality. We prove the
global convergence. Some random second-order cone programming examples are used to
test the performance of the efficiency of our proposed approach, which shows our method
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is efficient for the examples in low accuracy. In addition, we extend our proposed method
to the convex nonlinear circular cone programming with linear constraints. The simula-
tion results of the three-fingered grasping force optimization problems are given.

2 A prediction-correction inexact alternating direction method for CNSOCP
problems with linear constraints

Firstly, we give an equivalent separate structure convex programming problem to problem
(1):

min f (x)

s.t. Ax = b

x = y, y ∈ K .

(5)

Under Slater’s condition, strong duality holds for problem (5). Hence, x∗ is an optimal
solution of (5) if and only if there exists w∗ = (x∗, y∗,λ∗,μ∗) ∈ Ω = R

n × K × R
m × R

n

satisfying the following KKT system in variational inequality form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈x – x∗,∇f (x∗) – ATλ∗ – μ∗〉 ≥ 0, ∀x ∈R
n,

〈y – y∗,μ∗〉 ≥ 0, ∀y ∈ K ,

Ax∗ = b,

x∗ = y∗,

(6)

where 〈·〉 denotes the inner product of two vectors.
The augmented Lagrangian function for the separate structure convex nonlinear pro-

gramming problem is

L(x, y,λ,μ) = f (x) – λT (Ax – b) – μT (x – y) +
1

2β1
‖Ax – b‖2 +

1
2β2

‖x – y‖2, (7)

where λ ∈R
m, μ ∈R

n, β1,β2 > 0.
The exact alternating direction method for (7) is given as follows.

The exact alternating direction method
Given w0 = (x0, y0,λ0,μ0) ∈R

n ×R
n ×R

m ×R
n, and β1,β2 > 0. For k = 0, 1, 2, . . . , then:

Step 1. Find xk+1 ∈R
n, which satisfies

〈

x – xk+1,∇f
(
xk+1) – ATλk – μk +

1
β1

AT(Axk+1 – b
)

+
1
β2

(
xk+1 – yk)

〉

≥ 0, ∀x ∈R
n. (8)

Step 2. Find yk+1 ∈ K , which satisfies

〈

y – yk+1,μk –
1
β2

(
xk+1 – yk+1)

〉

≥ 0, ∀y ∈ K . (9)
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Step 3. Update the Lagrange multiplier by

λk+1 = λk –
1
β1

(
Axk+1 – b

)
. (10)

Step 4. Update the Lagrange multiplier by

μk+1 = μk –
1
β2

(
xk+1 – yk+1). (11)

It is time consuming to solve problem (8) exactly. Therefore, a prediction-correction
inexact alternating direction method is presented to solve problem (5). In the proposed
method, we will convert Step 1 and Step 2 to simple projection operations. For this pur-
pose, all we need is the following fact from convex geometry.

Lemma 1 ([19]) Let Θ be a closed convex set in a Hilbert space and PΘ (x) be the projection
of x on Θ . Then

〈z – y, y – x〉 ≥ 0, ∀z ∈ Θ ⇐⇒ y = PΘ (x). (12)

Taking x = x̂k – α1(∇f (x̂k) – ATλk – μk + 1
β1

AT (Ax̂k – b) + 1
β2

(x̂k – yk)) and y = x̂k in (12),
then (8) is equivalent to the following nonlinear equation:

x̂k = PRn

[

x̂k – α1

(

∇f
(
x̂k) – ATλk – μk +

1
β1

AT(Ax̂k – b
)

+
1
β2

(
x̂k – yk)

)]

, (13)

where α1 can be any positive number.
Taking x = ŷk – α2(μk – 1

β2
(x̂k – ŷk)) and y = ŷk in (12), then (9) is equivalent to the fol-

lowing nonlinear equation:

ŷk = PK

[

ŷk – α2

(

μk –
1
β2

(
x̂k – ŷk)

)]

, (14)

where α2 can be any positive number.
It is time consuming to solve problem (13) directly due to the existence of the term

∇f (x̂k) and AT Ax̂k in (13). The inexact approach is used to solve problem (13), which is
similar to the method in paper [18]. Let

R1
(
xk , x̂k) =

(

1 –
α1

β2
– γ1

α1

β1

)
(
xk – x̂k) – α1

(∇f
(
xk) – ∇f

(
x̂k))

and

R2
(
xk , x̂k) =

α1

β1

((
γ1In – AT A

)(
xk – x̂k)),

where γ1 > λmax(AT A), and λmax(AT A) is the largest eigenvalue of AT A.
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Instead of computing (13), we compute

x̂k = PRn

[

x̂k – α1

(

∇f
(
x̂k) – ATλk – μk +

1
β1

AT(Ax̂k – b
)

+
1
β2

(
x̂k – yk)

)

+ R1
(
xk , x̂k) + R2

(
xk , x̂k)

]

= xk – α1

(

∇f
(
xk) – ATλk – μk +

1
β1

AT(Axk – b
)

+
1
β2

(
xk – yk)

)

. (15)

Obviously, problem (15) only needs compute the projection on K , whose solution is used
as an approximation to the solution of variational inequality (8).

Let α2 = β2 in (14). Then we have

ŷk = PK

[

–α2

(

μk –
1
β2

x̂k
)]

. (16)

Now we present the prediction-correction inexact alternating direction method. To sim-
plify the following analysis, we denote

G =

⎛

⎜
⎜
⎜
⎝

In 0 0 0
0 α1

β2
In 0 0

0 0 α1β1Im 0
0 0 0 α1β2In

⎞

⎟
⎟
⎟
⎠

.

The prediction-correction inexact alternating direction method
Step 0. Given w0 = (x0, y0,λ0,μ0) ∈ R

n × R
n × R

m × R
n, β1,β2 > 0, η ∈ (0, 1), and α0 =

η

1+η( 1
β2

+ γ1
β1

)
. Set k = 0.

Step 1. The prediction step: for a given wk = (xk , yk ,λk ,μk), set

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂k = xk – α1(∇f (xk) – ATλk – μk + 1
β1

AT (Axk – b) + 1
β2

(xk – yk)),

ŷk = PK [x̂k – α2μ
k],

λ̂k = λk – 1
β1

(Ax̂k – b),

μ̂k = μk – 1
β2

(x̂k – ŷk),

where α1 = (0.1)iα0 satisfies the following inequations by the Armijo line search strategy
for i ∈ N (the set of natural numbers):

∥
∥
∥
∥α1

(∇f
(
xk) – ∇f

(
x̂k)) +

α1

β1
AT A

(
xk – x̂k)

∥
∥
∥
∥

≤
(

η

(

1 –
α1

β2

)

+ (1 – η)
α1γ1

β1

)
∥
∥xk – x̂k∥∥. (17)

Step 2. The correction step: compute the next iteration point wk+1 = (xk+1, yk+1,λk+1,μk+1)
by the following equation:

wk+1 = PΩ

(
wk – ρkd

(
wk , ŵk)), (18)
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where ρk is stepsize determined by

ρk = vρ∗
k = v

〈wk – ŵk , dk〉G

‖d(wk , ŵk)‖G
, ν ∈ (0, 2),

and

d
(
wk , ŵk) =

⎛

⎜
⎜
⎜
⎝

R1(xk , x̂k) + R2(xk , x̂k)
yk – ŷk

λk – λ̂k

μk – μ̂k

⎞

⎟
⎟
⎟
⎠

.

Here, 〈ξ1 · ξ2〉G = ξT
1 Gξ2 for any vectors ξ1, ξ2 ∈ R

n and ‖ξ‖G =
√

ξT Gξ for any vector
ξ ∈R

n.

Remark If the constant L satisfies the following inequality:

∥
∥∇f

(
x̂k) – ∇f

(
xk)∥∥≤ L

∥
∥x̂k – xk∥∥, (19)

we choose α1 so that

α1 ≤ η

L + η( 1
β2

+ γ1
β1

)
(20)

with certain 0 < η < 1. It is easily proven that inequality (17) holds if inequality (20) holds.
But different from (20), ∇f (x) does not require to be Lipschitz continuous in inequality
(17). We take the Armijo line search strategy which uses a geometric decreasing series to
get α1 until condition (17) holds.

3 The convergence result
In this section, we extend and modify the convergence results of the alternating direction
methods for convex nonlinear semidefinite programs in paper [18] and study convergence
of our proposed method.

Lemma 2 The sequence ŵk = (x̂k , ŷk , λ̂k , μ̂k) generated by the prediction-correction inexact
alternating direction method satisfies

〈
ŵk – w∗, d

(
wk , ŵk)〉

G

=
〈
x̂k – x∗, R1

(
xk , x̂k) + R2

(
xk , x̂k)〉 +

α1

β2

〈
ŷk – y∗, yk – ŷk 〉

+ α1β1
〈
λ̂k – λ∗,λk – λ̂k 〉 + α1β2

〈
μ̂k – μ∗,μk – μ̂k 〉≥ 0, (21)

where w∗ = (x∗, y∗,λ∗,μ∗) is a KKT point of system (6).

Proof Taking y = ŷk in the second inequality in system (6), we obtain

〈
ŷk – y∗,μ∗〉≥ 0. (22)
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Coupled with (11) and taking y = y∗ in (9), we have

〈
y∗ – ŷk , μ̂k 〉≥ 0. (23)

Combining with (22) and (23), we have

〈
ŷk – y∗,μ∗ – μ̂k 〉≥ 0. (24)

In addition, from (9) and (11), we have

〈
yk – ŷk , μ̂k 〉≥ 0,

〈
ŷk – yk ,μk 〉≥ 0.

Combining with the two inequalities above, we have

〈
ŷk – yk ,μk – μ̂k 〉≥ 0. (25)

Note that (15) can be written equivalently as

〈

x – x̂k ,α1

(

∇f
(
x̂k) – AT λ̂k – μ̂k +

1
β2

(
ŷk – yk)

)

– R1
(
xk , x̂k) – R2

(
xk , x̂k)

〉

≥ 0, ∀x ∈ Rn.

Setting x = x∗, we have

〈

x∗ – x̂k ,α1

(

∇f
(
x̂k) – AT λ̂k – μ̂k +

1
β2

(
ŷk – yk)

)

– R1
(
xk , x̂k) – R2

(
xk , x̂k)

〉

≥ 0, ∀x ∈ Rn. (26)

Taking x = x̂k in the first inequality in system (6), we have

α1
〈
x̂k – x∗,∇f

(
x∗) – ATλ∗ – μ∗〉≥ 0. (27)

Combining with (26) and (27), we have

〈
x̂k – x∗,α1AT(λ̂k – λ∗)〉 +

〈
x̂k – x∗,α1

(
μ̂k – μ∗)〉

+
〈

x̂k – x∗,
α1

β2

(
yk – yk+1)

〉

+
〈
xk+1 – x∗, R1

(
xk , x̂k) + R2

(
xk , x̂k)〉

≥ α1
〈
x̂k – x∗,∇f

(
x̂k) – ∇f

(
x∗)〉≥ 0. (28)

Based on the first part on the left-hand side of (28) and the third equation in system (6),
we have

〈
x̂k – x∗,α1AT(λ̂k – λ∗)〉 = α1

〈
Ax̂k – Ax∗, λ̂k – λ∗〉

= α1
〈
Ax̂k – b, λ̂k – λ∗〉

= α1β1
〈
λ̂k – λ∗,λk – λ̂k 〉. (29)
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By (11), (24), the last equation in system (6), and the second part on the left-hand side of
(28), we have

α1
〈
x̂k – x∗, μ̂k – μ∗〉 + α1

〈
ŷk – y∗,μ∗ – μ̂k 〉

= α1
〈
μ̂k – μ∗, x̂k – x∗ – ŷk + y∗〉

= α1
〈
μ̂k – μ∗, x̂k – ŷk 〉

= α1β2
〈
μ̂k – μ∗,μk – μ̂k 〉. (30)

In addition, from the third part on the left-hand side of (28), we have

α1

β2

〈
x̂k – x∗, yk – ŷk 〉

=
α1

β2

〈
ŷk – y∗, yk – ŷk 〉 +

α1

β2

〈
x̂k – ŷk , yk – ŷk 〉

=
α1

β2

〈
ŷk – y∗, yk – ŷk 〉 –

α1

β2

〈
ŷk – yk ,μk – μ̂k 〉. (31)

It follows from (25)–(26) and (28)–(31) that

〈
ŵk – w∗, d

(
wk , ŵk)〉

G ≥ 0. �

Lemma 3 If α1 satisfies (17), then for any k, we have

〈
wk – ŵk , d

(
wk , ŵk)〉

G ≥
(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
∥
∥wk – ŵk∥∥2

G. (32)

Proof Since α1 satisfies (17), then the following inequality holds:

〈
xk – x̂k , R1 + R2

〉

=
(

1 –
α1

β2

)
∥
∥xk – x̂k∥∥2

2 – α1
(
xk – x̂k)T(∇f

(
xk) – ∇f

(
x̂k))

+
α1

β1

(
xk – x̂k)T AT A

(
xk – x̂k)

≥
(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
∥
∥xk – x̂k∥∥2

2.

By the inequality above, we have

〈
wk – ŵk , d

(
wk , ŵk)〉

G

=
〈
xk – x̂k , R1 + R2

〉
+

α1

β2

∥
∥yk – ŷk∥∥2

2 + α1β1
∥
∥λk – λ̂k∥∥2

2 + α1β2
∥
∥μk – μ̂k∥∥2

2

≥
(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
∥
∥xk – x̂k∥∥2

2 +
α1

β2

∥
∥yk – ŷk∥∥2

2

+ α1β1
∥
∥λk – λ̂k∥∥2

2 + α1β2
∥
∥μk – μ̂k∥∥2

2

≥
(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
∥
∥wk – ŵk∥∥2

G. �
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Now, we give the convergent conclusion.

Theorem 1 The sequence wk = (xk , yk ,λk ,μk) generated by the predictor-corrector inex-
act alternating direction method converges to a KKT point w∗ = (x∗, y∗,λ∗,μ∗) of problem
(6).

Proof It is easy to prove that solving the optimal condition (6) for problem (5) is equivalent
to finding a zero point of the residual function

e(w) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

x – PRn (x – α1(∇f (x) – ATλ – μ))
y – PK (y – α2μ)
Ax – b
x – y

∥
∥
∥
∥
∥
∥
∥
∥
∥

G

. (33)

By (15), we have

x̂k = PRn

[

x̂k – α1

(

∇f
(
x̂k) – AT λ̂k – μ̂k +

1
β2

(
ŷk – yk)

)

+ R1
(
xk , x̂k) + R2

(
xk , x̂k)

]

. (34)

From (14), we have

ŷk = PK
[
ŷk – α2μ̂

k]. (35)

Based on (33)–(35) and the nonexpansion property of the projection operator, we
have

∥
∥e
(
ŵk)∥∥

G ≤

∥
∥
∥
∥
∥
∥
∥
∥
∥

α1
β2

(yk – ŷk) + R1(xk , x̂k) + R2(xk , x̂k)
0
β1(λk – λ̂k)
β2(μk – μ̂k)

∥
∥
∥
∥
∥
∥
∥
∥
∥

G

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥

R1(xk , x̂k) + R2(xk , x̂k)
0
β1(λk – λ̂k)
β2(μk – μ̂k)

∥
∥
∥
∥
∥
∥
∥
∥
∥

G

+

∥
∥
∥
∥
∥
∥
∥
∥
∥

α1
β2

(yk – ŷk)
0
0
0

∥
∥
∥
∥
∥
∥
∥
∥
∥

G

≤ δ
∥
∥wk – ŵk∥∥

G, (36)

where δ is a positive constant depending on parameters α1, β1, β2. By inequality (17), the
value of δ is set as

δ =

√

max

{

β1,β2,
α1

β2
, 2
(

1 –
α1

β2

)}

. (37)
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Thus, based on Lemmas 2 and 3, we have

∥
∥wk+1 – w∗∥∥2

G

≤ ∥
∥wk – ρkd

(
wk , ŵk) – w∗∥∥2

G

=
∥
∥wk – w∗∥∥2

G – 2ρk
〈
wk – w∗, d

(
wk , ŵk)〉

G + ρ2
k
∥
∥d
(
wk , ŵk)∥∥2

G

=
∥
∥wk – w∗∥∥2

G – 2ρk
〈
wk – ŵk + ŵk – w∗, d

(
wk , ŵk)〉

G + ρ2
k
∥
∥wk – ŵk∥∥2

G

≤ ∥
∥wk – w∗∥∥2

G – 2ρk
〈
wk – ŵk , d

(
wk , ŵk)〉

G + ρ2
k
∥
∥d
(
wk , ŵk)∥∥2

G

=
∥
∥wk – w∗∥∥2

G – v(2 – v)ρ∗
k
〈
wk – ŵk , d

(
wk , ŵk)〉

G

≤ ∥
∥wk – w∗∥∥2

G – v(2 – v)ρ∗
k

(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
∥
∥wk – ŵk∥∥2

G

≤ ∥
∥wk – w∗∥∥2

G – v(2 – v)ρ∗
k

(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
1
δ2

∥
∥e
(
ŵk)∥∥2

G.

From the above inequality, we have

∥
∥wk+1 – w∗∥∥2

G ≤ ∥
∥wk – w∗∥∥2

G, k = 1, 2, . . . . (38)

That is, the sequence {wk} is bounded. From the above inequality, we have

∞∑

k=0

v(2 – v)ρ∗
k

(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
∥
∥wk – ŵk∥∥2

G < +∞.

This implies that limk→∞ ‖wk – ŵk‖G = 0. Thus, the sequence {ŵk} is also bounded. Then
there exists at least one cluster point of {ŵk}.

From the above inequality, we have

∞∑

k=0

v(2 – v)ρ∗
k

(

1 – α1

(
1
β2

+
γ1

β1

))

(1 – η)
∥
∥e
(
ŵk)∥∥2

G < +∞.

This implies that limk→∞ ‖e(ŵk)‖G = 0.
Let w̄ be a cluster point of {ŵk} and the subsequence {ŵkj} converges to w̄. We have

∥
∥wkj – w̄

∥
∥

G = lim
j→∞

∥
∥wkj – ŵkj

∥
∥

G = 0

and

∥
∥e(w̄)

∥
∥

G = lim
j→∞

∥
∥e
(
wkj

)∥
∥

G = 0.

Therefore, w̄ satisfies system (6). Setting w∗ = w̄, we have

∥
∥wk+1 – w̄

∥
∥

G ≤ ∥
∥wk – w̄

∥
∥

G,

the sequence {wk} satisfies limk→∞ wk = w̄. �
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4 Simulation experiments
In this section we present computational results of the proposed method. All the algo-
rithms are run in MATLAB 7.0 environment on an Inter Core processor 1.80 GHz per-
sonal computer with 2.00 GB of Ram.

In the predictor-corrector inexact alternating direction method, we set β1 = 0.8, β2 = 0.8,
γ1 = λmax(AT A) + 0.0001. The initial points x0, y0 are randomly generated, and λ0, μ0 are
zeros.

Example 4.1 In the first test example, we test the following CNSOCP, which was derived
from paper [11]:

min yT Qy +
n∑

i=1

(
diy4

i + fiyi
)

s.t. By +

⎛

⎜
⎜
⎝

bn1
...

bnN

⎞

⎟
⎟
⎠ ∈ K ,

where the elements of the matrix B are randomly generated from the interval [0, 2], bj =
ej, di and fi are randomly generated from the intervals [0, 1] and [–1, 1], respectively. In
addition, C is given by Q = CT C, where C is an n×n matrix whose elements are randomly
generated from the interval [0, 1].

Let

z = By +

⎛

⎜
⎜
⎝

bn1
...

bnN

⎞

⎟
⎟
⎠ .

Then, as the form in problem (1), we have

A = [B – In], x =

[
y
z

]

∈R
n × K , b = –

⎛

⎜
⎜
⎝

bn1
...

bnN

⎞

⎟
⎟
⎠ .

Obviously, the problems in Example 4.1 are not Lipschitz continuous, but inequality
(17) holds for each k. The detailed test problems are shown in Table 1. In Table 1, the first
three test problems are given in [11]. The other 12 test problems are generated based on
the method in Example 4.1 and extended the scale of the problem.

For the test problems in Table 1, we compare our proposed method with the SQP-type
algorithm in paper [11], and the compared results are listed in Table 1. The SQP-type al-
gorithm is implemented using the SeDuMi solver [20] to solve the subproblems by trans-
forming them into LSOCPs. In SQP-type algorithm, the parameters are set similar to those
in paper [11]. The stopping criterion is ‖xk‖

‖xk‖ < 10–3. Let f (xk) = f (xk) – f (xk–1). In Exam-
ple 4.1, our algorithm is terminated when

max

{‖xk – xk–1‖
‖xk‖ ,

‖yk – yk–1‖
‖yk‖ ,

‖λk – λk–1‖
‖λk‖ ,

‖μk – μk–1‖
‖μk‖ ,

|f (xk))|
|f (xk)|

}

≤ ε

for ε = 10–3 and v = 0.9.
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Table 1 The compared results for the test problems with medium scale

Problems m n SOC α1 PCIADM SQP

Iter. Time Iter. Time

P01 10 20 2× 5 0.1α0 37 0.046 6 0.360
P02 30 60 2× 5; 1× 20 0.01α0 50 0.109 7 0.620
P03 50 100 2× 5; 2× 20 0.01α0 74 0.187 7 1.461
P04 70 140 2× 5; 3× 20 0.01α0 69 0.265 8 1.962
P05 90 180 2× 5; 4× 20 0.01α0 26 0.171 8 2.652
P06 110 220 2× 5; 5× 20 0.01α0 30 0.343 9 2.924
P07 130 260 2× 5; 6× 20 0.01α0 87 1.041 9 5.401
P08 150 300 2× 5; 7× 20 0.01α0 24 0.393 10 7.676
P09 170 340 2× 5; 8× 20 0.01α0 25 0.642 11 10.95
P10 190 380 2× 5; 9× 20 0.01α0 34 1.096 11 14.72
P11 210 420 2× 5; 10× 20 0.01α0 53 2.187 12 20.21
P12 230 460 2× 5; 11× 20 0.01α0 33 1.781 13 25.43
P13 250 500 2× 5; 12× 20 0.01α0 34 2.422 14 32.15
P14 270 540 2× 5; 13× 20 0.01α0 51 5.484 14 40.62
P15 290 580 2× 5; 14× 20 0.01α0 104 11.67 15 53.03

In Table 1, an entry of the form “2 × 5” in the “SOC” column means that there are two
5-dimensional second-order cones, and “α1” denotes the parameters in the prediction-
correction inexact alternating direction method. For the test problems, the iteration num-
ber and average CPU time are used to evaluate the performances of the proposed method.
The test results are shown in Table 1. In Table 1, “Time” represents the average CPU time
(in seconds) and “Iter.” denotes the average number of iterations. In addition, “PCIADM”
represents the predictor-corrector inexact alternating direction method, and “SQP” rep-
resents the SQP-type algorithm in [11].

The results in Table 1 show that prediction-correction inexact alternating direction
method costs less CPU time than the SQP-type algorithm in [11]. But the average number
of iteration steps of our proposed method is higher than that of the SQP-type algorithm
in [11]. Furthermore, the prediction-correction inexact alternating direction method is a
first-order algorithm. Therefore, the prediction-correction inexact alternating direction
method appears to be beneficial for large scale second-order cone problems with a large
number of second-order cones and dense constraint matrices in low accuracy.

Example 4.2 In this example, the grasping force optimization problem for the multi-
fingered robotic hand [21, 22] is used to test the performance of the proposed PCIADM.
For the robotic hand with m fingers, the optimization problem can be formulated as a
convex quadratic circular cone programming problem

min
1
2

f T f

s.t. Gf = –wext
∥
∥(fi1, fi2)T∥∥≤ νfi3 (i = 1, 2, . . . , m),

(39)

where f = [f11, f12, ·, fm3] is the grasping force, G is the grasping transformation matrix, wext

is the time-varying external wrench, and μ is the friction coefficient.
In this example, we consider a three-fingered grasping force optimization example [22].

The three-finger robot hand grasps a polyhedral with the grasp points [0, 1, 0]T , [1, 0.5, 0]T ,
and [0, –1, 0]T , and the robot hand moves along a vertical circular trajectory of radius r



Zhang and Liu Journal of Inequalities and Applications         (2020) 2020:10 Page 13 of 16

with constant velocity v1. Let x = [f13, f11, f12, f23, f21, f22, f23, f31, f32]T . Then problem (39) is
reformulated as a convex quadratic circular cone programming problem:

min
1
2

xT Qx

s.t. Ax = b
∥
∥(x2, x3)

∥
∥≤ tan θ1x1

∥
∥(x5, x6)

∥
∥≤ tan θ2x4

∥
∥(x8, x9)

∥
∥≤ tan θ3x7,

(40)

where Q = diag(1, 1, 1, 1, 1, 1, 1, 1, 1) is an identity matrix, θ1 = θ2 = θ3 = actan(ν–1),

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 –1 0 0 0 1 0
–1 0 0 0 0 –1 1 0 0
0 –1 0 0 –1 0 0 0 –1
0 –1 0 0 –0.5 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 –1 0.5 0 –1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
–fc sin θ (t)

Mg – fc cos θ (t)
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Here, M is the mass of the polyhedral, g = 9.8 m/s2, fc = Mv2
1/r the centripetal force, t is

the time, and θ (t) = v1t/r ∈ [0, 2π ]. In this example, we set the data as follows: M = 0.1 kg,
r = 0.2 m, n = 0.4π m/s, and μ = 0.6.

Let its half-aperture angle be θi ∈ (0, π
2 ), i = 1, 2, . . . , N . Then the ni-dimensional circular

cone denoted by Lθi is

Lθi =

{

xi =

[
xi1

xi0

]

∈ Rni–1 × R : ‖xi1‖ ≤ tan θixi0

}

.

Our proposed method also can be extended to the convex nonlinear circular cone pro-
gramming with linear constraints. In the method, the projection on the second-order cone
is substituted for the projection on circular cone. The projection computation on the cir-
cular cone is shown in paper [23].

Since b is a time-varying variable, we need solve multiple force optimization problems
to some given accuracy. Furthermore, the external wrench b of the next problem is not far
from that of the previous problem. Based on the data features of the force optimization
problems, we simply use the previously computed optimal force vector x as the starting
point for the next force optimization problem.

In Example 4.2, our algorithm is terminated when

max
{∥
∥xk – xk–1∥∥,

∥
∥yk – yk–1∥∥,

∥
∥λk – λk–1∥∥,

∥
∥μk – μk–1∥∥,

∣
∣f

(
xk)∣∣

}≤ ε

for ε = 10–4 and v = 1.6.
For 4000 force optimization problems with t = 0 : 1/4000 : 1, the average iteration num-

ber and average CPU time are used to evaluate the performances of the prediction-
correction inexact alternating direction method and interior-point method. As is known
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to all, the primal-dual interior point methods have been proven to be one of the most
efficient class of methods for SOCP. Here the Matlab program codes for primal-dual inte-
rior point method are designed from the software package by Sedumi [20]. But SeDuMi
software cannot solve the grasping force optimization problem (39) directly, so we need
transform (39) as a linear second-order cone programming problem [24]:

min t

s.t. Af + ωext = 0
√

(t – 1)2 + 2‖f ‖2 ≤ t + 1
∥
∥
(
f (i)
x , f (i)

y
)T∥∥≤ tan θif (i)

z , i = 1, 2, . . . , M.

In the SeDuMi software, the stop criterion is pars.eps = 10–4.
Here, during the 4000 force optimization problems, the value of b will be recalculated in

each problem. The test results are shown in Table 2. We also give the test results for 2000
force optimization problems with t = 0 : 1/2000 : 1 in Table 2.

The results in Table 2 show that the prediction-correction inexact alternating direction
method costs more iteration steps than the interior-point method. On the other hand,
the prediction-correction inexact alternating direction method costs less CPU time than
SeDuMi.

Table 2 The test results for the multiple force optimization problems

Methods 4000 2000

Iter. Time Iter. Time

PCIADM 43 0.0521 59 0.0619
SeDuMi 7 0.1967 7 0.1967

Figure 1 The trajectories of forces for 4000 FOPs by the PCIADMmethod. The optimal forces for the 4000 force
optimization problems solved by the prediction-correction inexact alternating direction method are shown in
Figure 1
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Figure 2 Comparative results of the twomethods. Figure 2 gives optimal force f 1z , f
1
x , f

1
y , f

2
z by the two methods

The optimal forces for the 4000 force optimization problems solved by the prediction-
correction inexact alternating direction method are shown in Fig. 1. In addition, Fig. 2
gives optimal force f 1

z , f 1
x , f 1

y , f 2
z by the two methods.

The results in Fig. 2 show that the optimal forces solved by the two methods are al-
most similar. Figures 1–2 and Table 2 demonstrate that our methods are efficient for the
grasping force optimization problems.

5 Conclusion
In this paper, the convex nonlinear second-order cone programming problem with lin-
ear constraints is equivalent to a separate structure convex programming. A prediction-
correction inexact alternating direction method is proposed to solve the separate struc-
ture convex programming. In the method, the Lipschitz continuity does not need to be
satisfied. In addition, the proposed method does not require to solve sub-variational in-
equality problems exactly. At each iteration, we only need compute the metric projection
on the second-order cone. The proposed predictor-corrector inexact alternating direction
method does not require second-order information and it is easy to implement.
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